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Abstract

Background: Constraint-based reconstruction and analysis (COBRA) is used for modeling genome-scale metabolic
networks (MNs). In a COBRA model, extreme pathways (ExPas) are the edges of its conical solution space, which is
formed by all viable steady-state flux distributions. ExPa analysis has been successfully applied to MNs to reveal
their phenotypic capabilities and properties. Recently, the COBRA framework has been extended to transcriptional
regulatory networks (TRNs) and transcriptional and translational networks (TTNs), so efforts are needed to
determine whether ExPa analysis is also effective on these two types of networks.

Results: In this paper, the ExPas resulting from the COBRA models of E.coli’s MN, TRN and TTN were horizontally
compared from 5 aspects: (1) Total number and the ratio of their amount to reaction amount; (2) Length
distribution; (3) Reaction participation; (4) Correlated reaction sets (CoSets); (5) interconnectivity degree. Significant
discrepancies in above properties were observed during the comparison, which reveals the biological natures of
different biological processes. Besides, by demonstrating the application of ExPa analysis on E.coli, we provide a
practical guidance of an improved approach to compute ExPas on COBRA models of TRNs.

Conclusions: ExPas of E.coli’s MN, TRN and TTN have different properties, which are strongly connected with
various biological natures of biochemical networks, such as topological structure, specificity and redundancy. Our
study shows that ExPas are biologically meaningful on the newborn models and suggests the effectiveness of ExPa
analysis on them.

Background
Many large-scale biological networks, including meta-
bolic networks (MNs) [1], signaling networks [2], tran-
scriptional regulatory networks [3] and transcriptional
and translational networks [4] have been reconstructed
along with the development of high-throughput technol-
ogy in the past decades. These networks are then trans-
formed into mathematical models for further analysis.
Constraint-Based Reconstruction and Analysis (COBRA)
is one of the most commonly used frameworks intro-
duced to model and analyze steady-state biochemical
networks [5]. In the past two decades, it has been suc-
cessfully applied on MNs to study various phenotypes

[6-9]. Recently, the same principles were also extended
to other types of biochemical networks mentioned
above [2-4,10].
All the possible phenotypes, i.e. the flux distributions of

feasible steady states, of a constraint-based biochemical
model form a high-dimensional cone. Network-based
pathways such as Extreme Pathways (ExPas) [11] are
defined to study this cone. ExPas are vectors of fluxes
that lie on the edges of the cone [12]. They constitute the
minimal and unique vector set which generates the space
of all feasible steady states through non-negative linear
combination. Since ExPas characterize the limits on the
capabilities of a cell’s metabolic system [13], ExPa analy-
sis will reveal systemic properties of metabolism [14].
ExPa analysis as an approach to characterize the funda-
mental and time-invariant topological properties of a
given network [15] has been successfully applied to MNs,
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such as those of human red blood cells [16], Escherichia
coli [17-19], Sacchoromryces cerevisiae [20,21], Helicobac-
ter pylori [22,23], Haemophilus influenzae [11,24] and
Methylobacterium extroguens [25]. Besides, network
models respectively describing a prototypic signaling sys-
tem [10] and the JAK-STAT signaling system in the
human B-Cell [2] have also been studied through ExPa
analysis.
Recently, there emerged two COBRA models of bio-

chemical systems with different types: E.coli transcriptional
regulatory network (TRN) [3] and E.coli transcriptional
and translational network (TTN) [4]. What should be clar-
ified is whether ExPa analysis is still useful for new types
of networks and whether ExPas of TRN or TTN show
some properties different from those of MN. These ques-
tions are biologically significant because the answers deter-
mines whether we can rely on the existing analysis
approaches to obtain novel and biologically meaningful
findings in a brand new field. In this paper, we try to pro-
vide an anwser by comparing properties of ExPas among
the E.coli TRN, MN and TTN. In the comparison, differ-
ences between biological processes were observed from
multiple perspectives, including network structure, reac-
tion participation, specificity and redundancy. The results
indicate that ExPa analysis can be extended to biochemical
systems of TRN and TTN, which helps researchers to
further understand the corresponding biological systems.
Besides an improved method was introduced to simplify
the calculation and interpretation of ExPas on TRN mod-
els [3], which could also be useful.

Results
Firstly, we calculated extreme pathways of the three bio-
logical networks mentioned above. Since the number of
ExPas grows exponentially with a networks’ complexity
[15], the enumeration of ExPas on the highly complex
ones such as E.coli MN and TTN is computationally
intractable. Fortunately ExPa calculation will be much
more manageable if a MN or a TTN is divided into smal-
ler sub-networks. Therefore, we chose the sub-networks
with relatively complete and independent functions as
the representatives of their belonging biologic systems.
For the E.coli MN, two sub-networks were chosen: (1)
Amino acid, Carbohydrate and Lipid metabolism (sACL)
and (2) Membrane and Murein metabolism (sMM). For
E.coli TTN, the two sub-networks were: (1) transcription
(sTC) and (2) translation (sTL).
Then ExPa analysis was performed on each network/

subnetwork and the properties from different aspects
were obtained, including the total number of ExPas, the
number-based ratio of ExPa to reaction, ExPa length
distribution, reaction participation distribution, corre-
lated reaction sets (CoSets), and the inter-connectivity

of ExPas. Finally, a horizontal comparison on the prop-
erties was made among the five networks/subnetworks.
Moreover, some incompleteness and incorrectness in

the E.coli TRN model which were stumbled through
ExPa analysis are also reported in this section. This find-
ings illustrate that ExPa analysis is capable of directing
model refinement.

