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Abstract: The aim of this study is to estimate the parallel relative risk of Zika virus disease (ZVD) and
dengue using spatio-temporal interaction effects models for one department and one city of Colombia
during the 2015–2016 ZVD outbreak. We apply the integrated nested Laplace approximation
(INLA) for parameter estimation, using the epidemiological week (EW) as a time measure. At the
departmental level, the best model showed that the dengue or ZVD risk in one municipality was
highly associated with risk in the same municipality during the preceding EWs, while at the city
level, the final model selected established that the high risk of dengue or ZVD in one census sector
was highly associated not only with its neighboring census sectors in the same EW, but also with
its neighboring sectors in the preceding EW. The spatio-temporal models provided smoothed risk
estimates, credible risk intervals, and estimation of the probability of high risk of dengue and ZVD
by area and time period. We explore the intricacies of the modeling process and interpretation of the
results, advocating for the use of spatio-temporal models of the relative risk of dengue and ZVD in
order to generate highly valuable epidemiological information for public health decision making.

Keywords: disease mapping; Bayesian modeling; integrated nested Laplace approximation; relative
risk

1. Introduction

Colombia is a country located in the northwestern corner of South America. Extensive regions of
the country provide good conditions for the development of vector-borne diseases such as dengue,
malaria, and yellow fever, among others [1]. In 2015 and 2016, the Colombian population, as for
populations of other South American countries [2,3], was exposed to the Zika virus disease (ZVD),
resulting in an estimated population of 106,659 people affected up to December 2016 [4]. During the
same period, the incidence of dengue infections did not vanish but rather stayed at similar levels as in
previous years [5].

The ZVD epidemics in Colombia have been studied through descriptive epidemiological analyses
analyse [6–8], ecological analyses [9–13], and probabilistic modeling [14–16].

However, epidemiological disease-mapping techniques, for example, those used for dengue
disease to characterize the spatial and temporal pattern in disease risk over extended geographical
regions [17,18], have not yet been applied to ZVD. Several levels of spatio-temporal modeling
of dengue have been applied to continental, national, and municipal data in Brazil [19–22],
Colombia [23–27], Ecuador [28,29], and Indonesia [30]. Until recently, most of the spatio-temporal
relative risk models were developed under the Bayesian paradigm, applying the Markov chain Monte
Carlo (MCMC) method. However, a new technique has emerged, providing support to modelers and
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epidemiologists through the use of the integrated nested Laplace approximation (INLA) [31], a fast
and accurate tool for disease risk estimation.

On the basis of the modeling framework of spatio-temporal interaction effects models for relative
risk developed by Knorr-Held [32], Martínez-Bello et al. [26] applied spatio-temporal risk models
including covariates in Colombia at the city level using the MCMC method, while Lowe et al. [20–22],
Wijayanti et al. [30], and Abd Naeeim & Rahman [33] applied INLA to estimate relative risk in the
development of large-scale dengue warning systems in Brazil, Indonesia, and Malaysia, respectively.

The aim of this study was to model the spatio-temporal relative risk of ZVD and dengue in
parallel during the period corresponding to the Zika outbreak in Colombia from October 2015 to
December 2016 in one high-incidence city and one high-incidence department of Colombia, using the
epidemiological week (EW) as the time measure and the census sector (city level) and municipality
(departmental level) as geographic units. Our study had two specific objectives: first, to apply models
describing the spatio-temporal risk of dengue and ZVD at two geographic aggregation levels, and
second, to compare the risk of dengue and ZVD. For the first objective, the disease-mapping models
smoothed the risk of dengue and ZVD, improving the risk visualization by area and time period and
generating credible intervals of risk. For the second objective, the model detected high-risk areas of
dengue and ZVD with a probability threshold defined by the data analyst. The probability estimates
for relative risk permitted the formulation of approximate hypotheses for detecting areas in which the
relative risk of dengue and ZVD was greater than 1 with 95% probability.

