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Abstract

Estimating net primary productivity (NPP) is significant in global climate change research

and carbon cycle. However, there are many uncertainties in different NPP modeling results

and the process of NPP is challenging to model on the absence of data. In this study, we

used meteorological data as input to simulate vegetation NPP through climate-based

model, synthetic model and CASA model. Then, the results from three models were com-

pared with MODIS NPP and observed data over China from 2000 to 2015. The statistics

evaluation metrics (Relative Bias (RB), Pearson linear Correlation Coefficient (CC), Root

Mean Square Error (RMSE), and Nash-Sutcliffe efficiency coefficient (NSE)) between simu-

lated NPP and MODIS NPP were calculated. The results implied that the CASA-model per-

formed better than the other two models in terms of RB, RMSE, NSE and CC whether on

the national or the regional scale. It has a higher CC with 0.51 and a smaller RMSE with

111.96 g C�m-2�yr-1 in the whole country. The synthetic model and CASA-model has the

same advantages at some regions, and there are lower RMSE in Southern China (86.35 g

C�m-2�yr-1), Xinjiang (85.53 g C�m-2�yr-1) and Qinghai-Tibet Plateau (93.22 g C�m-2�yr-1). The

climate-based model has widespread overestimation and large systematic errors, along

with worse performances (NSEmax = 0.45) and other metric indexes unsatisfactory, espe-

cially Qinghai-Tibet Plateau with relatively lower accuracy because of the unavailable obser-

vation data. Overall, the CASA-model is much more ideal for estimating NPP all over China

in the absence of data. This study provides a comprehensive intercomparison of different

NPP-simulated models and can provide powerful help for researchers to select the appropri-

ate NPP evaluation model.

Introduction

NPP is the amount of organic matter produced by photosynthesis minus autotrophic respira-

tion, which is defined as the net amount of organic matter fixed by plants through photosyn-

thesis. It represents the net carbon flow from the atmosphere to the terrestrial ecosystems and

is affected by many factors, such as climate, soil, nutrients and CO2 [1–3]. Generally, assuming

that vegetation can make full use of the climate resources, such as light, heat, and water when

other factors are in the optimum state, which can obtain the maximum biological or
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agricultural yield per unit area of land is called climatic potential productivity [4,5]. As one of

the critical indicators of ecosystem function, NPP reflects the growth of vegetation and the

health status of ecosystems [6,7], and it is useful for modeling researches of regional and global

carbon cycle. Therefore, a better understanding of NPP estimates is essential for the prediction

of the future carbon budgets in the context of global warming.

Traditionally, NPP estimations were based on field surveys and observations. However,

these methods are not feasible on a large scale because of its low efficiency, high cost, and

inability [8,9]. With the development of satellite remote sensing technology, we can find a

powerful way to access NPP in a large scale. MOD17A3-NPP, as one existing large scale prod-

uct acquired by remote sensing, has 1 km resolution and complete applications in different

ecosystems [10–12]. It has been widely used to reflect the response of vegetation to climate

change [13–16]. Generally, there are large uncertainties due to the lack of data in the large-

scale NPP calculation [17–19]. Therefore, models that require fewer data have a more signifi-

cant advantage, such as climate productivity models: Miami model [20], Thornthwaite Memo-

rial model [20], synthetic model, the light use efficiency models [21] and so on. Climate

productivity models are always used to estimate potential productivity as the maximum

regional productivity [3]. The synthetic model is established mainly based on the measured

biomass data, which is from 125 stations connected with natural mature and 23 stations related

to natural vegetation NPP in China such as grassland, and desert [6]. Meanwhile, there is a

notable advantage for estimating actual productivity based on the CASA model [22–25]and

the current version of the CASA model take into account land-cover change [26–29]. How-

ever, there are many differences and uncertainties during these models. Systematic validation

of those models is rare in large-scale regions, which may influence our understanding of the

ecosystem’s carbon balance and assess vegetation response to climate change. Moreover, most

studies have focused on a single NPP estimated model and the results of various methods used

to have considerable differences in uncertainty. Evaluating the reliability of results acquired by

different models and assessing the differences are still open questions.

