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Background: The histological and molecular classification of breast cancer (BC) is being
used in the clinical management of this disease. However, subtyping of BC based on the
tumor immune microenvironment (TIME) remains insufficiently explored, although such
investigation may provide new insights into intratumor heterogeneity in BC and potential
clinical implications for BC immunotherapy.

Methods: Based on the enrichment scores of 28 immune cell types, we performed
clustering analysis of transcriptomic data to identify immune-specific subtypes of BC using
six different datasets, including five bulk tumor datasets and one single-cell dataset. We
further analyzed the molecular and clinical features of these subtypes.

Results: Consistently in the six datasets, we identified three BC subtypes: BC-ImH, BC-
ImM, and BC-ImL, which had high, medium, and low immune signature scores,
respectively. BC-ImH displayed a significantly better survival prognosis than BC-ImL.
Triple-negative BC (TNBC) and human epidermal growth factor receptor-2-positive
(HER2+) BC were likely to have the highest proportion in BC-ImH and the lowest
proportion in BC-ImL. In contrast, hormone receptor-positive (HR+) BC had the
highest proportion in BC-ImL and the lowest proportion in BC-ImH. Furthermore, BC-
ImH had the highest tumor mutation burden (TMB) and predicted neoantigens, while BC-
ImL had the highest somatic copy number alteration (SCNA) scores. It is consistent with
that TMB and SCNA correlate positively and negatively with anti-tumor immune response,
respectively. TP53 had the highest mutation rate in BC-ImH and the lowest mutation rate in
BC-ImL, supporting that TP53 mutations promote anti-tumor immune response in BC. In
contrast, PIK3CA displayed the highest mutation rate in BC-ImM, while GATA3 had the
highest mutation rate in BC-ImL. Besides immune pathways, many oncogenic pathways
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were upregulated in BC-ImH, including ErbB, MAPK, VEGF, and Wnt signaling pathways;
the activities of these pathways correlated positively with immune signature scores in BC.

Conclusions: The tumors with the strong immune response (“hot” tumors) have better
clinical outcomes than the tumors with the weak immune response (“cold” tumors) in BC.
TNBC and HER2+ BC are more immunogenic, while HR + BC is less immunogenic.
Certain HER2+ or HR + BC patients could be propitious to immunotherapy in addition
to TNBC.

Keywords: breast cancer, clustering analysis, subtyping, transcriptomics, immune signatures, cancer
immunotherapy

BACKGROUND

Breast cancer (BC) is the most common cancer and the second
leading cause of cancer death in women (Siegel et al., 2020).
Abundant evidence has shown that BC is highly heterogeneous in
molecular profiles (Yersal and Barutca, 2014). For example, based
on differential expression of 50 genes (PAM50), BC is classified
into five subtypes: basal-like, HER2-enriched, luminal A, luminal
B, and normal-like (Picornell et al., 2019). Based on the
expression of estrogen receptor (ER), progesterone receptor
(PR), or human epidermal growth factor receptor-2 (HER2),
BC can be divided into ER+ and ER-, PR+ and PR-, or HER2+
and HER2- (Fragomeni et al., 2018). The main advantage of BC
subtyping is its advising optimal treatments (Yang and Polley,
2019). Traditional therapeutic strategies for BC included surgery,
radiotherapy, chemotherapy, and targeted therapy. In particular,
targeted therapies for ER + or HER2+ BC have achieved great
successes (Yang and Polley, 2019). However, some metastatic or
refractory BCs, such as brain metastatic HER2+ BCs, have limited
treatment options. In addition, some aggressive BC subtypes,
such as triple-negative BCs (TNBCs) which constitute 15–20% of
BCs, have no effective targeted therapies.

Immunotherapies, such as immune checkpoint inhibitors
(ICIs) (Del Paggio, 2018), have exhibited successes in treating
various cancers, including TNBC. Nevertheless, currently, only a
subset of cancer patients can benefit from such therapies (Braun
et al., 2016). To identify the subset of cancer patients responsive to
immunotherapies, certain biomarkers have been discovered,
including PD-L1 expression (Davis and Patel, 2019), mismatch
repair deficiency (Le et al., 2015), and high tumor mutation
burden (TMB) (Goodman et al., 2017). Besides, the tumor
immune microenvironment (TIME) plays a crucial role in
immunotherapeutic response (Gajewski, 2015). In general,
“hot” tumors with a high level of T cell infiltration tends to
respond better to immunotherapies than “cold” tumors with
sparse T cell infiltration (Gajewski, 2015). Therefore,
distinguishing between “hot” and “cold” tumors may identify
cancer patients responsive to immunotherapies. In a previous
study (He et al., 2018), we proposed an unsupervised machine
learning method to identify “hot” and “cold” TNBC based on
immunogenomic profiling. In this study, to characterize the
immunological landscape of BC, not limited to TNBC, we
identified immune-specific subtypes of BC by unsupervised
clustering analysis of five transcriptomic datasets. We