E.coli TRN model
The E.coli TRN model was published by Gianchandani
et al. in 2009 [3]. It contains 147 environmental stimuli,
125 transcriptional factors and 503 downstream target
genes which are represented in a matrix R∗ [3]. The
TRN model was improved to enhance the efficiency of
ExPa calculation (Details are provided in Materials and
Methods). The final TRN model contains 1009 compo-
nents, 1106 internal regulatory reactions, and 1009
exchange reactions each corresponding to a component.
All the extracellular metabolites were considered as
inputs and all protein products were considered as out-
puts. There were 1599 ExPas, of which 9 were biologi-
cally infeasible because they employed conflicting input
fluxes, and thus they were excluded from the ExPa set
used in analysis.
In E.coli TRN, 16 reactions do not participate in any

ExPa; namely they are never used to form a transcriptional
state of the network. These unused reactions were cate-
gorized into two types as listed in Table 1 and Table 2
respectively.
Reactions in Table 1 all relate to NOT_BirA (absence of

protein BirA). However, no regulatory rule corresponds
to the presence or absence of BirA, and therefore, the
initial steps are unknown. As a result, the internal reac-
tions using NOT_BirA (b0774_1, b0775_1, b0776_1 and
b0778_1) and the corresponding exchange reactions
(Ex_b0774, Ex_b0775, Ex_b0776 and Ex_b0778) will
never be initiated. Furthermore, proteins BirA and the

Table 1 Unused reactions in the E.coli TRN (Type I -
Regulatory rules missing).

Reactions Reuglatory rules Reaction type

NOT_BirA – internal

b0774_1 NOT(BirA) internal

b0775_1 NOT(BirA) internal

b0776_1 NOT(BirA) internal

b0778_1 NOT(BirA) internal

Ex_b0774 – exchange

Ex_b0775 – exchange

Ex_b0776 – exchange

Ex_b0778 – exchange

NOT_BirA represents the regulatory reaction that leads to the inhibition of
gene transcription generating BirA. ‘-’ in the second column represents the
deficiency of corresponding regulatory rules in the model.
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gene products of b0774, b0775, b0776 and b0778 do not
participate in any other reaction except those in Table 1,
so their invalidation will not affect other reactions in the
network. In a word, these 9 reactions do not participate
in any ExPa because their relevant reactions (either pro-
ducing their substrates or consuming their products) are
unavailable in the network. The unused reactions in
Table 1 show the incompleteness of the E.coli TRN
model and necessitate further refinement.
For the reactions in Table 2, the regulatory rule of

b1814 can be divided by simple logical transformation
into 6 rules, of which 3 contradict with each other (the
shaded parts in Table 2). Since there are still 3 opera-
tional regulatory rules relating to the transcription of
b1814, its corresponding exchange reaction can be
initiated. Similarly, the regulatory rules of b3942 and
b4111 are both contradictory and cannot be used in any
ExPa. These reactions may imply some incorrect infor-
mation in the model. Therefore, new biological knowl-
edge is needed to improve E.coli TRN.

E.coli MN and TTN model
The MN model of E.coli K-12 MG1655, iAF1260, was
published by Feist et al, in 2007 [26]. It includes the
activities of 1260 open reading frames (ORFs). It con-
sists of 1688 metabolites and 2382 reactions. The E.coli
TTN model was published by Thiele et al. in 2009 [4].
It consists of 11991 components and 13694 reactions
which give rise to 423 functional gene products [4].
Given the critical inherent problem of combinatorial
explosion during ExPa calculation, E.coli MN and TTN
were divided into small sub-networks depending on the
reactions’ functions [11]. Sub-networks as representa-
tives of important biological processes were chosen.

The E.coli MN was divided into 6 discrete sub-networks
with different functions: one for exchange reactions which
transfer metabolites in and out of the metabolic system
and the others for internal reactions. Each reaction was
assigned to one of the six sub-networks, whose details are
listed in Table 3. Two sub-networks, Amino acid, Carbo-
hydrate and Lipid metabolism (sACL) and Membrane and
Murein metabolism (sMM), lie in the central part of E.coli
MN and form the basis of other biological processes, and
therefore they were chosen as the representatives of E.coli
MN for ExPa analysis.
The E.coli TTN model comprises of 27 biological pro-

cesses and the details are provided in [4]. Each process
was treated as a discrete sub-network. The largest two
sub-networks, Transcription and Translation, were cho-
sen for further ExPa analysis.

ExPa counting
The total numbers of ExPas and the number-based
ratios of ExPa to reaction (P/R) are listed in Table 4.
P/R depicts the proportionality of the numbers of ExPas
and reactions in a network. Table 4 shows that the P/Rs
of sACL (33.44) and sMM (32.40) are much higher than
those of TRN (0.75), sTC (0.12) and sTL (0.25), which
are a consequence of the linear structures of TRNs and
TTNs [3,4]. In contrast, MNs are in more complex
interconnection with a large number of alternative path-
ways, and thus their P/Rs are much higher. The redun-
dancy of ExPas increases a metabolic system’s flexibility
and fitness to sudden environmental changes [23,27].
These results illustrate the fundamental differences in
topological structure and redundancy among the three
types of networks.

ExPa length
The length of an ExPa equals to the number of reac-
tions that participate in it [13]. Figure 1 shows the histo-
grams of ExPa length distribution for each network/
sub-network above. The details are listed in Table 5.
The length distributions of ExPas corresponding to

those biological processes are very diverse. The longest
ExPas consists 51, 82 32 and 109 reactions in sACL,
sMM, sTC and STL, respectively, which is much longer
than that in TRN (21). Reactions in E.coli TRN repre-
sent transcriptional regulatory rules rather than real bio-
chemical reactions as in MN and TTN, and thus the
ExPa length in TRN depicts the number of regulatory
rules used for expressing certain genes. A regulatory
rule describes how environmental stimuli affect tran-
scriptional factors, which in turn affect downstream tar-
get genes. Therefore, the ExPa in TRN is reasonably
shorter as the biological network has a relatively flat
hierarchical structure [3]. Given the number of reac-
tions, the ratio of average ExPa length to reaction

Table 2 Unused reactions in the E.coli TRN (Type II -
Contradictory regulatory rules)

Reactions Regulatory rules Reaction
type

b1814 ( gly(e)>0) AND (leu-L(e)>0)
leu-L(e)>0
(NOT o2(e)>0) AND (leu-L(e)>0)
(gly(e)>0) AND (NOT leu-L(e)>0) AND (leu-L
(e)>0)
(leu-L(e)>0) AND (NOT leu-L(e)>0)
(NOT o2(e)>0) AND (NOT leu-L(e)>0) AND
(leu-L(e)>0)