In this study, we used meteorological data as input data, the estimated NPP using climate

productivity model (Thornthwaite Memorial model), synthetic model and CASA model were

compared with MOD17A3-NPP as the reference data over China during the past 16 years

(2000–2015). Then the statistics evaluation metrics (Relative Bias (RB), Pearson linear Correla-

tion Coefficient (CC), Root Mean Square Error (RMSE), and Nash-Sutcliffe efficiency coeffi-

cient (NSE)) for three models with the reference data were calculated.

Materials and methods

Study area

China, the third-largest country globally, is located in the East of Asia on the western shore of

the Pacific Ocean [30]. To clearly to distinguish NPP in China under other climatic and topo-

graphic conditions, we divide China into seven major regions and each of which may contain

one or more administrative areas. The seven significant regions include: the Xinjiang (XJ)

region, which has arid and semi-arid climate characteristics. Qinghai–Tibet Plateau (TP)

which has an average elevation of about 4500m. Northwestern China (NW) bounded by the

400 mm annual precipitation isohyet. Northeastern China (NE) is located in the north of the

Yan mountains. Northern China (NC) is located in the north of the Qinling Mountains–Huai

River line and the vegetation patterns in this region are characterized by a mosaic of agricul-

tural vegetation. Yunnan–Guizhou Plateau in southwestern China (SW)is bounded by the Ta-

pa Mountains and Wulingshan Mountains to the north and east. Southern China (SC) south

of the Nanling Mountains and Southeast of the Wuyi Mountains. Southern China (SC) south
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of the Nanling Mountains and Southeast of the Wuyi Mountains. The same China divisions

are from [31,32].These subregions abbreviations are labeled in Fig 1A and will be used herein.

Data and processing

Remote sensing data. MODIS NPP data. The MOD17A3’s global NPP data for 2000–

2015 was used as the reference data in this study. These data were obtained from NASA’s web-

site (https://lpdaac.usgs.gov/data_access/) with 1 km spatial resolution. It contains total pri-

mary productivity (GPP), net primary productivity (NPP) and net direct quality control

(NP_QC). In this study, 21 images in China were selected. The NPP data from 2000 to 2015

were converted into NPP data with unit g C�m-2�yr-1, and the scale coefficient was 0.1(Fig 2).

Studies found that MOD17A3 NPP dataset has outstanding agreements with the observations

at the global or country scale [33,34].

MODIS NDVI data. MODIS normalized difference vegetation index (NDVI) product with

a 250m/16-day spatiotemporal resolution between 2000 and 2015 was used in this study.

These data were from the MODIS product MOD13A1. The monthly NDVI data was generated

by the maximum-value composite method [3] and then was reprojected to the Albers equal-

area projection. The NDVI data were then used to drive CASA-model as input data for NPP

estimation.

Meteorological data. This study used meteorological data such as daily temperature, daily

precipitation, and solar radiation from 2000 to 2015. All data is provided by the China

Fig 1. (a). Different regions of the study area according to the elevation and annual precipitation. The pink circles are 839 meteorological stations. (b). Land use of

China. The 23 stars represent the observed-NPP stations from published papers, and these stations located in the temperate forest are mainly used to verify the

potential productivity.

https://doi.org/10.1371/journal.pone.0252149.g001
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Meteorological Administration (http://cdc.nmic.cn/home.do), obtained from the 839 meteo-

rological stations (130 solar radiation stations) in the whole country. Meteorological data driv-

ing the CASA model include monthly precipitation, monthly mean temperature, and monthly

solar radiation. The data supplied to drive the Thornthwaite Memorial and Zhou model are

only yearly temperatures and precipitation datasets. These data were interpolated using

ANUSPLIN (version 4.2) to create regular monthly data or yearly data layers with the same

spatial resolution as MOD17A3-NPP.