comprehensively characterized the molecular and clinical
features of these subtypes. Furthermore, we compared the
immune-specific subtyping with the traditional molecular
subtyping systems of BC. Our data may provide new insights
into associations of BC immunity with its molecular and clinical
features and subtypes, as well as potential clinical implications for
BC immunotherapies.

METHODS

Datasets
We downloaded The Cancer Genome Atlas Breast Invasive
Carcinoma (TCGA-BRCA) dataset, including RNA-Seq gene
expression profiles, somatic mutation profiles, protein
expression profiles, and clinical data, from the genomic data
commons data portal (https://portal.gdc.cancer.gov/). The
METABRIC BC dataset, including gene expression profiles,
somatic mutation profiles, and clinical data, were downloaded
from cBioPortal (http://www.cbioportal.org). We obtained other
three BC transcriptomic datasets (GSE24450, GSE 2034, and
GSE11121) from the NCBI gene expression omnibus (GEO)
(https://www.ncbi.nlm.nih.gov/geo/). In addition, we
downloaded a single-cell RNA sequencing (scRNA-seq) dataset
(GSE75688 (Chung et al., 2017)) for BC from the NCBI GEO. A
summary of these datasets is provided in Supplementary
Table S1.

Calculation of Immune Signatures or
Pathways’ Enrichment Scores
We calculated the enrichment score of an immune signature or
pathway in a tumor sample by the single-sample gene-set
enrichment analysis (ssGSEA) (Hänzelmann et al., 2013) of
the expression profiles of its marker or pathway gene set. The
ssGSEA is an extension of the GSEA method, which outputs the
enrichment scores of the input gene sets in different samples by
inputting an expression matrix and a list of gene sets. The marker
or pathway genes of immune signatures or pathways are shown in
Supplementary Table S2.

Identification of BC Subtypes
Based on the enrichment scores of 28 immune cell types
(Charoentong et al., 2017), we identified BC subtypes by
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hierarchical clustering. The hierarchical clustering is an unsupervised
machine learning algorithm that determines the similarity between
data points in each category by calculating the distance between them
and all data points; a smaller distance indicates a higher similarity,
and combining two data points or categories with the closest distance
generates a clustering tree. The 28 immune cell types included CD56-
bright natural killer (NK) cells, effector memory CD4 T cells,
eosinophil, CD56-dim NK cells, type 17 T helper cells, activated
B cells, monocytes, memory B cells, activated CD4 T cells, type 2 T
helper cells, plasmacytoid dendritic cells, neutrophils, macrophages,
effector memory CD8 T cells, myeloid-derived suppressor cell
(MDSC), immature B cells, T follicular helper cells, NK cells,
immature dendritic cells, mast cells, type 1 T helper cells, activated
dendritic cells, central memory CD4 T cells, gamma delta T cells,
central memory CD8 T cells, regulatory T cells, activated CD8 T cells,
and natural killer T cells (Charoentong et al., 2017).

Survival Analysis
We compared overall survival (OS) and disease-free survival
(DFS) rates among BC subtypes using the Kaplan-Meier
(K-M) method (Bland and Altman, 1998). K-M curves were
utilized to display the survival rate differences, whose
significances were evaluated by log-rank tests.

TMB and SCNA Score in Tumors
A tumor’s TMB was defined as its total count of somatic
mutations, and a tumor’s SCNA score was the sum of its
recurrent SCNAs (Taylor et al., 2018).

Immune Scores of Tumors
The immune score of a tumor reflects its immune infiltration
level, which was calculated by ESTIMATE (Yoshihara et al., 2013)
with the input of the expression profiles of immune genes.

Logistic Regression Analysis
We compared the contribution of TMB and SCNA score in
predicting high-immune-signature-score (>median) versus
low-immune-signature-score (<median) BC using the
logistic regression analysis. In the logistic regression
analysis, the R function “glm” was utilized to fit the binary
model, and the R function “lm.beta” in the R package
“QuantPsyc” was used to calculate the standardized
regression coefficients (β values).