2. Materials and Methods

2.1. Zika and Dengue Data in Santander and Bucaramanga, Colombia

Figure 1a,b shows the position of Colombia in the world and in the South American continent,
respectively. Colombia (Figure 1c) is divided into administratively autonomous departments, which
in turn are divided into municipalities. Figure 1d shows the department of Santander, located in
northeastern Colombia, covering an area of 30,537 km2 and with a population of 2,071,016 people
in 2016. Santander has 87 municipalities, and its administrative capital is the city of Bucaramanga
(Figure 1e), which has an elevation of 959 m and which had an estimated population of 521,857 people
spread over an urban area of 49 km2 in 2016.

Data on age, sex, and address for people with ZVD and dengue were obtained from the public
health surveillance system (SIVIGILA) [34] for the period from the 42nd EW (October) of 2015 to the
52nd EW (December) of 2016. SIVIGILA is maintained by the Colombian National Institute of Health
(INS) and covers nearly 11,000 health services providers, over 1117 municipalities, 32 departments, and
5 districts. The objectives of SIVIGILA are to systematically collect, analyze, interpret, update, publish,
and evaluate data related with health events for the purposes of prevention and control activities in
public health. SIVIGILA provides protocols for reporting each event of public health interest (EPHI)
to be notified. In SIVIGILA, dengue, severe dengue, and dengue mortality are registered with the
codes 210, 220, and 580, respectively, and the ZVD code is 895. We considered the case definitions
obtained from SIVIGILA’s protocols for dengue and ZVD. For dengue, we considered the cases that
were classified as probable, confirmed by laboratory testing and by the epidemiological nexus, as well
as the dengue mortality cases, while for ZVD, we considered the cases that were classified as probable,
confirmed by clinical signs and by laboratory cases, as reported to the surveillance system weekly.
At Santander’s aggregation level, dengue and ZVD cases were aggregated by disease, municipality,
and EW, and for the city of Bucaramanga, patients’ addresses were geocoded using the ArcGIS
Online Geocoding Service and then aggregated by disease, census sector, and EW. Census sectors are
geographical areas employed by the Colombian statistical office to report census data. Census sectors
correspond to the aggregation of 2 to 20 census blocks [35].
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Figure 1. Geographical location of the study area: (a) world map; (b) South America; (c) Colombia;
(d) department of Santander; (e) city of Bucaramanga.

2.2. Expected Values for ZVD and Dengue

The next step was to compute ZVD and dengue expected values, which are necessary as input for
the spatio-temporal risk models. Expected values were computed using the incidence rate (disease
cases per 100,000 people) by 5 year age group and sex at the departmental and city levels as follows:

IRkl =
Caseskl

Populationkl
× 100, 000,

where IRkl is the incidence rate in 5 year age groups k = 1, . . . , K (1 = [0, 5), 2 = [5, 10), . . . , 14 =

[65, 100)) and sex l = 1, 2, (1 = female, 2 = male); Caseskl are the total number of ZVD or dengue
cases; and Populationkl is the total population in 5 year age groups k and sex l for the departmental
or city level over the complete study period, as obtained from the Colombian census for the 2016
population [36]. After computing IRkl , the expected values per small area (municipality for the
departmental aggregation level or census sector for the city aggregation level) were calculated
as follows:

Ei =
K

∑
k=1

2

∑
l=1

(IRkl × Populationikl),

where Ei is the expected value in small area i and Populationikl is the census population [36] in small
area i and 5 year age group k and sex l. Finally, the Ei values are divided by the number of periods t to
obtain the expected values (Eij) by area i and time period j. At the end, four sets of expected values
were obtained: Santander’s ZVD and dengue expected values and Bucaramanga’s ZVD and dengue
expected values.

The ratio between the observed and the expected values of dengue and ZVD per area i and time
period j is a statistic referred to as the standardized incidence ratio (SIR). The SIR is a raw estimate
of the disease risk, which can be modeled by the relative risk estimation assuming a probability



Int. J. Environ. Res. Public Health 2018, 15, 1376 4 of 18

distribution, producing point estimates and credible intervals for the risk together with other valuable
statistics, such as probability estimates of high risk per area and time period [37].