Land use data and others. Land use maps were from the MODIS product of MCD12Q1

and obtained by NASA (https://lpdaac.usgs.gov/data_access/) with 1km resolution. The vege-

tation are classified into 11 categories according to IGBP global vegetation classification

scheme, including the Evergreen Needleleaf Forest, Evergreen Broadleaf Forest, Deciduous

Fig 2. The spatial distribution of multi-year MOD17A3-NPP average from 2000 to 2015.

https://doi.org/10.1371/journal.pone.0252149.g002

PLOS ONE Evaluation of NPP using three models compared over China

PLOS ONE | https://doi.org/10.1371/journal.pone.0252149 November 18, 2021 4 / 17

http://cdc.nmic.cn/home.do
https://lpdaac.usgs.gov/data_access/
https://doi.org/10.1371/journal.pone.0252149.g002
https://doi.org/10.1371/journal.pone.0252149


Needleleaf Forest, Deciduous Broadleaf Forest, Mixed Forest, Closed Shrublands, Open Shrub-

lands Woody Savannas, Savannas Grasslands, Permanent Wetlands, Croplands, Cropland/nat-

ural vegetation mosaic (Fig 1B). There are not including Water, Urban/build-up, Snow and

ice, and Barren or sparsely.

In-situ survey data. In this study, the verification NPP data were derived from the study

[35], with the Global Primary Productivity Initiative (https://daac.ornl.gov/). These data come

from the National Forest Resources Inventory conducted by the Chinese Forestry Department

during the period 1989–1993. Besides, we also used in-situ survey datasets from published

kinds of literature with well-documented field sites [3,36–38]. These data provided some valu-

able information such as site names, latitude, longitude, elevation, biomass and NPP estima-

tions for most of the plant components. Mostly, the data from Global Primary Productivity

Initiative covered representative sample points of different vegetation types, and the data are

widely used in global model parameterization and result verification. All data included differ-

ent vegetation types and total NPP data of China’s administrative districts. Finally, 23

observed-NPP stations (Fig 1B) were collected as NPP validation data.

Methods

In this study, we used climate productivity model (Thornthwaite Memorial model), synthetic

model and CASA model to calculated NPP over China during the past 16 years (2000–2015).

Then the comparative analysis was employed to assess the performance of the NPP simulated

model with MODIS NPP. The statistics evaluation metrics (Relative Bias (RB), Pearson linear

Correlation Coefficient (CC), Root Mean Square Error (RMSE), and Nash-Sutcliffe efficiency

coefficient (NSE)) were calculated. The flowchart of the the methodology employed in this

study is as follow (Fig 3):

Climate productivity model for estimating NPP. Thornthwaite Memorial [39], as one

climate productivity model, established a statistical relationship between Net Primary Produc-

tivity (NPP) and evapotranspiration (ET) based on the relationship between evapotranspira-

tion, temperature, precipitation, and vegetation. On this basis, Lieth [40] proposed the

Thornthwaite Memorial model in 1975 based on the vegetation NPP in 50 different locations

on 5 continents. The climate factors considered in this model are relatively simple and can bet-

ter reflect the key factors affecting plant growth and development, such as temperature, precip-

itation, and evapotranspiration. The calculation formula is=2

NPPT ¼ 3000� ½� e� 0:0009695ðv� 20Þ� ð1Þ

v ¼
1:05r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1þ 1:05r
L Þ

2
�q

L ¼ 300þ 25T þ 0:05T3 ð3Þ

where, v represents annual average actual evapotranspiration (mm), r is annual average precip-

itation (mm), L is the maximum annual evapotranspiration (mm), T is the average annual

temperature (˚C). NPPT is calculated in units of g DW/m2/yr. This was implemented by apply-

ing a conversion factor of 0.475 in China [26] from dry matter (DW) to carbon content (g

C�m-2�yr-1).