Pathway Analysis
We first identified differentially expressed genes (DEGs)
between BC-ImH and BC-ImL using two-tailed Student’s
t test with a threshold of adjusted p-value < 0.05 and fold
change of mean expression levels >1.5. By input of the
upregulated DEGs in a BC subtype into GSEA (Liu et al.,
2018), we obtained the KEGG (Liu et al., 2019) pathways
upregulated in the subtype with a threshold of adjusted
p-value < 0.05.

Statistical Analysis
In class comparison, if the data were non-normally
distributed, we used the Mann–Whitney U test, otherwise,

we used Student’s t test. We used the Spearman method to
calculate correlations between immune scores and pathways’
enrichment scores. In the evaluation of associations between
two categorical variables, we utilized Fisher’s exact test. To
correct p values in multiple tests, we calculated the false
discovery rate (FDR) by the Benjamini-Hochberg method
(Benjamini and Hochberg, 1995). We performed all
statistical analyses in the R programming environment
(version 3.6.0).

RESULTS

Identification of Immune Subtypes of BC
Using hierarchical clustering, we identified immune subtypes of
BC based on the enrichment scores of 28 immune cell types
(Charoentong et al., 2017). We performed the clustering analysis
in five BC transcriptomic datasets (TCGA-BRCA, METABRIC,
GSE24450, GSE 2034, and GSE11121), respectively. Consistently
in these datasets, we identified three immune subtypes of BC,
termed BC-ImH, BC-ImM, and BC-ImL, which had high,
medium, and low immune signature scores, respectively
(Figure 1). We further compared the enrichment scores of
both immunostimulatory signatures (NK cells, CD8+ T cells,
and immune cytolytic activity) and immunosuppressive
signatures (CD4+ regulatory T cells, myeloid-derived
suppressor cells (MDSCs), and T cell exhaustion) among the
three subtypes. Interestingly, all these immune signatures showed
the highest enrichment scores in BC-ImH and the lowest
enrichment scores in BC-ImL (one-tailed Mann–Whitney U
test, p < 0.001) in the five datasets (Figure 2A). In addition,
PD-L1, also an immunosuppressive signature, was likely to have
the highest and lowest mRNA expression levels in BC-ImH and
BC-ImL, respectively (two-tailed Student’s t test, p < 0.05)
(Figure 2A). Meanwhile, the ratios of immunostimulatory
over immunosuppressive signatures (CD8+/CD4+ regulatory
T cells), which were the base-2 log-transformed values of the
geometric mean expression levels of all marker genes of CD8+

T cells divided by those of CD4+ regulatory T cells, were the
highest in BC-ImH and the lowest in BC-ImL (one-tailed
Mann–Whitney U test, p < 0.05) in these datasets
(Figure 2B). Furthermore, we compared the percentage of
tumor infiltrating lymphocytes (TILs) among the subtypes
based on the pathology slide data in TCGA-BRCA. As
expected, the percentage of TILs followed the pattern: BC-
ImH > BC-ImM > BC-ImL (p < 0.05) (Figure 2C).
Altogether, these results supported that BC-ImH and BC-ImL
had the strongest and weakest anti-tumor immune response,
respectively.

Clinical Features of the BC Subtypes
We compared survival prognosis among the three subtypes in the
five datasets. Interestingly, in four datasets (METABRIC,
GSE24450, GSE 2034, and GSE11121), BC-ImH displayed
significantly better OS and/or DFS than BC-ImL (log-rank
test, p < 0.05) (Figure 3A). In addition, in METABRIC, BC-
ImH showed significantly better OS than BC-ImM (p � 0.012),
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and in GSE24450, BC-ImM had significantly better DFS than BC-
ImL (p � 0.002) (Figure 3A). These results imply a positive
association between immune infiltration levels and survival
prognosis in BC.

Tumor grade indicates how abnormal the tumor cells look
under a microscope compared to normal cells and how fast a
tumor is likely to grow and spread. In METABRIC, BC-ImH and
BC-ImL harbored the largest and smallest proportion of high-
grade (G3) tumors, respectively (BC-ImH (72.6%) versus BC-
ImM (48.6%) versus BC-ImL (41.6%)) (Fisher’s exact test, p <
0.001), and BC-ImH and BC-ImL had the largest and smallest
proportion of late-stage (stage III-IV) tumors, respectively (BC-
ImH (12.3%) versus BC-ImM (9.2%) versus BC-ImL (5.5%)) (p <
0.01) (Figure 3B). These results suggest that anti-tumor immune
signatures increase with tumor progression in BC.