2.3. Spatio-Temporal Relative Risk Models

We let the observed counts of dengue or ZVD cases be Oij, where i = 1, . . . , n is the small area
(n = 87 municipalities or n = 94 census sectors) and j = 1, . . . , t (t = 91 EWs) denotes the temporal
unit. We assume that the observed counts are Poisson distributed with mean parameter µij as follows:

Oij ∼ Poisson(µij),
µij = Eijrij,
rij = exp(ηij),
ηij = α + ζi + γj + φj + δij,

(1)

where Eij represents the expected values of dengue or ZVD calculated by internal or external
standardization; rij denotes the relative risk of dengue or ZVD by small area and EW; and ηij is
a linear predictor including latent variables accounting for the spatial, temporal, and spatio-temporal
dengue or ZVD risk structure. In Equation (1), α is a mean parameter, ζi accounts for the spatially
structured risk pattern, γj and φj represent the temporally unstructured and structured risk patterns,
and δij is the interaction term accounting for the spatio-temporal risk pattern. The probabilistic
structure for the model parameters is

ζ ∼ Normal(0, σ2
ζ R−1),

R = (ρζ Qζ + (1− ρζ)Iζ),

γ ∼ Normal(0, σ2
γI−1),

φ ∼ Normal(0, σ2
φQ−1

φ ),

where the ζ vector represents conditional autorregressive (CAR) Leroux spatially structured effects,
representing the joint distribution of the structured spatial pattern, normally distributed with zero mean
vector and variance–covariance matrix σ2

ζ R−1. The R matrix follows Leroux et al. [38], formulated
by Ugarte et al. [39,40], where ρζ is a smoothing parameter estimated from the data, Qζ is an n× n
proximity matrix, and Iζ is an n× n identity matrix. The Qζ matrix contains values of 1 where the
area i is neighbor of area i′ and 0 otherwise. The γ vector represents the joint distribution of the
unstructured temporal effects, normally distributed with zero mean vector and variance–covariance
matrix σ2

γI−1
γ , where σ2

γ is a variance parameter and Iγ is a t× t identity matrix. The φ vector is the
joint distribution of the structured temporal effects, normally distributed with zero mean vector and
variance–covariance matrix σ2

φQ−1
φ , where σ2

φ is a variance parameter and Qφ is a t× t random walk
1 or 2 (RW1 or RW2) matrix. The joint distribution of the spatio-temporal interaction-effects vector
δ′ = [δ11, δ12 . . . , δnt] is normally distributed with mean zero vector and variance–covariance matrix
defined by one of four interaction types as follows:

δ ∼ Normal(0, σ2
δ (Iγ ⊗ Iζ)

−1), (2)

δ ∼ Normal(0, σ2
δ (Qφ ⊗ Iζ)

−1), (3)

δ ∼ Normal(0, σ2
δ (Qζ ⊗ Iφ)

−1), (4)

δ ∼ Normal(0, σ2
δ (Qφ ⊗Qζ)

−1), (5)

where for all types of interaction effects, σ2
δ is a variance parameter and ⊗ is the Kronecker product of

two matrices. We follow the Knorr-Held [32] interaction-effects taxonomy. Equation (2) shows the type
I interaction effects δ with structure matrix (Iγ ⊗ Iζ), representing an unstructured interaction effect,
where Iγ is a t× t identity matrix and Iζ is an n× n identity matrix. Equation (3) displays the type
II interaction effects δ with structure matrix (Qφ ⊗ Iζ) modeling a temporal interaction effect, where
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Qφ is t× t RW1 or RW2 matrix and Iζ is as defined above. Equation (4) shows the type III interaction
effects δ with structure matrix (Qζ ⊗ Iγ) representing spatial interaction effects, where Qζ is the n× n
proximity matrix defined above and Iγ is a t× t matrix previously defined. Finally, Equation (5) shows
the type IV interaction effects δ with structure matrix (Qφ ⊗Qζ), defining inseparable spatio-temporal
interaction effects, where Qφ is a t× t RW1 or RW2 matrix and Qζ is an n× n proximity matrix.