Synthetic model for estimating NPP. Zhou [41] and Zhang [42] based on the energy bal-

ance equation and the water balance equation established the NPP model of natural vegetation

combining the physiological and ecological characteristics of plants and the relationship

(2)
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between water and heat balance. The calculation formula [3] is as follows:

NPP ¼ 100� RDI
rRnðr2 þ Rn

2 þ rRnÞ

ðRn þ rÞðRn
2 þ r2Þ

expð�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9:87þ 6:25RDI
p

Þ ð4Þ

Rn ¼ RDI � r � L ð5Þ

RDI ¼ ð0:629þ 0:237PER � 0:00313PER2Þ
2

ð6Þ

PER ¼
PET
r
¼

BT � 58:93

r
ð7Þ

Fig 3. Flowchart of the methodology employed in this study. Light green represents the process of this study; Light

orange represents data used in this study; Gray represents the output; Light blue represents the methods.

https://doi.org/10.1371/journal.pone.0252149.g003
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BT ¼
P

td
365

ð8Þ

L ¼ 597 � 0:6Tm ð9Þ

Where NPP was calculated in units of g DW�m-2�yr-1 and was implemented by applying a

conversion factor of 0.475 in [26] China from dry matter (DW) to carbon content (g C�m-2�yr-

1). r is average annual precipitation, Rn is annual net radiation, RDI is radiant dryness, L is the

latent heat of evaporation, PET is potential evapotranspiration, PER is probably evapotranspi-

ration rate. Biological temperature (BT) is the average temperature experienced during plant

growth, generally between 0 and 30˚C. Mean daily temperature (td) and mean monthly tem-

perature (Tm) takes 0˚C when it lowers than 0˚C and can be calculated at 30˚C when the tem-

perature is higher than 30˚C.

CASA-model for estimating NPP. The Carnegie-Ames-Stanford Approach (CASA)

models [13,21], a satellite-based photosynthetic utilization models, is widely used to calculate

the NPP. The CASA model requires the following parameters, such as temperature, rainfall,

solar radiation, NDVI, etc. The model can be calculated by APAR (Absorbed Photosynthetic

Active Radiation) times the light energy conversion rate ε. The calculation expression is as fol-

lows:

NPPðx;tÞ ¼ APARðx;tÞ � LUEðx;tÞ ð10Þ

APARðx;tÞ ¼ SOLðx;tÞ � FPARðx;tÞ � r ð11Þ

FPAR x; tð Þ ¼
½NDVIðx; tÞ � NDVIi;min� � ðFmax � FminÞ

NDVIi;max � NDVIi;min
þ Fmin ð12Þ

LUEðx; tÞ ¼ Tε1ðx;tÞ � Tε2ðx;tÞ �Wðx;tÞ � εmax ð13Þ

where, NPP(x,t), APAR(x,t) (MJ/m2/month) and LUE(x,t) (g C/MJ) are the APAR and LUE of

the vegetation in the geographic coordinate system at location x and time t. ε(x,t) represents

actual the utilization of light energy. SOL(x,t) represents the total solar radiation of pixel x in

month t. PAR is the incident photosynthetically active radiation (M J m-2) per month. FPAR

(x,t) is the fraction of PAR absorbed by the vegetation canopy. Constant r�0.5 represents the

solar effective radiation ratio that vegetation can utilize, namely, the ratio of PAR divided by

SOL. The detail of the CASA-model can be found in the study of Potter [21] and Zhu [26].

Validation and statistical evaluation metrics. In this study, we validated the estimated

NPP by comparing it with measured data. These data were collected from Luo’s investigation

data and other published literature. A series of traditional error indexes, which include Bias,

Relative Bias(RB), Pearson linear Correlation Coefficient (CC), Root Mean Square Error

(RMSE), and Nash-Sutcliffe efficiency coefficient (NSE), is calculated at a pixel in this study.