In METABRIC, HER2+ tumors had the highest proportion in
BC-ImH and the lowest proportion in BC-ImL (BC-ImH (20.6%)

versus BC-ImM (12.4%) versus BC-ImL (7.7%)) (p < 0.001)
(Figure 3C). TNBC also had the highest proportion in BC-
ImH and the lowest proportion in BC-ImL (BC-ImH (40.2%)
versus BC-ImM (13.9%) versus BC-ImL (5.4%)) (p < 0.001)
(Figure 3C). In contrast, tumors with hormone receptor-
positive (HR+), namely ER+ and/or PR+, had the highest
proportion in BC-ImL and the lowest proportion in BC-ImH
(BC-ImH (45.2%) versus BC-ImM (79.9%) versus BC-ImL
(91.6%)) (p < 0.001) (Figure 3C). These results indicate that
TNBC and HER2+ tumors are more immunogenic, while HR +
tumors are less immunogenic. This is in accordance with previous
reports (Safonov et al., 2017; Liu et al., 2018; Liu et al., 2019).

Genomic Features of the BC Subtypes
Somatic mutations and copy number alterations (SCNAs) are
common genomic features in tumors, which are associated with
anti-tumor immune response (Davoli et al., 2017). We found that

FIGURE 1 | Hierarchical clustering of breast cancer (BC) in five transcriptomic datasets based on the enrichment scores of 28 immune cell types. The clustering
analysis identifying three immune subtypes of BC: BC-ImH, BC-ImM, and BC-ImL, with high, medium, and low immune signature scores, respectively, consistently in the
five datasets.
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FIGURE 2 | Comparisons of the enrichment scores of immune signatures among the three BC subtypes. Comparisons of the enrichment scores of
immunostimulatory signatures (NK cells, CD8+ T cells, and immune cytolytic activity) and immunosuppressive signatures (CD4+ regulatory T cells, myeloid-derived
suppressor cells (MDSCs), T cell exhaustion, and PD-L1) (A), ratios of immunostimulatory over immunosuppressive signatures (CD8+/CD4+ regulatory T cells) (B), and
the percentage of tumor infiltrating lymphocytes (TILs) (C) among the three BC subtypes. The one-tailed Mann–Whitney U test or two-tailed Student’s t test p
values are shown. *p < 0.05, **p < 0.01, ***p < 0.001, ns p ≥ 0.05. It also applies to the following figures.
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BC-ImH had significantly higher TMB than BC-ImM and BC-
ImL (one-tailed Mann–Whitney U test, p < 0.05) in TCGA-
BRCA (Figure 4A). Accordingly, BC-ImH involved more
abundant neoantigens (Rooney et al., 2015) than BC-ImM and
BC-ImL (Figure 4A). In contrast, BC-ImL had significantly
higher SCNA scores than BC-ImH and BC-ImM (p < 0.001)
(Figure 4B). These results conform to previous findings that
TMB and SCNAs correlate positively and negatively with anti-
tumor immune response, respectively. Previous studies suggest
that reduced DNA methylation levels can promote tumor
immune evasion (Jung et al., 2019). Consistent with the
suggestion, the global methylation levels (Jung et al., 2019)
were the highest in BC-ImH and the lowest in BC-ImL in
TCGA-BRCA (p < 0.001) (Figure 4C).

In predicting the scores (high (>median) versus low
(<median)) of three immune signatures (NK cells, CD8+

T cells, and immune cytolytic activity) using TMB and SCNA
score by the logistic regression analysis, TMB was a significant
and positive predictor, while SCNA score was a significant and
negative predictor (p < 0.05) (Figure 4D). Again, this is
consistent with that TMB and SCNAs have a positive and
negative correlation with anti-tumor immune response,
respectively. Interestingly, TMB displayed greater contributions
in predicting the three immune signatures than the SCNA score,
as evidenced by its smaller p values and larger absolute β values in
the logistic regression models.