2.4. Inference

The Bayesian inference for the spatio-temporal models is currently developed by applying
MCMC methods through conditional probability distributions of the model parameters; however,
we followed the INLA [31] technique to fit the spatio-temporal interaction effects models to the
data, using the INLA package downloaded from www.r-inla.org and R software, version 3.3 [41].
We followed the constraints specification of Goicoa et al. [42] to address the parameter identifiability
issues in the interaction terms. The hyperprior specifications for the mean parameter (α), the variance
hyperparameters (σ2

ζ , σ2
γ, σ2

φ, and σ2
δ ), and the smoothing parameter (ρζ) are as follows:

α ∼ Normal(0, 1000),

ρζ ∼ Uniform(0, 1),

σζ , σγ, σφ, σδ ∼ Uniform(0, ∞).

Model selection was on the basis of the analysis of the deviance, the effective number of
parameters, the Watanabe–Akaike information criterion (WAIC) by Watanabe [43], and the logarithmic
score (LS) by Gneiting and Raftery [44] and implemented by Ugarte et al. [40]. The selected final model
corresponded to the model displaying the lowest WAIC and LS.

3. Results

3.1. Exploratory Data Analysis

First, we obtained from the Santander’s SIVIGILA database a total of 10,051 ZVD cases
(63.1% females and 36.9% males) and 7891 dengue cases (48.6% females and 51.4% males),
while Bucaramanga’s database included 3662 ZVD cases (61.2% females and 38.8% males) and
2470 dengue cases (49.3% females and 50.7% males).

Then, using the number of dengue and ZVD cases by age group and sex, along with the
populations of the department of Santander and the city of Bucaramanga, we calculated the incidence
rate (cases by 100,000 people) by age and sex. Figure 2 displays the incidence rate by 10 year age group
and sex for dengue and ZVD at the departmental (Santander) and city (Bucaramanga) levels. In general,
incidence rates were higher at the city level than in the department as a whole. Both geographic levels
presented a similar incidence pattern for dengue and ZVD. Dengue disease incidence was slightly
higher in younger than older people but was very similar for women and men, while ZVD incidence
was higher in the age range of 20 to 65 years for women than for men. The incidence rates were
used to generate the expected values per area and time period; therefore, the study used internal
standardization. Thereafter, the expected values for dengue and ZVD at the departmental and city
levels per area and EW were combined with the observed values to produce the SIR values per area
and time period.

Figure 3 presents the longitudinal profiles of the SIR by aggregation area for dengue and ZVD
during the study period. For the department of Santander, the ZVD SIR profiles showed values of
more than 40 units in two municipalities, but in general, most of the municipalities did not surpass SIR
values of 20 units. For dengue, the SIR was consistently under 20 units throughout the study period
in most municipalities, with two spikes in incidence in December 2015 and May 2016. For the city of

www.r-inla.org
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Bucaramanga, the SIR for ZVD was under 20 units during the outbreak between January 2016 and
July 2016, and dengue had a constant SIR of less than 20 units during the study period.
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Figure 2. Incidence rate of Zika virus disease (ZVD) and dengue (cases per 100,000 people) by 10 year
age group and sex in the department of Santander and the city of Bucaramanga from October 2015 to
December 2016.
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Figure 3. Longitudinal profiles of the standardized incidence ratio (SIR) of dengue and Zika virus
disease (ZVD) by municipality (department of Santander) and census sector (city of Bucaramanga)
from October 2015 to December 2016.