RB, NSE, and CC are dimensionless, and RMSE is in g C/m2. RB, when multiplied by 100,

denotes the degree of overestimation or underestimation in percentage. The definition of RB,

CC, and RMSE can be found in [31,43,44], and NSE that is generally used to verify the quality
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of the hydrological model simulation results are defined as follows:

NSE ¼ 1 �

PT
t¼1
ðQt

0
� Qt

mÞ
2

PT
t¼1
ðQt

0
� �Q0Þ

2
ð14Þ

Where Q0 represents the result of the reference model; Qm is the simulated value of the

comparison model; �Q0 the annual mean of the model data;t represent the time at year scale;

The value range of NSE is (-1, 1), and the closer the value is to 1, the higher the similarity

between the comparison models and the reference models are. The closer the value is to 0, the

closer the simulation result of the comparison model is to the result of the reference model,

that is, the more reliable the overall result is. When the value of NSE is far less than 0, it indi-

cates that the model is not credible [44].

Results and discussion

Validation of estimated NPP

The NPP product from MODIS has been widely used to access the response of vegetation to

climate change. The validation result in this study also showed that there are good correlation

between the observed data and MODIS NPP product (R2 = 0.81), which reveals the NPP prod-

uct from MODIS is relatively reliable. In addition, we validated the estimated NPP at the pro-

vincial scale (Fig 4A and 4B) and the station scale (Fig 4B and 4C), respectively. The results

showed that the simulated NPP in each province from 2000 to 2015 using the three models in

this study are highly correlated with the result of Luo during 1989 to 1993 (Fig 4B). R2 was

0.52, 0.67 and 0.70, respectively. The annual average NPP from Thornthwaite Memorial model

and Synthetic model are higher whereas the CASA-model are lower than those of Luo (Fig 4A)

at the provincial scale. It may be caused by various uncertainties such as time inconsistency

and the former two models are only taken account into climate factors, which is used to simu-

late the potential productivity. Fig 4C and 4D illustrated CASA model was better than the

other two models at the station scale and the results simulated by CASA model were more

closer MODIS NPP product, which is likely due to CASA-model and MOD17A3 product both

belong to LUE model. Besides, the total NPP of China simulated by the Thornthwaite Memo-

rial model, Synthetic model and CASA-model were 4.03Pg C (1Pg C = 1015g C), 2.54 Pg C and

3.58 Pg C, respectively. This is within the reported values of 1.95–6.13 Pg C [26,45,46]. We also

compared the NPP calculated from the three models with other simulation results (Table 1),

which also indicated the reliability of our results.

Spatial distribution of NPP

Fig 5 The spatial distribution of estimated NPP showed that the trend of NPP distribution in

China is higher in the Southeast and lower are the northwest (Fig 5). The spatial distribution

of NPP varies from year after year due to different climatic factors, topographic factors, pheno-

logical characteristics, and vegetation types. As shown in Fig 5, there are pronounced regional

differences in every model, offering a gradually decreasing trend from Southeast to northwest.

In southern China, the evergreen broad-leaved forest is widely distributed and rich in

resources. The annual average NPP is higher than 600 g C�m-2�yr-1. Rich precipitation and

groundwater are more conducive to the growth of vegetation [9]. However, the average annual

NPP is lower than 200 g C�m-2�yr-1 in the northwest due to poor soil, low temperatures and

low rainfall [26]. Overall, the maximum value of NPP occurred in the southwest, southern

China and Taiwan. The values between 600 and 700 g C�m-2�yr-1 were located in the south of

the lower reaches of the Yangtze River, east of Yunnan-Guizhou Plateau and north of Nanling
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Mountains with annual NPP. Annual NPP between 400 and 600 g C�m-2�yr-1 were located in

Daxing’an Mountains, Xiaoxing’an Mountains, east of Taihang Mountains, middle reaches of

the Yangtze River Basin, most area of Sichuan, southeastern Tibet, Tianshan Mountains in

Xinjiang and Altai Mountains. The low-value sites mainly distribute in Inner Mongolia, Xin-

jiang, Qinghai-Tibet Plateau, and parts of Shanxi, Gansu, Ningxia and Shanxi provinces with

annual NPP less than 200 g C�m-2�yr-1.