Pathways Upregulated in the BC Subtypes
Based on DEGs between BC-ImH and BC-ImL, we identified
KEGG pathways upregulated in BC-ImH and BC-ImL using the
GSEA tool (Subramanian et al., 2005). The pathways upregulated
in BC-ImH and BC-ImL were identified based on significantly

FIGURE 3 | Comparisons of clinical features among the BC subtypes. (A) Comparisons of overall survival (OS) and disease-free survival (DFS) time among the BC
subtypes by Kaplan–Meier curves. The log-rank test p values are shown. Comparisons of the proportion of high-grade (G3) tumors, the proportion of late-stage (stage
III–IV) tumors (B), and proportions of HER2+, TNBC, HR+ tumors (C) among the BC subtypes in METABRIC. The Fisher’s exact test p values are shown.
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upregulated DEGs in BC-ImH and BC-ImL, respectively, using
a threshold of adjusted p-value < 0.05. We performed the
pathway analysis in each of the five datasets and found 54
and 0 pathways upregulated in BC-ImH and BC-ImL,
respectively, consistent in the five datasets. The pathways
upregulated in BC-ImH were mainly involved in immune,
stromal, oncogenic, and metabolic processes (Figure 5A).
The immune pathways included antigen processing and
presentation, B cell receptor signaling, chemokine signaling,

complement, and coagulation cascades, cytokine-cytokine receptor
interactions, cytosolic DNA-sensing, Fc epsilon RI signaling, Fc
gamma R-mediated phagocytosis, intestinal immune network for
IgA production, Jak-STAT signaling, leukocyte transendothelial
migration, natural killer cell-mediated cytotoxicity, NOD-like
receptor signaling, primary immunodeficiency, T cell receptor
signaling, and Toll-like receptor signaling. The stromal signature
pathways included adherens junction, cell adhesion molecules,
focal adhesion, and regulation of actin cytoskeleton. The

FIGURE 4 | Comparisons of genomic features among the BC subtypes in TCGA-BRCA. Comparisons of TMB and neoantigen load (A), SCNA scores (B), and
global methylation levels (C) among the BC subtypes. The onetailed Mann–Whitney U test p values are shown in (A–C). (D) Prediction of the scores (high (>median)
versus low (<median)) of three immune signatures (NK cells, CD8+ T cells, and immune cytolytic activity) using TMB and SCNA score by the logistic regression model.
TMB, tumor mutation burden; SCNA, somatic copy number alteration.
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oncogenic pathways included ErbB signaling, MAPK signaling,
VEGF signaling, and Wnt signaling. The metabolic pathways
included ether lipid metabolism, PPAR signaling, and
tryptophan metabolism. The upregulation of various immune
pathways in BC-ImH is consistent with the strongest immune
signatures in this subtype. Furthermore, we found that the

enrichment scores of these pathways (except the immune
pathways) upregulated in BC-ImH were likely to correlate
positively with immune scores in these datasets (Spearman
correlation, p < 0.05) (Figure 5B). Again, these results
conformed to the fact that BC-ImH was most enriched with
immune signatures.

FIGURE 5 | Pathways upregulated in the BC subtypes. (A) The KEGG pathways upregulated in BC-ImH versus BC-ImL identified in the five BC datasets in
common. (B) Spearman correlations between the enrichment scores of pathways upregulated in BC-ImH and immune scores in the five BC datasets. The immune score
of a tumor represents its immune infiltration level, which was calculated by ESTIMATE (Yoshihara et al., 2013).
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Somatic Mutation Profiles in the BC
Subtypes
We compared somaticmutation profiles among the BC subtypes in
TCGA-BRCA, which involved whole exome sequencing data. We
found nine genes having significantly different mutation
frequencies among the BC subtypes (Fisher’s exact test, FDR
<0.15) (Figure 6A). These genes included TP53, PIK3CA,
FAT3, APOB, GATA3, USH2A, FRAS1, HUWE1, and PCDH15.
Notably, TP53 had the highest mutation rate in BC-ImH and the
lowestmutation rate in BC-ImL (BC-ImH (45.7%) versus BC-ImM
(25.7%) versus BC-ImL (24.2%)). This is in line with our previous
finding that TP53 mutations promote anti-tumor immune
response in BC (Liu et al., 2019). Also, FAT3, APOB, USH2A,
FRAS1, HUWE1, and PCDH15 showed the highest mutation rate
in BC-ImH. In contrast, PIK3CA displayed the highest mutation
rate in BC-ImM (BC-ImH (28.2%) versus BC-ImM (41.3%) versus
BC-ImL (28.1%)), while GATA3 had the highest mutation rate in