Internal

b3942_1 (Growth>0) AND (h202(e)>0) AND (NOT
Growth>0)

Internal

b4111_1 (NOT(Crp)) AND (Growth>0) AND (NOT
Growth>0)

internal

Ex_b3942 – Exchange

Ex_b4111 – Exchange

Crp appears in the second column is a transcription factor and others are
extracellular metabolites. The contradictory regulatory rules are labeled with
shade in the table and these reactions never occur.
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number (L/R) was calculated for each biological network
or subnetwork (Table 5). The L/Rs of the two representa-
tives in MN are higher than those in TRN and their
counterparts in TTN. Since ExPas convert substrates into
products, ExPa length relates to how many reaction steps
are needed to carry out the corresponding function. ExPa
length can be characterized as the size and complexity of
the corresponding flux distribution map [13]. The results
indicate that the flux distribution map in MN is much
more complex than those in TRN and TTN.

Reaction participation
The reaction participation rate (RPR) is defined as the
percentage of ExPas in which a given reaction partici-
pates [13]. Figure 2 shows the distribution of RPRs for
each biological network/sub-network. Most reactions
participate in less than 10% of ExPas, especially in TRN,
sTC and sTL, but a few active reactions participate in
many ExPas. Although the high-RPR reactions are most
exchange reactions, some of them are internal reactions
which usually play a more important role in determining
the phenotypic potentials of the five biological processes.
Given this, RPR can be reasonably considered as a metric
for evaluating the importance of a reaction to implement
the corresponding biological function [13].

Here the top 10 internal reactions with the highest RPRs
of each process are sorted in a descending order (Table 6).
Several reactions of vital importance were found, and
representatives were chosen for detailed study.
In TRN, the two most active reactions CRP_noGLC_1

and Crp_1 relate to the regulation rules of the transcrip-
tion factor (TCF) C-reactive protein (CRP). Other high
rank reactions Fis_1, Lrp_1, Fnr_1, and NOT_ArcA_1
relate to the regulation rules of the TCFs Fis, Lrp, Fnr
and ArcA, respectively. In E.coli, the above TCFs belong
to the seven global regulators that control most of the
regulated genes [28]. The reaction NOT_Cra_1 is rele-
vant to the regulation rules of the TCF Cra, a pleiotro-
pic regulatory protein that controls carbon and energy
fluxes in enteric bacteria [29,30]. The reaction
NOT_PdhR_1 concerns the regulation rules of PdhR, a
TCF that controls the respiratory electron transport sys-
tem in E.coli. Its regulation target, the pyruvate dehydro-
genase (PDH) multienzyme complex, plays a key role in
the metabolic interconnection between glycolysis and
the citric acid cycle [31].
In sACL, the most active reaction is ASPTA. It transfers

oxoglutarate and aspartate to corresponding ketoacid,
which are indispensable in glyoxylate cycle, an anabolic
metabolic pathway occurring in E. coli [32]. The second
one is ASAD which is the second step in the biosynthesis
of amino acids in prokaryotes, fungi, and some higher
plants. ASAD forms an early branch point in the meta-
bolic pathway producing lysine, methionine, leucine and
isoleucine from aspartate as well as diaminopimelate
which plays an essential role in bacterial cell wall forma-
tion [33]. Deletion of gene asd (encoding ASAD) is lethal
to the organism as demonstrated by experiments with
Legionella pneumophila, Salmonella typhimurium, and
Streptococcus mutans, which indicates that ASAD may
also be an essential reaction in the metabolism of E.coli
[34]. Another active reaction is ASPK, which is the

Table 3 Sub networks of the E.coli MN

# Sub
network

Name Containing subsystems No. of
reactions

1 Amino acid, Carbohydrat and
Lipid metabolism (sACL)

Alanine and Aspartate Metabolism, Cysteine Metabolism, Folate Metabolism, Glutamate
Metabolism, Glycine and Serine Metabolism, Histidine Metabolism, Methionine

Metabolism, Threonine and Lysine Metabolism, Tyrosine Tryptophan and Phenylalanine
Metabolism, Valine Leucine and Isoleucine Metabolism, Arginine and Proline Metabolism,

Citric Acid Cycle, Pentose Phosphate Pathway, Pyruvate Metabolism, Glyoxylate
Metabolism, Methylglyoxal Metabolism, Glycolysis and Gluconeogenesis, Oxidative

Phosphorylation, Glycerophospholipid Metabolism, Anaplerotic Reactions

741

2 Nitrogen and Nucleotide
metabolism

Cofactor and Prosthetic Group Biosynthesis, Nitrogen Metabolism, Nucleotide Salvage
Pathway, Purine and Pyrimidine Biosynthesis, tRNA Charging

445

3 Membrane and Murein
metabolism (sMM)

Cell Envelope Biosynthesis, Lipopolysaccharide Biosynthesis Recycling, Membrane Lipid
Metabolism, Murein Biosynthesis, Murein Recycling

358

4 Transport Transport Inner Membrane,Transport Outer Membrane,Transport Outer Membrane Porin 849

5 Others Alternate Carbon Metabolism; Inorganic Ion Transport and Metabolism; Unassigned 408

6 Exchange Exchange reactions 304

Table 4 Network characteristics and ExPa calculation
results

Network name No. of reaction No. of ExPa P/R ratio

TRN 2115 1590 0.75

ACL 741 24778 33.44

sMM 358 11600 32.40

sTC 1276 154 0.12

sTL 7386 1871 0.25

Abbreviations for subsystems: TRN, transcriptional regulation; sACL, amino
acid, carbohydrate and lipid metabolism; sMM, membrane and murein
metabolism; sTC, transcription; sTL, translation.
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commitment step in the pathway to the synthesis of
lysine, methionine, threonine and isoleucine.
In sMM, the reaction ACCOAC is most active. It is a

rate-determining step in the fatty acid synthetic pathway

and may play a pivotal role in regulating fatty acid oxi-
dation [35]. The second most active reaction MCOATA
transfers Malonyl CoA to acyl-carrier proteins (ACPs).
The product Malonyl ACP provides malonyl groups for