However, there was also a discrepancy in different models. Spatial patterns of NPP over

China depicted by CASA-model agree with the reference MOD17A3. NPP calculated by TW

model and ZGS models showed obvious banded distribution from northwest to Southeast.

Besides, the NPP contour of these two models increased steadily from northwest to Southeast,

Fig 4. Validation of NPP (a). The range of NPP of three models and measured data in Luo’s [35] study in 27 provincial administrative regions (b). The correlation of

NPP between three models and Luo’s measured data in 27 provincial administrative regions (c). The correlation of NPP between three models and MODIS NPP in 23

observed stations (d). The correlation of NPP between three models and MODIS NPP in 23 observed stations.

https://doi.org/10.1371/journal.pone.0252149.g004
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which was relatively smooth. The simulation results of the CASA model showed a larger zigzag

shape, especially in the southern region. Obviously, NPP from TW model overestimated com-

pared with the other two models, which is consistent with previous studies [24,33,36,41] As far

as the input data is concerned, NPP simulated by CASA model and MODIS NPP products

consider not only meteorological factors, but also different vegetation types and land surface

information, so the results are more realistic. Table 2. showed the RB between NPP from three

models and MODIS NPP product. Interestingly, the overall RB of ZGS model (18.54%) less

than CASA-model (21.34%) and TW model (30.34%), which indicated that the ZGS model

was underestimated whereas CASA-model and TW model overestimated from the country

scale compared with MODIS NPP. The relative precision decreased from 81.47% in the ZGS

model to 78.66% in CASA-model and 69.66% in TW model. Regionally, the results from TW

model were overestimated in most regions, and the relative deviation are very high expecta-

tions for the region of SW (8.08%), which was only higher than that of CASA-model (6.86%)

simulation in this region. The results of CASA-model were also largely overestimated com-

pared with the reference data in most regions, especially in XJ, TP, NW, arid areas of North-

west China and plateau areas. The annual average estimation NPP of ZGS models on SC, NC,

TP, and NW were in good agreement with the reference data, and the relative deviation in

other regions were more than 30%. The results of ZGS model in regional scale performed well

is likely because this model is established based on vegetation in China [39].

Subregional statistics evaluation of NPP

NSE (Fig 6) for the simulation of three models showed the results from CASA-model was

more consistent with MODIS NPP. This was likely due to the models of two results were

belonged to the LUE model. However, the NSE of CASA-model was close to 0 or negative infi-

nite values in a few areas, such as the Qinghai-Tibet Plateau, which indicated that there was

inadaptable in CASA-model in this area. This is likely because the meteorological stations are

few and unevenly distributed, resulting in the error of interpolation results. The maximum

value of NSE from the ZGS model can reach 0.73 in the northeast and south of NE and NW.

And it is greater than 0.5 in most areas of SW, the eastern part of TP and the edge of Xinjiang.

Some researches indicated that the performance levels were defined as follows:

NSE > 0.65 = excellent, 0.65 ~ 0.5 = very good, 0.5 ~ 0.2 = good, and< 0.2 = poor [44,48].

NSE in most areas of central NC and some areas of southern NC was near 0.5, which indicated

that ZGS model had certain applicability in these areas. However, the simulation results of

Table 1. Comparison of annual average NPP between this study and other studies.

Reference Studied period Studied area model Precision

This study 2000–2015 China TW model

ZGS model

CASA model

R2 = 0.61

R2 = 0.76

R2 = 0.78

[39] 2001–2010 Heihe River Basin TW model None

[3] 2000–2015 The Loess Plateau ZGS model R2 = 0.734, P <0.01

[3] 2000–2015 The Loess Plateau CASA model R2 = 0.817, P <0.01

[46] 2001–2010 China CASA model r = 0.733,P<0.001

[47] 2000–2014 The Ili River Valley CASA model R2 = 0.65, P <0.01,

[26] 1982–2000 China CASA model RB = 4.5%

Note: For charting and table simplification, TW represents the climate productivity (Thornthwaite Memorial) model. ZGS represents Synthetic model proposed by

Guangsheng Zhou [41], the same below. The R2 at station scale used in this table.

https://doi.org/10.1371/journal.pone.0252149.t001
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some areas such as the central and western parts of TP, the edge parts of Xinjiang and the parts

of NC and SC border appear near 0. Compared with the simulation results of the two models

mentioned above, the NSE simulation results of the TW model were less than 0.5, which illus-

trated that there were great differences between NPP calculated by TW model and MODIS

NPP product.