The SIR could also be accumulated in the study period and mapped by area by employing a
choropleth map to visualize SIR patterns. Figure 4 shows maps of the accumulated SIR for dengue
and ZVD by aggregation area in Santander and Bucaramanga for the study period. The accumulated
ZVD SIR in Santander showed that few municipalities had high SIR levels in the northern, central, and
eastern areas of the department, while high values for the accumulated dengue SIR were presented in
the southern municipalities of the department. In contrast, at the city aggregation level, high values
for the accumulated ZVD and dengue SIRs were apparent in the central census sectors of the city,
displaying similar distribution patterns for both diseases.
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Figure 4. Accumulated standardized incidence ratio (SIR) maps of dengue and Zika virus disease
(ZVD) in Santander and Bucaramanga from October 2015 to December 2016.
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3.2. Model Findings

Table 1 displays the selection criteria statistics for the spatio-temporal relative risk models of
dengue and ZVD for Santander and Bucaramanga. At the departmental aggregation level, and using
the WAIC and the LS, the selected model contained type II interaction effects (temporal effects) for
both dengue (WAIC of 7413.6 and LS of 3738.7) and ZVD (WAIC of 4562.9 and LS of 2362.7). At the city
aggregation level, the best model corresponded to that with type IV interaction effects (spatio-temporal
inseparable effects) for dengue (WAIC of 8010.4 and LS of 4005.7) and ZVD (WAIC of 7804.1 and LS of
3904.1).

Table 1. Selection statistics (deviance, effective number of parameters (peff), Watanabe Akaike
information criterion (WAIC), and logarithmic score (LS)) from the spatio-temporal interaction-effects
models of Zika virus disease (ZVD) and dengue (ηij = α + ζi + γj + φj + δij) and random walk 1
(RW1) temporally structured effects for the department of Santander and the city of Bucaramanga from
October 2015 to December 2016.

Zika Dengue

Deviance peff WAIC LS Deviance peff WAIC LS

Department of Santander

No interaction 6290.6 115.7 6592.6 3307.4 8308.4 112.7 8490.5 4236.5
Type I 4222.8 630.5 4855.0 4570.9 7278.4 623.9 7934.2 4156.7
Type II 4166.2 410.4 4562.9 2362.7 6979.7 435.3 7413.6 3738.7
Type III 4247.6 589.1 4856.3 4147.4 7314.4 589.0 7968.7 4143.6
Type IV 4206.4 382.1 4593.7 2437.6 7044.8 408.1 7470.9 3764.0

City of Bucaramanga

No interaction 7852.1 105.0 7970.1 3985.3 7938.5 93.9 8042.5 4021.4
Type I 7659.3 275.0 7949.3 3980.8 7680.3 318.2 8018.5 4014.6
Type II 7537.5 263.7 7808.2 3907.3 7841.2 165.6 8024.2 4012.8
Type III 7653.2 247.7 7913.6 3961.5 7865.6 159.9 8040.7 4021.2
Type IV 7576.6 218.7 7804.1 3904.1 7839.7 155.8 8010.4 4005.7

Table 2 presents the smoothing parameters (ρζ) of the spatially structured random effects and the
standard deviation hyperparameters corresponding to the final selected models for Santander and
Bucaramanga. At the departmental level, the smoothing parameters displayed posterior mean values
of 0.61 and 0.50 for ZVD and dengue, respectively, which denoted moderate spatially structured effects.
We observed similar results at the city level, where the posterior means of the smoothing parameters
were 0.55 and 0.49 for ZVD and dengue, respectively. The standard deviation hyperparameters at the
departmental level were higher for ZVD than for dengue, and the small standard deviation of the
temporally structured effects (σφ) denoted the small variability of φ. At the city level, σφ also showed
small variability for all the hyperparameters.

Using the selected models for dengue and ZVD in Santander (model with type II interaction
effects) and Bucaramanga (model with type IV interaction effects), the probability of the structured
spatial risk pattern being greater than 1 given the observed disease counts (P(exp(ζi > 1|O)) of
the entire study period was mapped and is shown in Figure 5. What can this probability indicate
to epidemiologists, biostatisticians, and public health officials? The mapped probability provides
estimates of the areas at the departmental and city levels for which a high risk of dengue or ZVD was
shared. From Figure 5, in the department of Santander, the red areas reveal the municipalities with
probabilities close to 1, displaying a high risk with a clustered pattern; thus, for ZVD, the northern
and western municipalities presented the spatially clustered high-risk pattern, while for dengue, the
north and south municipalities showed the spatially clustered high-risk pattern. At the city level, the
distributions of high-risk spatial clusters (probability close to 1) of census sectors were similar for both
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dengue and ZVD and were concentrated in the central parts of the city, following the pattern displayed
by the SIR maps in Figure 4.