Figure 1 ExPa length distributions in E.coli TRN, MN and TTN. The x-axis represents the length of an ExPa. The y-axis represents the number
of ExPas of the corresponding length.
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biosynthesis of fatty acid and polyketide. On the other
hand, Malonyl CoA, the substrate of MCOATA, is a
highly-regulated molecule in fatty acid synthesis as it
inhibits the rate-limiting step in beta-oxidation of fatty
acids [36]. Flux change in MCOATA affects the consis-
tency of Malonyl CoA and guarantees the biosynthesis
of fatty acid.
In sTC, all the top reactions relate to the formation of

the transcription elongation complex, an extremely com-
plicated and highly regulated molecular machine that can
sense signals coming from numerous regulatory protein
factors, as well as those encoded in the DNA sequence.
They are the basis of transcription elongation, because
transcription can run smoothly and continuously only
depending on their precise work.
In sTL, the reactions IF2_RECHARG, Rib_30_ini_-

FORM and Rib_70_DISS are used by all ExPas. IF2_RE-
CHARG recharges the initiation factor 2 (IF2) with GTP
and Rib_30_ini_FORM produces 30S translation initia-
tion complex which consists of 30S subunit, IF1, IF2-
GTP and IF3. In bacteria, the correct mRNA starting
site and the reading frame are selected when, with the
help of IF1, IF2 and IF3, the initiation codon is decoded
in the peptidyl site of the 30S ribosomal subunit by the
anticodon fMet-tRNAfMet. Furthermore, Rib_30_ini_-
FORM is also proved to be the intermediate step in the
formation of 70S initiation complex (70SIC) which regu-
lates translation initiation, the rate-limiting step in pro-
tein synthesis [37]. The other reaction Rib_70_DISS
dissociates 70S ribosomes to 30S ribosomal subunit/IF1/
IF3 complex (rib_30_IF1_IF3) and 50S ribosomal subu-
nit (rib_50_inact). This is an essential step before a ribo-
some can participate in a new round of translation since
the initiation complex for protein synthesis involves a
30S subunit. The dissociation of 70S ribosomes contri-
butes to the efficiency and sustainability of protein
synthesis [38].
Reportedly, RPRs help to find important reactions in

MN [13]. Our results further indicate that RPR can also

be extended to TRN and TTN to evaluate the relative
importance of a given reaction.

Correlated reaction set
A correlated reaction set (CoSet) comprises reactions
that always participate in the same ExPa set in a given
network [13]; namely if one reaction functions, the
others in the same CoSet function simultaneously.
A CoSet can be transformed to a graph by treating

each reaction as a node and adding an edge between
two reactions that involve a common substance. In a
certain CoSet, some member reactions are topologically
connected while others are not. The correlationship of
the second type of reactions often indicates a transcrip-
tional coregulation by the corresponding genes [11]
while that of the first type has relatively trivial biological
meaning. Therefore, a CoSet is defined as a trivial set if
all its member reactions are connected in topology. A
trivial CoSet provides less novel information, and thus it
is unworthy of deep study. In this paper, the adjacent
ratio is used to represent the percentage of trivial
CoSets.
CoSets were calculated for each biological network/

sub-network about which several features, including the
adjacent ratio, were stretched and shown in Table 7. The
adjacent ratios of TRN, sTC and sTL are much higher
than those of sACL and sMM, which indicates that
almost all the CoSets obtained in the former three net-
works are due to the linear structure. For the metabolic
netowrk, more CoSets consist of reactions which are not
adjacent in topology. The results suggest that CoSet ana-
lysis may be more useful in study of MNs.

Crosstalk analysis
Crosstalk analysis was first raised to illustrate the relation-
ship between multiple inputs or outputs of a signaling
pathway [39]. The whole ExPa set was compared pairwise
to build the simplest form of crosstalk [2,10]. A pair of
ExPas may have identical, overlapped or disjoint inputs (or
outputs). There are 9 categories of crosstalk with their bio-
logical meanings described in [10]. Here, crosstalk analysis
is applied to other biological processes to detect the rela-
tionships between fundamental functional states. Various
forms of crosstalk in the five networks/sub-networks
above were characterized. As several exchange reactions
participate in most ExPas of sACL, MN, sTC and sTL,
almost all of the ExPa pairs have overlapped inputs or out-
puts. A close look at the highly participating exchange
reactions reveals that most of them relate to small mole-
cules such as H2O, ATP and NADP commonly seen in
various biochemical reactions. In order to further elucidate
the difference in crosstalk between ExPa pairs, all the
exchange reactions in the four sub-networks were sorted
in a descending order depending on RPR and the top 20%

Table 5 Summary of the statistical analysis of ExPa
lengths

Network No. of ExPa length L/R

reactions Avg Max Min Most Ratio(%)

TRN 2115 5 21 3 4 0.24

sACL 741 47 70 3 51 6.40

sMM 358 64 115 4 82 17.97

sTC 1276 31 34 26 32 2.43

sTL 7386 101 121 11 109 1.37

Abbreviations for subsystems: TRN, transcriptional regulation; sACL, amino
acid, carbohydrate and lipid metabolism; sMM, membrane and murein
metabolism; sTC, transcription; sTL, translation. ‘Most’ represents the ExPa
length with the highest frequency. L/R ratio is the ratio of average ExPa
length to reaction amount.
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ExPa pairs were neglected in the subsequent crosstalk
analysis.
As shown in Figure 3, more than 90% of the ExPa

pairs have disjoint inputs and disjoint outputs in TRN,

sTC and sTL in contrast to sACL and sMM. A higher
disjoint input/disjoint output rate implies that each
ExPa has more specific functions and cannot be
replaced easily by others. This indicates that the