The average RMSE (Fig 7) of the three models was less than 200 g C�m-2�yr-1, within the

allowable range of their respective errors in the whole country. Table 3 indicated that CASA-

model performed well noticeably in NE, XJ, SW and NW. The average of RMSE increased

from 111.96 g C�m-2�yr-1 in CASA-model to 133.14 g C�m-2�yr-1 in ZGS model and 172.46 g

C�m-2�yr-1 in TW model. It also showed NPP calculated by CASA-model was consistent with

the reference data. In terms of spatial distribution, the RMSE of CASA-model was 0–150 g

C�m-2�yr-1 in the whole region, especially in Inner Mongolia Autonomous Region, XJ, most

areas of NE and Shandong Peninsula where RMSE was less than 50 g C�m-2�yr-1. RMSE was

more than 200 g C�m-2�yr-1 in the central of NC and TP. The larger RMSE occurs in southern

SC, Southern SW and southern Tibet. However, the ZGS model also had preponderance in

most areas of NC, XJ and TP, and the range of RMSE was between 150–250 g C�m-2�yr-1 in the

northeastern margin area. The differences between simulated NPP and reference data were

more considerable in most areas of SC and the junction area between TP and SC where RMSE

was more significant than 400 g C�m-2�yr-1. Compared with the above two results, the RMSE

Fig 5. The spatial pattern of NPP calculated by three models (Abbreviation: TW represents Thornthwaite Memorial model, ZGS represents the synthetic model).

https://doi.org/10.1371/journal.pone.0252149.g005

Table 2. RB for the results of three models comparable with reference data (Note: TW represents Thornthwaite Memorial model).

MODIS_NPP (g C/m2) TW_NPP (g C/m2) TW_RB (%) ZGS_NPP (g C/m2) ZGS_RB (%) CASA-NPP (g C/m2) CASA-RB (%)

SC 617.34 771.00 24.89 596.07 -3.45 682.98 10.63

NE 318.24 381.16 19.77 177.31 -44.28 357.95 12.47

NC 351.80 470.72 33.80 353.65 0.53 461.89 31.29

XJ 58.01 136.84 135.89 76.52 31.91 119.71 106.36

TP 109.24 334.50 206.21 114.17 4.51 223.48 104.58

SW 578.08 531.38 -8.08 338.64 -41.42 538.45 -6.86

NW 167.79 242.66 44.62 136.12 -18.87 285.67 70.25

ALL 314.36 409.75 30.34 256.07 18.54 395.73 21.34

https://doi.org/10.1371/journal.pone.0252149.t002
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of TW model was higher in the whole country. In summary, the error of CASA-model and

MOD17A3 reference data is the smallest, followed by ZGS model, and the worst is TW model.

CC in the CASA-model, TW model and ZGS model were not good consistent with the ref-

erence data. The average CC of the CASA-model was 0.51 higher than that of ZGS and TW

model (Fig 8) in the whole country. However, the average values showed large regional differ-

ences. The CC of three models in NW and NE regions was higher than the other regions,

which revealed that estimated NPP in these regions using CASA-model, ZGS model and TW

model were well consistent with MODIS NPP. The spatial distribution of CC in three models

compared with MODIS NPP product (Fig 9) showed there are a good consistency in most

areas of NE, NW, central NC and SW where CC can reach more than 0.8, showing a positive

correlation. The overall performance of CASA-model is a positive correlation with MODIS

NPP product in most part of China.