In addition to the spatial structured effects, the relative risk per area and time period could be
obtained from the final selected spatio-temporal models. For the department of Santander, Figure 6
shows the longitudinal profiles of relative risk for dengue (gray) and ZVD (pink), displaying the
posterior mean and 95% credible intervals for the selected municipalities. Before examining the
plot, we warn the reader that different scales for the relative risk are displayed for the selected
municipalities, because the high variability of the risk profiles from municipality to municipality
would make it difficult to visualize the trend in several areas. The municipalities were selected on the
basis of the high probability of the spatial structured pattern from Figure 5. Three nearby municipalities
(Bucaramanga, Girón, and Florida) revealed similar risk patterns for both diseases, showing that the
ZVD outbreak closely followed the dengue outbreak in the first semester of 2016, while municipalities
such as Cimitarra and Rionegro showed a low risk for dengue and ZVD, and Capitanejo displayed
the highest relative risk of all the municipalities in the department. At the city level (Bucaramanga),
some selected census sectors with probabilities close to 1 for the spatial structured effects did not
reveal the high variability presented at the departmental level, showing the high risk of ZVD in close
connection with that of dengue, and with the ZVD risk being higher than the dengue risk for the
selected census sectors.
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Figure 5. Probability of spatial structured effects greater than 1 (P(exp(ζi) > 1|O)) for department of
Santander and city of Bucaramanga from October 2015 to December 2016.
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Figure 6. Selected longitudinal profiles of the posterior means and 95% credible intervals for the
relative risk of dengue (gray shadow) and Zika virus disease (ZVD) (pink shadow) for department of
Santander and city of Bucaramanga from October 2015 to December 2016. Dashed lines correspond to
relative risk equal to 1.

In the search for a combined risk representation of dengue and ZVD, Figure 7 explores the
spatio-temporal representation of relative risk being greater of 1 with 95% probability for both diseases,
that is, the areas in which the 95% credible intervals of the risk for dengue and ZVD were higher
than 1. For this purpose, the heatmap for Santander represents the municipalities with risk greater
than 1 with 95% probability, following the selected models for dengue and ZVD in Santander, and
exposes the strictly temporal risk pattern by municipality, with few municipalities sharing a relative
risk of greater than 1 with 95% probability. The shared relative risk greater than 1 with 95% probability
displayed a somewhat different pattern at the municipality level. For the ZVD outbreak period
(January to July 2016), almost all the census sectors demonstrated a relative risk greater than 1 with 95%
probability for both diseases, taking into account that the risk representation followed the selected final
models for dengue and ZVD corresponding to the type IV interaction-effects model (spatio-temporal
inseparable interaction).
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Figure 7. Heatmap of the relative risk greater than 1 (rij > 1) with 95% probability for dengue and Zika
virus disease (ZVD) in the department of Santander and the city of Bucaramanga from October 2015 to
December 2016.