Figure 2 Reaction participation distribution in E.coli TRN, MN and TTN. Reactions are sorted in a descending order of ExPa participation
rates. The x-axis represents the reaction rank. The y-axis represents the ExPa participation rate of reactions at corresponding rank.
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Table 6 The top 10 most frequently participated internal reactions

Part 1

The top 10 reactions with highest participation rate in the TRN

Order Reaction Participation Rate (%)

1 CRP_noGLC_1 9.18

2 Crp_1 8.99

3 NOT_PdhR_1 7.55

4 Fis_1 6.16

5 Lrp_1 4.09

6 Fnr_1 3.90

7 NOT_PurR_1 3.27

8 NOT_ArcA_1 3.02

9 NOT_Cra_1 2.83

10 NOT_Lrp_1 2.45

The top 10 reactions with highest participation rate in the sACL

Order Abbr. Reaction Name Participation Rate (%)

1 ASPTA aspartate transaminase 91.42

2 ASAD aspartate semialdehyde dehydrogenase 90.40

3 ASPK aspartate kinase 90.40

4 HSDy homoserine dehydrogenase NADPH 90.31

5 GHMT2r glycine hydroxymethyltransferase reversible 75.82

6 GLYAT glycine C acetyltransferase 68.22

7 HSK homoserine kinase 67.27

8 THRS threonine synthase 67.27

9 THRD L threonine dehydrogenase 59.23

10 FUM Fumarase 57.71

The top 10 reactions with highest participation rate in the sMM

Order Abbr. Reaction Name Participation Rate (%)

1 ACCOAC acetyl CoA carboxylase 75.08

2 MCOATA Malonyl CoA ACP transacylase 75.08

3 3HAD100 3 hydroxyacyl acyl carrier protein dehydratase n C100 74.48

4 3HAD40 3 hydroxyacyl acyl carrier protein dehydratase n C40 74.48

5 3HAD60 3 hydroxyacyl acyl carrier protein dehydratase n C60 74.48

6 3HAD80 3 hydroxyacyl acyl carrier protein dehydratase n C80 74.48

7 3OAR100 3 oxoacyl acyl carrier protein reductase n C100 74.48

8 3OAR40 3 oxoacyl acyl carrier protein reductase n C40 74.48

9 3OAR60 3 oxoacyl acyl carrier protein reductase n C60 74.48

10 3OAR80 3 oxoacyl acyl carrier protein reductase n C80 74.48

Part 2

The top 10 reactions with highest participation rate in the sTC

Order Abbr. Reaction Name Participation Rate (%)

1 tscr_elo_TU-8389_ini Formation complex for elongation of TU-8389’ 0.65

2 tscr_elo_TU-8390_ini Formation complex for elongation of TU-8390’ 0.65

3 tscr_elo_TU-8397_ini_rho_dep Formation complex for elongation of TU-8397 (RHO DEPENDENT TERMINATION)’ 0.65

4 tscr_elo_TU-8407_ini_rho_dep Formation complex for elongation of TU-8407 (RHO DEPENDENT TERMINATION)’ 0.65

5 tscr_elo_TU0-1181_ini_stab Formation complex for elongation of TU0-1181 (stable RNA)’ 0.65

6 tscr_elo_TU0-1182_ini_stab Formation complex for elongation of TU0-1182 (stable RNA)’ 0.65

7 tscr_elo_TU0-1183_ini_stab Formation complex for elongation of TU0-1183 (stable RNA)’ 0.65

8 tscr_elo_TU0-1186_ini_stab Formation complex for elongation of TU0-1186 (stable RNA)’ 0.65

9 tscr_elo_TU0-1187_ini_stab Formation complex for elongation of TU0-1187 (stable RNA)’ 0.65

10 tscr_elo_TU0-1189_ini_stab Formation complex for elongation of TU0-1189 (stable RNA)’ 0.65
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biological processes in E. coli TTN and TRN are more
deterministic than those in MN. Reportedly, a large
number of genes are regulated by only a few indepen-
dent regulatory rules in E.coli TRN [3], and the majority
of the associated functions in E.coli TTN have only one
coding gene in the genome [4]. These facts indicate that
the specificity of TRN and TTN is much higher than
MN. In order to function normally, cells have to
respond accurately to the environmental signals with
the help of precise transcriptional regulations and subse-
quently produce necessary gene products through accu-
rate transcription and translation systems.
Except sTC, the other networks/sub-networks all have

ExPa pairs with identical inputs and identical outputs.
These ExPas are redundant pathways which fulfill comple-
tely identical function through systemically independent
routes. ExPa redundancy was demonstrated in genome-
scale MNs [23,24], as well as a prototypic signaling net-
work [10] and the JAK-STAT signaling network [2]. The
redundant ExPas in E.coli TRN can be attributed to the
fact that the transcription of some genes can be stimulated
by different transcriptional factors. For example, two
redundant ExPas shown in Figure 4 stimulate the expres-
sion of gene b2243 in the same environment, but they
employ the regulatory rules of ‘CRP_noRIB AND Fnr AND
NOT(GlpR)’ and ‘CRP_noRIB AND ArcA AND NOT
(GlpR)’, respectively. From Figure 3, the percentage of

ExPa pairs with overlapped inputs and overlapped outputs
in the biological processes of MN is much higher than
those in TTN and TRN. These results indicate that E.coli
MN is more flexible than TTN and TRN.

Discussion
ExPa analysis were applied to two new models, the
E. coli TRN and TTN. A horizontal comparison was
performed for the five networks/sub-networks: TRN,
sACL, sMM, sTC, sTL from five aspects: (1) Total num-
ber of ExPas and the P/R ratios; (2) ExPa length distri-
bution and L/R ratios; (3) Reaction participation rates;
(4) Correlated reaction sets and adjacent ratios; (5)
Inter-connectivity of ExPas.
Reactions in TTN represent actual biochemical reac-

tions like those in MN, and thus, ExPas in TTN charac-
terize the steady-states of the corresponding biological
systems. In contrast, columns in TRN represent the tran-
scriptional regulatory rules and coefficents only reflect
the qualitative information describing the presence or
absence of the corresponding components rather than
the quantitative information describing reaction stoichio-
metries as in TTN and MN. Therefore, an ExPa in TRN
characterizes a specific transcriptional regulatory state,
namely which transcriptional regulatory rules are acti-
vated and which genes are expressed in a specific envir-
onmental state.