Fig 6. The spatial distribution of NSE of three models compared with MODIS NPP product.

https://doi.org/10.1371/journal.pone.0252149.g006

Fig 7. The spatial distribution of RMSE of three models compared with MODIS NPP product.

https://doi.org/10.1371/journal.pone.0252149.g007
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Table 3. RMSE of three models comparable with MODIS NPP product.

TW-RMSE (g C/m2) ZGS-RMSE (g C/m2) CASA-RMSE (g C/m2)

SC 263.73 172.89 149.9

NE 119.02 153.56 106.47

NC 164.11 86.35 135.27

XJ 131.36 85.53 98.52

TP 274.46 93.22 125.56

SW 135.83 237.46 65.74

NW 118.73 102.99 102.28

Average 172.46 133.14 111.96

https://doi.org/10.1371/journal.pone.0252149.t003

Fig 8. CC of three models compared with MODIS NPP product.

https://doi.org/10.1371/journal.pone.0252149.g008

PLOS ONE Evaluation of NPP using three models compared over China

PLOS ONE | https://doi.org/10.1371/journal.pone.0252149 November 18, 2021 13 / 17

https://doi.org/10.1371/journal.pone.0252149.t003
https://doi.org/10.1371/journal.pone.0252149.g008
https://doi.org/10.1371/journal.pone.0252149


Uncertainties

The formation process of vegetation NPP is affected by many factors, not only related to vari-

ous physiological and ecological factors, but also related to many complex environments.

However, the three models and the MODIS NPP used in this study take fewer factors into

account. The three models were all relatively simple, especially the MODIS NPP was known to

underestimate NPP in areas with high productivity, and overestimate NPP in low productivity

areas [33].There are still large uncertainties because the real situation was not entirely the same

with the simulation. Besides, many scholars have proved that there are obvious spatial-tempo-

ral variations between different vegetation types [7,26,45,49,50].Although the validation data

used in this study adopt the multi-year average of eliminating systemic errors, the inconsis-

tency of time intervals will inevitably lead to errors. Moreover, the uncertainty in simulated

NPP also resulted from climate input data such as the differences in temperature, precipita-

tion, topography and other aspects at the station scale through interpolated tools. Nonetheless,

our results show that CASA model performs best among the three models for estimating NPP

in the absence of parameters. This study provides new insight for large-scale and long-time

series NPP evaluation and helps to understand the difference of various models and the appli-

cation of models in different regions.

Conclusions

In this study, we evaluate the effectiveness of there models (TW model, ZGS model and CASA

model) compared with MODIS NPP and observed data by calculating a series of statistics eval-

uation metrics (RB, RMSE, NSE, CC). The multi-year average NPP from the three models

over China during 2000–2015 showed that NPP simulations of the above three models were all

within the reported values comparable to other’s results. However, NPP calculated by CASA

model performed better than TW model and ZGS model according to statistics evaluation

metrics such as RB, RMSE, NSE and CC in the whole country. Meanwhile, there are regional

differences in different models. The results from ZGS model and CASA-model had same

advantages from a regional perspective, ZGS model had lower RMSE in the region of SC

Fig 9. The spatial distribution of CC in three models compared with MODIS NPP product.

https://doi.org/10.1371/journal.pone.0252149.g009
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(86.35 g C�m-2�yr-1), XJ (85.53 g C�m-2�yr-1) and TP (93.22 g C�m-2�yr-1) than others. In addi-

tion, the difference between the three models occurred mainly in different ecosystems. The

three models revealed very high maximum at the individual pixels, especially in southeast

China where there are a mixed forest, urban and built-up. In summary, the CASA-model

agrees well with MODIS NPP and observed data, which can be used to estimated NPP in the

absence of data. All in all, the study results will provide baseline data for large-scale and long-

time series NPP evaluation and help the policymakers understand the current situation of

NPP spatial distribution in China and develop environmental policies related to crop

production.
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