BC-ImL (BC-ImH (5.4%) versus BC-ImM (10.8%) versus BC-ImL
(13.1%)). It is justified that GATA3 showed the highest mutation
rate in BC-ImL since GATA3 plays an important role in the
regulation of innate and adaptive immunity (Tindemans et al.,
2014). We further verified that the mutation rates of TP53,
PIK3CA, and GATA3 followed the patterns of BC-ImH > BC-
ImM > BC-ImL, BC-ImM > BC-ImL > BC-ImH, and BC-ImH <
BC-ImM < BC-ImL, respectively, in METABRIC, which involved
targeted exome sequencing data (Figure 6B).

Protein Expression Profiles in the BC
Subtypes
We compared the expression levels of 261 proteins among the BC
subtypes in TCGA-BRCA. We found 20 proteins showing
significantly higher expression levels in BC-ImH than in both
BC-ImM and BC-ImL (two-tailed Student’s t test, FDR <0.05)

FIGURE 6 | Comparisons of somatic mutation profiles among the BC subtypes. (A) nine genes showing significantly different mutation frequencies among the BC
subtypes in TCGA-BRCA. (B) three genes show significantly different mutation frequencies among the BC subtypes in METABRIC. The Fisher’s exact test p values
are shown.

FIGURE 7 | Heatmap showing differentially expressed proteins among the BC subtypes in TCGA-BRCA.
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(Figure 7). These proteins included Caspase-7_cleavedD198,
ASNS, Syk, Lck, Jak2, ATM, IRF-1, S6_pS235_S236,
S6_pS240_S244, TFRC, p27_pT198, Src_pY416, ETS-1, PKC-
pan_βII_pS660, EGFR, PI3K-p85, NF-kB-p65_pS536, C-Raf,
p38_pT180_Y182, and STAT5-α. In fact, many of these
proteins have been shown to have a positive correlation with
immune response in cancer, such as Caspase-7 (Samstein et al.,
2019), Jak2 (Conze et al., 2002), NF-kB (Taniguchi and Karin,
2018), and STAT5 (Ding et al., 2020). In contrast, 32 proteins had
significantly higher expression levels in BC-ImL than in both BC-
ImH and BC-ImM (Figure 7). Many of these proteins have been
shown to have a negative correlation with immune response in
cancer. For example, our previous study revealed that ER-α
inhibited anti-tumor immune response in BC (Liu et al.,
2019). BRAF inhibition may promote anti-tumor immune
response (Ilieva et al., 2014). CDK1 is a regulator of cell cycle,

whose activation inhibits anti-tumor immune response (Goel
et al., 2017). In addition, we found eight proteins having
significantly higher expression levels in BC-ImM than in both
BC-ImH and BC-ImL (Figure 7). These proteins included
AMPK_pT172, Caveolin-1, MAPK_pT202_Y204, Rab11,
Fibronectin, STAT3_pY705, SHP-2_pY542, and Collagen_VI.

Immunological Classification of BC Single
Cells
We used the immune signature scores-based clustering method to
analyze a scRNA-seq dataset (GSE75688 (Chung et al., 2017)). This
dataset involved gene expression profiles in 317 tumor cells from ten
BC patients. We hierarchically clustered these tumor cells based on
their expression levels (enrichment scores) of four immune pathways,
including antigen processing and presentation, PD-L1 expression and

FIGURE 8 | Validation of the BC subtyping method in a single-cell RNA-seq dataset. (A) Hierarchical clustering of 317 tumor cells from ten BC patients based on the
enrichment scores of four immune-relatedpathways. (B)Comparisonsof the expression levels of 19human leukocyte antigen (HLA) genes among the subtypes.One-wayanalysis of
variance (ANOVA) testp values are shown. (C)Comparisons of proportions of TNBC,HER2+, andER+ tumor cells among the subtypes. The Fisher’s exact testp values are shown.
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PD-1 checkpoint pathway in cancer, JAK-STAT signaling, and
apoptosis. We used the four immune signatures instead of the 28
immune cell types in analyzing the scRNA-seq dataset because these
immune signatures are expressed in tumor cells themselves. Likewise,
we classified the 317 tumor cells into three subgroups: BC-ImH, BC-
ImM, and BC-ImL (Figure 8A). We compared the expression levels
of 19 human leukocyte antigen (HLA) genes among these subtypes.
Strikingly, almost all theHLAgenes showed the expression pattern: of
BC-ImH > BC-ImM > BC-ImL (two-tailed Student’s t test, p < 0.02)
(Figure 8B). These results confirmed that BC-ImH and BC-ImL had
the highest and lowest immunity among the subtypes.