Table 6 The top 10 most frequently participated internal reactions (Continued)

The top 10 reactions with highest participation rate in the sTL

Order Abbr. Reaction Name Participation Rate (%)

1 IF2_RECHARG recharge of IF2 with GTP’ 100

2 Rib_30_ini_FORM formation of 30S translation initiation complex (30S subunit, IF1, IF2-GTP, IF3)’ 100

3 Rib_70_DISS 70S ribosome dissociation’ 100

4 EF-G_RECHARG recharge of EF-G with GTP’ 99.95

5 tl_elo_b3461_16_rib1 Translation elongation 1 b3461 16 ribosome(s)’ 0.75

6 tl_elo_b3461_16_rib2 Translation elongation 2 b3461 16 ribosome(s)’ 0.75

7 tl_elo_b3461_1_rib1 Translation elongation 1 b3461 1 ribosome(s)’ 0.75

8 tl_elo_b3461_1_rib2 Translation elongation 2 b3461 1 ribosome(s)’ 0.75

9 tl_elo_b3461_8_rib1 Translation elongation 1 b3461 8 ribosome(s)’ 0.75

10 tl_elo_b3461_8_rib2 Translation elongation 2 b3461 8 ribosome(s)’ 0.75

Table 7 Summary of CoSets

Network No. of No. of Size of CoSet Adjacent

reactions CoSet Max Min Avg Most Ratio (%)

TRN 2115 481 8 2 2 2 98

sACL 741 157 11 2 2 2 78

sMM 358 49 25 2 4 3 47

sTC 1276 161 18 2 6 6 93

sTL 7386 1718 23 2 2 2 85

Adjacent ratio is defined as the percentage of such CoSets in which all the reactions are topologically connected, that is, if all the reactions in a CoSet form a
graph, the graph only contains one connected component.
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Figure 3 Crosstalk analysis of E.coli TRN, MN and TTN. Given a pair of ExPas, the relationship of their input sets falls into one of the
following three cases: disjoint, partially overlapped and identical. And so does that of their output sets. Thus, all pairs of ExPas can be classified
into 9 categories according to the relationship of input/output sets. Classification results of different networks are shown in this figure by 3x3
matrices in which the number in each cell represents percentages of ExPa pairs falling into this category.
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ExPa analysis emphasizes the functional and systemic
properties of biologcial process as ExPas are systemically
independent functional units. The total number of ExPas
and the P/R ratios characterize the flexibility of the

networks/sub-networks. ExPa length corresponds to the
reaction steps needed to form a steady state, therefore
showing a close relation to network complexity. Crosstalk
enables the analysis of pathway redundancy and network

Figure 4 Example ExPas with identical inputs and identical outputs. The ExPa is represented by a DAG (Directed Ascyclic Graph), in which
each node represents a component and each edge represents a reaction. The shaded part indicates the difference between two ExPas.
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determinacy. Comparisons from these aspects indicate
that MN is more flexible but less deterministic than TRN
and TTN. Environmental cues affect transcriptional regu-
lation, which controls the following transcription and
translation processes. Then the resulting gene products
(enzymes) enter the metabolic system to catalyze the cor-
responding reactions. It is necessary for a cell to respond
accurately to the environment and produce the required
enzymes. MN is more robust to environmental changes,
which reflects the struggle of a cell to achieve an alterna-
tive steady-state to provide substance support for TRN
and TTN and maintain life.
The distributions of reaction participation in the five

networks/sub-networks are similar except that there are
more reactions participating in more than 10% ExPas in
sACL and sMM. Only a small percent of the reactions
participate in a large number of ExPas, which indicates
the phenotypic potentials of TRN, TTN and MN are
affected greatly by a small number of important reac-
tions. Evaluations on the representatives show that reac-
tions with high participation rates often play an
important role in certain biological processes. These
reactions are the relatively weak part of the networks
because a large number of ExPas will be destroyed when
these reactions become invalid, which may cause the
loss of various functions. These reactions may be used
as drug targets and further direct the design of new
drugs.
CoSets were identified via the calculation of reaction

participation. Besides the expected topological connec-
tions, the topologically unconnected reactions in a
CoSet may indicate the information of transcriptional
coregulation in MN. However, most Cosets of TRN and
TTN are trivial, and thus have few chances to be a clue
giving novel information like in MN.
Last but not least, an improved approach was intro-

duced to calculate the ExPas on TRN models. Com-
pared to the existing method, the biggest advantage of
ours is the high efficiency in calculating all the extreme
pathways of a TRN, especially for the one which may
work under huge amount of environmental conditions.
For example, the E.coli TRN model which we studied in
the paper has 776 components whose availability (i.e.,
presence or absence) constitute the environmental con-
dition, including environmental stimuli, transcription
factors or proteins. It is impossible to enumerate all the
possible conditions due to “combination explosion”
without mentioning the calculation of the ExPas under
each condition. However, using the approach we pro-
posed, it took only about 45 seconds to computing the
whole ExPa set on a PC with four 3.2-GHz Intel(R)
XEON processors and 16GB RAM (in fact, only one
processor and 15MB RAM are used for the calculation).

We believe that this approach could be helpful for read-
ers who are also interested in the ExPas of TRNs.

Conclusions
This study presents the first horizontal comparison
among the E.coli TRN, MN and TTN through ExPa
analysis. The results show that ExPa also has biological
meanings in TRN and TTN. Different properties of
ExPas reflect the biological nature of each biological
process. Along with the the increase of reconstructed
models on TRNs and TTNs as well as the development
of new methods, ExPa analysis may reveal more biologi-
cal properties and get larger space of application in the
medical and biochemical fields.

