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Overnight polysomnograms (PSG) provide a rich source of in-
formation on various physiological processes that occur during 
sleep [1]. Advancements in sensor, computer processing, and 
data storage technologies have enabled us to capture an array 
of data. For example, changes in bioelectric potentials such as 
electroencephalography (EEG) are recorded with the precision of 
nanovolts every few milliseconds. Depending on the number of 
recording channels, amplitude resolution, and sampling rate, a 
single sleep study may capture about 500 megabytes of informa-
tion, i.e. 4 194 304 000 bits. Yet, for clinical decision-making on 
the presence of sleep-disordered breathing (SDB), all this infor-
mation is reduced to one single bit, answering the simple cat-
egorical question: is sleep apnea present?

The average rate at which apneas and hypopneas occur 
during sleep, the apnea-hypopnea-index (AHI) or variations 
thereof, is the clinically employed metric to define the presence 
and severity of SDB. This single numerical value could be ex-
pressed in as few as 8 bits. Arguably, the vast amount of data 
collected during overnight PSG may capture largely redundant 
information, some of which may be irrelevant for SDB diagnosis. 
But undoubtedly, condensing an entire PSG into a single 8-bit 
number cannot occur without significant information loss [2].

Admittedly, a typical PSG report provides more sleep insights, 
including a hypnogram, traces of body position, oximetry, and 
respiratory and limb movement events. Sleep stage summary 

statistics and cross-tabulation of AHI against sleep stage and 
body position may further add to the clinical picture and allow 
for phenotyping of SDB.

In this issue of the journal, Chen et al. [3] propose a dynamic 
point process model to characterize the temporal association 
between respiratory events, sleep stage, body position, and the 
history of preceding respiratory events. Point process models 
provide a powerful statistical framework for analyzing event 
time series and have been successfully applied to various prob-
lems, including sleep stage transitions [4].

While the relationship between AHI and sleep stage and 
body position, respectively, could be qualitatively gauged from 
the summary charts and cross tabulations, the estimation of 
statistical models from observed data is attractive. It yields ro-
bust, easily interpretable information on the strength of mul-
tiple associations, including confidence intervals.

In the dynamic point process model developed by the au-
thors, the study participants’ sleep stage and body position 
explain a significant amount of temporal variations in AHI, 
confirming the well-documented observation that SDB is often 
prevalent during REM sleep [5] and in the supine position [6]. 
Importantly, the model allows assessing the influence of mul-
tiple variables simultaneously. The authors show that the 
history of preceding respiratory events, in particular, adds sig-
nificantly to the model’s predictive power yielding an accuracy 
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of 86% (ROC area under the curve). Aside from reducing the 
model error and delivering a better estimate of AHI, considering 
the history of respiratory events provides additional insights 
into the individual manifestation of SDB that would be difficult 
to gauge from conventional PSG summary reports. The authors 
propose a set of metrics to quantify the increased propensity 
of respiratory events, including the “refractory period” between 
events. By estimating point process models for a large cohort 
study, they illustrate how variables obtained within their statis-
tical framework could be effectively used to quantify SDB better 
and identify phenotypes.

The authors have made their tool for assessing the tem-
poral association between respiratory events, sleep stage, 
and body position publicly available, and researchers are en-
couraged to incorporate the dynamic AHI analysis in their re-
search. Conventional parameters from PSG (sleep scoring and 
respiratory event detection) fall short of predicting or showing 
modest associations with disease-specific symptom burden; 
hence, there is significant room for improvement. There are sev-
eral areas where the model might be beneficial. For example, 
quantifying the propensity of respiratory events may provide 
valuable markers of Cheyne–Stokes respiration. Markers pro-
vided by the dynamic point process model may also be more 
effective for distinguishing between patients whose symptoms 
and/or hypertension improve on sleep apnea treatment, given 
the association between REM-related sleep apnea and prevalent 
and incident hypertension [7–9].

Ultimately, any new metric should be more predictive of pa-
tient outcomes and/or easier to assess than established ones. 
Future studies are mandatory to validate the clinical value of 
these metrics, testing whether the novel phenotypes/quan-
tification measures are related to disease-specific symptom 
burden, nocturnal hypertension [10], and cardiac arrhythmias 
[11]. In addition, the new metrics can be integrated with an 
important clinical context, when—as mentioned by the au-
thors—it is possible to predict the efficacy of various therapies 
of SDB including positive airway pressure, mandibular advance-
ment devices, positional therapy, and upper airway stimula-
tion. Efficacy of such treatments includes the normalization of 
breathing, hypoxemic burden [12], and sleep, surrogates that 
may lead to a relief of disease-specific symptom burden such 
as sleepiness and quality of life as well as to an improvement of 
hypertension [13].

Evidently, SDB cannot be condensed into a single number. 
A  relatively simple, highly predictive model with few param-
eters that can be estimated from PSG or polygraphy, making 
more effective use of hundreds of megabytes of data that are 
easily interpretable, would seem highly beneficial for patient-
oriented research and patient care. In addition to the variables 
included in the model, other candidates may add predictive 
value, for example, arousal [14].
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