Likewise, in the scRNA-seq dataset, single cells from TNBC had
the highest proportion in BC-ImH and the lowest proportion in BC-
ImL (BC-ImH (29.3%) versus BC-ImM (23.4%) versus BC-ImL
(12.3%)) (p � 0.046) (Figure 8C). Single cells from HER2+ BC had
the highest proportion in BC-ImH and the lowest proportion in BC-
ImM (BC-ImH (68.0%) versus BC-ImM (39.7%) versus BC-ImL
(58.5%)) (p < 0.001) (Figure 8C). Single cells from ER + BC had the
highest proportion in BC-ImM and the lowest proportion in BC-
ImH (BC-ImH (16.0%) versus BC-ImM (40.4%) versus BC-ImL
(29.2%)) (p < 0.001) (Figure 8C). Overall, these results confirmed
that TNBC and HER2+ tumor cells are more immunogenic, while
HR + tumor cells are less immunogenic.

DISCUSSION

We performed an immunological classification of BC based on bulk
and single cell transcriptomes. We identified three BC subtypes: BC-
ImH, BC-ImM, and BC-ImL, which showed high, medium, and low
immune signature scores, respectively (Figure 1). We demonstrated
that this classificationmethodwas producible and stable by analyzing
six different datasets, including five bulk tumor datasets and one
single cell dataset. Our results support that the tumorswith the strong
immune response (“hot” tumors) have better clinical outcomes than
the tumors with the weak immune response (“cold” tumors), as was
also observed in many other cancer types, including head and neck
squamous cell cancer (Lyu et al., 2019) and gastric cancer (Jiang et al.,
2018). It should be noted that the positive association between the
enrichment levels of TILs and clinical outcomes is not necessarily
valid in all cancer types. In fact, in certain cancer types, such as
prostate cancer (Thorsson et al., 2018) and gliomas (Pombo Antunes
et al., 2020), the tumors with strong immune response often have
worse clinical outcomes than the tumors with weak immune
response. Thus, the association between immune response and
clinical outcomes depends on the tissue or cellular origins of
cancers. The main mechanism underlying this difference could be
that the immune response is the tumor progression-promoting
inflammation or immune cell-mediated killing of tumor cells.

TMB and SCNAs have a positive and negative correlation with
immune response in cancer, respectively (Davoli et al., 2017).
Consistent with this observation, BC-ImH had the highest TMB,
while BC-ImL had the highest SCNA scores (Figures 4A,B). The
logistic regression analysis showed that TMB contributed to the
alterations of immune activity more strongly than SCNAs
(Figure 4D). Because high TMB is likely to generate more
neoantigens, it is justified that BC-ImH has the strongest anti-

tumor immune response. Interestingly, PD-L1, an
immunosuppressive signature, and biomarker for cancer
immunotherapy, was more highly expressed in BC-ImH and
more lowly expressed in BC-ImL. Because high TMB (Goodman
et al., 2017), PD-L1 expression (Patel and Kurzrock, 2015), and high
level of TILs (Haanen, 2017) are predictors of a favorable response to
ICIs, PC-ImH would respond best to ICIs among the subtypes. This
is supported by that TNBC, a BC subtypewith the highest proportion
in BC-ImH, is the BC subtype propitious to be treated by ICIs in
clinical practice (Emens, 2021). Nevertheless, our data showed that
around 60% of TNBC patients were not classified into BC-ImH,
suggesting that many TNBC patients may not have an active
response to ICIs. On the other hand, many HER2+ or HR + BC
patients belonged to BC-ImH, suggesting that a certain proportion of
HER2+ or HR + patients could respond well to ICIs. Thus, for the
HER2+ or HR + patients of BC-ImH, a combination of targeted
therapy and immunotherapy could be a viable option.

CONCLUSION

BC can be classified into three subtypes based on immune
signature scores. The tumors with the strong immune
response (“hot” tumors) have better clinical outcomes than the
tumors with the weak immune response (“cold” tumors) in BC.
TNBC and HER2+ BC are more immunogenic, while HR + BC is
less immunogenic. Certain HER2+ or HR + BC patients could be
propitious to immunotherapy in addition to TNBC.
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