Methods
COBRA framework and ExPa analysis
The COBRA framework stoichiometrically represents a
biochemical network as a matrix S, whose rows and col-
umns correspond to components and reactions respec-
tively. COBRA is capable of predicting and understanding
the achievable cellular function, namely the phenotypic
behavior of a biochemical network. With the hypothesis of
steady state and certain constraints, all possible flux distri-
butions lie in the null space of S:

Sv = 0, vmin
i ≤ vi ≤ vmax

i , i = 1, · · · , n

where Sm×n is the stoichiometric matrix of a biochem-
ical network with m components and n reactions and
vn×1 is a vector of the fluxes through each reaction in
the system [40].
Given the reversibility of reactions, an internal reversi-

ble reaction can be divided into a forward and a back-
ward sub-reactions, each taking a non-negative flux. The
model’s solution space is now a convex polyhedral cone
in high-dimensional space [19,40], which can be demar-
cated by an ExPa set pi(i = 1, · · · , k) [11,41]. All steady-
states lie in the cone and each can be represented by a
nonnegative linear combination of ExPas:

v =
∑

αipi where αi ≥ 0

For a given network, the ExPa set has the following
properties: (1) It is unique; (2) Each ExPa uses fewest
reactions to form a function unit; (3) It is systemically
independent which means an ExPa cannot be repre-
sented by a nonnegative linear combination of other
ExPas [42,43].

ExPa calculation on the MN and TTN
ExPas were calculated using an open source tool ‘expa’
[44]. The E.coli MN and TTN models were divided into
small sub-networks using the method proposed in [11].
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An improved approach to compute the ExPas of TRN
models
A TRN is composed of a set of transcriptional regula-
tory rules which describe cells’ transcriptional responses
to environmental signals. A regulatory network matrix R
was used by Gianchandani et al. to represent the com-
ponents (environmental cues, metabolites, genes and
proteins) and reactions (regulatory rules and exchange
reactions of products) of a TRN [3]. It was further com-
bined with an environmental matrix E, which charac-
terizes a particular environmental state, yielding a
complete regulatory state matrix R* = [R|E]. Each col-
umn of E delineates the availability of a unique environ-
mental cue, transcription factor, target gene or protein
[3,45]. Different environmental states correspond to dif-
ferent Es, thus forming different R∗s.
For example, given a toy TRN with three regulatory

rules:

A + B → Protein 1; C → Protein 2; D → Protein 2;

where A, B, C and D are four metabolites enacting as
signalling stimuli.
The corresponding converses are:

A → Protein 1; B → Protein 1; C + D → Protein 2;

The matrix R∗ is illustrated in Figure 5A under the
environmental condition that A and D are present while
B and C are absent. The shaded columns represent the
inputs of environmental cues. Any steady state of TRN
under the given environmental cues lies in the space
which satisfies R∗v = 0 and ∀i, vi ≥ 0. The convex basis
of the right null space of R∗ forms the ExPa set under
the given environmental state.
In order to calculate all the ExPas of the TRN, all the

environmental states, namely all possible Es, need be
enumerated. Then ExPas participating in each possible
environmental state are generated and the unique ones are
grouped to form the complete ExPa set. Since the number
of possible environmental states grows exponentially with
the number of extracellular metabolites, it is inefficient to
enumerate all possible environmental states for a TRN
with numerous envionmental cues [45]. Therefore, an
improved method is introduced here to simplify the ExPa
calculation on the COBRA model of TRN.
The gist of the method is to improve Gianchandani’s

method by employing two columns instead of one to
delineate the presence and absence of a unique envion-
ment cue respectively, by which a new environment
matrix Enew is constructed. The matrix Enew covers all
possible environmental states. Without loss of general-
ity, we assume that the top n rows in R and Enew repre-
sents the present state of n environmental inputs
me (e = 1, · · · , n) one-to-one and the following n rows

represents the absent state of them. The original regu-
latory state matrix is R* = [R|E] = [r1, r2, · · · , rk|rk+1, rk+2, · · · , rk+n ]

and the new matrix is R*
new = [R|Enew] = [r1, r2 · · · rk|rk+1, rk+2, · · · , rk+n|rk+n+1, rk+n+2, · · · , rk+2n]

(k is the number of columns in R, and
Enew = [rk+1, rk+2, · · · , rk+n|rk+n+1, rk+n+2, · · · , rk+2n]). For
an input me, column rk+e represents its presence and col-
umn rk+n+e represents its absence under the environmental
condition, where rk+e(e) and rk+n+e(n + e) equal to 1 and
the other elements are all zeros. For example, the R*

new
matrix of the above toy model is illustrated in Figure 5B.
The shaded columns constitute Enew. Obviously, the space
and time complexity for constructing Enew is O(n), where
n is the number of components of a TTN model. The con-
vex basis of the right null space of R*

new comprises the
ExPa set of the TRN which could then be enumerated by
the tool ‘expa’ [44].
Notably, some infeasible steady states employing con-

tradictory inputs may be involved in the right null space
of R*

new. For example, Figure 6A shows an infeasible
steady sate of the TRN described in Figure 5B. The two
shaded elements of v both equal to 1. This means meta-
bolite A is both present and abscent in the environment,
which is obviously impossible. If an ExPa proves to be
an infeasible steady state, it should be removed from the
ExPa set.
Figures 6B and 6C show two ExPas resulting from the

matrixs in Figures 5A and 5B respectively. The two vec-
tors represent the same steady state of the TRN in
which gene G1 is inhibited because of lack of metabolite
B. In Figure 6B, the exact meaning of “1” in element BAV

cannot be decided directly from ExPa without referring
to the shaded part of matrix in Figure 5A. However, in
Figure 6C, “1“ in column BAB clearly means the absence
of metabolite B. Namely, the interpretation of an ExPa
resulting from the improved method is independent
from the environmental matrix, which makes an ExPa
easier to understand.

Validation of the approach of ExPa calculation on TRNs
Given n environmental cues, there are 2n possible envir-
onmental states, each corresponding to a matrix Ei and
the corresponding R*

i (R*
i = [R|Ei], i = 1, · · · , 2n). The

ExPa set obtained from R*
i is denoted as Pi and the feasi-

ble ExPa set calculated from R*
new is denoted as Pnew.

Since the meaning of the environmental part of Pi is
dependent on the environmental states, ExPas of differ-
ent environmental states should be normalized to elimi-
nate the dependence before being grouped up. We
normalized a ExPa pj

i
in the set Pi by expanding its

dimension of the input part from n (pj
i
) to 2n (p̂j

i
). Details

of the normalization are described in Algorithm 1.
Data: pj

i
, Ai, Ā

i.
// pj

i
represents the jth ExPa in the ith environment,

where i = 1, · · · , 2n;
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// pj
i = [v1, v2, · · · , vk|vk+1, vk+2, · · · , vk+n];

// Ai is a set which consists of all the absent inputs;
// Ā

i is a set which consists of all the present inputs;

Result: p̂j
i
. // p̂j

i = [v1, v2, · · · , vk|vk+1, vk+2, · · · , vk+n, vk+n+1, vk+n+2, · · · , vk+2n];
For q = 1to k do p̂j

i(q) = pj
i(q); End for

For q = 1to n do

Figure 5 Matrix formalism of the TRN model. (A) The regulatory state matrix R∗ of the toy model in which the regulatory rules are:

C → Protein 2; C → Protein 2; D → Protein 2. The environmental state of R∗ is that metabolites A and D are present while B and

C are absent. (B) The corresponding R*
new of R∗.
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If pj
i

(
k + q

)
== 0 do

p̂j
i(k + q) = 0; p̂j

i(k + n + q) = 0;

Else if pj
i

(
k + q

)
== 1 do

If q ∈ Ai do

p̂j
i(k + q) = 0; p̂j

i(k + n + q) = 1;

Else if q ∈ Ā
i

p̂j
i(k + q) = 1; p̂j

i(k + n + q) = 0;
End if

End if
End for
Algorithm 1: Procedure of normalizing pj

i
to p̂j

i
by

dimension expanding.
In a normalized ExPa P̂ = [v1, v2, · · · , vk+2n], “1” on

vk+e (e = 1, · · · , n) indicates that me is present on the
ExPa while “1” on vk+n+e (e = 1, · · · , n) indicates that me

is absent, and 0 indicates that me does not affect the
transcriptional states characterized by this Expa. The
normalized ExPa set of Pi is denoted as P̂i and the union
of P̂i (i = 1 . . . 2n) is denoted as P̂. As explained above,
the ExPas in set Pnew are already in the normalized
form, hence no normalization are needed.
Here we prove that P̂new equals to P̂:
Statement 1: each ExPa in P̂ can be obtained from R*

new.
Proof: given n extracellular metabolites mp(p = 1, · · · , n),

each R*
i can be transformed to R̂

*
i
as follows (Algorithm 2):

Data: R*
i , Ai, Ā

i.
// R*

i represents TRN in the ith environment, where
i = 1, · · · , 2n;
// R*

i = [r1, r2, · · · , rk|rk+1, rk+2, · · · , rk+n];
// Ai is a set which consists of all the absent inputs;
// Ā

i is a set which consists of all the present inputs;
Result: R̂

*
i
.

//
R̂

*
i = [r1, r2, · · · , rk|rk+1, rk+2, · · · , rk+n, rk+n+1, rk+n+2, · · · , rk+2n];
For q = 1 to 2n do rk+q = 0; End for

For q = 1 to n do
If q ∈ Ai do

rk+n+q(n + q) = 1;
Else if q ∈ Ā

i

rk+q(q) = 1;
End if

End for
Algorithm 2: Procedure of transforming R*

i to R̂
*
i
.

For R̂
*
i = [r1, r2, · · · , rk|rk+1,rk+2, · · · , rk+n, rk+n+1, rk+n+2, · · · , rk+2n]

(i = 1, · · · , 2n) resulted from Algorithm 2, if
∃j ∈ {k + 1, · · · , k + 2n} such that rj = 0, then a constraint
vj = 0 is added. Then the resulting network is a sub-net-
work of that represented by R*

new. As proven in [46], G
and G′ are two MNs whose reactions are all irreversible
and whose ExPa sets are EP and EP′, respectively. If EP′
is a sub-network of EP, then EP′ ⊆ EP. Therefore

P̂i ⊆ P̂new, because P =
n⋃

i=1

P̂i, P̂ ⊆ P̂new.

Statement 2: each feasible ExPa in P̂new can be
obtained by some R̂

*
i
.

Proof: Since any environmental cue is impossible to be
both present and absent in a specific environment,
vk+e × vk+n+e = 0 (e = 1, · · · , n) is true for each ExPa in
Pnew. For any ExPa p ∈ P̂new, let T = R*

new. For any e, T is
modified as follows: (1) If vk+e = 0 and vk+n+e �= 0, tk+e = 0;
(2) If vk+n+e = 0 and vk+e �= 0, tk+n+e = 0; (3) If vk+e = 0 and
tk+e = 0, tk+e = 0, where ti is the ith column of T. As can be
shown easily, p is an ExPa of the right null space of T.
According to Algorithm 2, a legal R̂

*
i
contains one zero col-

umn and one non-zero column corresponding to the two
input reactions of a certain input component respectively.
Therefore, T is a legal R̂

*
i
, and each ExPa in P̂new can be

obtained by some R̂
*
i
, or in other words, P̂new ⊆ P̂.

From statements (1) and (2), we conclude that
P̂new = P̂, and thus all possible ExPas of a TRN can be
obtained using our new representation.

Figure 6 Example ExPas of TRN. (A) An example of infeasible regulatory state in the null space of R*
new in Figure 5B. The shaded parts

indicate the contradictory inputs of state v. (B) An example ExPa resulting from the matrix R∗ in Figure 5A. (C) The same ExPa as that in (B)
resulting from R*

new of Figure 5B.
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Classification of ExPas
ExPas fall into three classes, in which class III stands for
internal reaction cycles with no exchange flux [12]. Class
III ExPas were proven to be thermodynamically infeasible
[47] and thus were not considered in our analysis.
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