Not only could the relative risk be presented as shown in Figure 6 using longitudinal posterior
mean profiles and credible intervals, but it could also be mapped directly (posterior mean or selected
percentiles) or be represented by the probability of a relative risk greater than 1 given the observed
cases counts (P(rij > 1|O)). Figure 8 exhibits maps of the probability of relative risk greater than 1
for dengue and ZVD in Santander and Bucaramanga from the fifth to eighth EWs of 2016 (the period
associated with the rapid dissemination of ZVD at the departmental and city levels). For those EWs,
the municipalities with a high probability of relative risk greater than 1 for dengue in Santander were
revealed to be the central northern and southern municipalities, while for ZVD, the high-probability
municipalities were in the northwestern region of the department. In Bucaramanga, almost all census
sectors displayed a high probability of relative risk greater than 1 for dengue, and many census sectors
also revealed a high probability for ZVD during the same time period across the city.
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Figure 8. Evolution of the probability of dengue and Zika virus disease (ZVD) relative risk greater
than 1 given the observed cases (P(rij > 1|O)) for selected epidemiological weeks (EWs) in January
and February 2016 in the department of Santander and the city of Bucaramanga.
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Table 2. Standard deviation hyperparameters of the interaction-effects models for the relative risk of
Zika virus disease (ZVD) and dengue from October 2015 to December 2016. Posterior mean, standard
deviation (SD), and 2.5%, 50%, and 97.5% percentiles.

Zika Dengue

Mean SD 2.5% 50% 97.5% Mean SD 2.5% 50% 97.5%

Department of Santander

ρζ 0.61 0.17 0.26 0.63 0.90 0.50 0.18 0.17 0.50 0.84
σζ 2.36 0.33 1.80 2.34 3.05 2.04 0.32 1.49 2.02 2.73
σγ 0.32 0.04 0.24 0.31 0.41 0.11 0.02 0.08 0.11 0.16
σφ 0.06 0.04 0.01 0.05 0.16 0.04 0.02 0.01 0.04 0.09
σδ 0.36 0.02 0.31 0.36 0.40 0.23 0.01 0.20 0.23 0.25

City of Bucaramanga

ρζ 0.55 0.20 0.16 0.55 0.89 0.49 0.19 0.15 0.49 0.84
σζ 0.48 0.07 0.36 0.48 0.64 0.52 0.08 0.39 0.51 0.68
σγ 0.42 0.06 0.33 0.42 0.54 0.19 0.04 0.13 0.18 0.27
σφ 0.07 0.06 0.01 0.06 0.25 0.07 0.04 0.02 0.07 0.16
σδ 0.17 0.02 0.14 0.17 0.21 0.10 0.02 0.07 0.10 0.14

4. Discussion

The present study applied parallel spatio-temporal interaction-effects models of relative risk
to ZVD and dengue data at two geographic levels of aggregation, first at the departmental level
(municipality aggregation), and second at the city level (census sector aggregation). The aim was to
provide risk estimates for arboviral diseases, elucidating the risk transmission dynamics of dengue
and ZVD.

We fitted the spatio-temporal models using INLA, which is a fast and accurate numerical method
to develop Bayesian analysis.

The within-sample predictive measures WAIC and LS were the information criteria applied to
select the final models at the departmental and city levels. The model selection was based on the
models showing the lowest values for the information criteria. At the departmental level, the final
selected model included type II (temporal interaction) spatio-temporal interaction effects, CAR Leroux
structured spatial effects, and RW1 structured temporal effects. Selecting the type II model for inference
implied that the dengue or ZVD risk in one municipality was highly associated with risk in the same
municipality during the preceding EW. At the city level, the final selected model included type IV
(inseparable) spatio-temporal interaction effects, CAR Leroux structured spatial effects, and RW1
structured temporal effects. The selection of the type IV model implied that the risk of dengue or ZVD
in one census sector was highly associated not only with its neighboring census sectors in the same
EW, but also with its neighboring sectors in the preceding EW.

The information concerning the relative risk obtained from the models could be presented in many
ways. We provide longitudinal profiles of relative risk (posterior mean and 95% credible intervals)
and maps of the high-risk probability by municipality or census sector. In addition, we represent
the joint risk of dengue and ZVD using 95% credible intervals by means of creating a categorical
variable representing high risk when the lower limit of the 95% credible interval was greater than 1,
identifying municipalities or census sectors at a high risk with 95% probability for dengue and ZVD.
At the departmental level, we distinguished 11 municipalities displaying a high risk for dengue and
ZVD, while at the city level, almost all the census sectors showed joint high risk for both diseases.

It is difficult to compare the findings in our study with other results in the dengue and ZVD
literature, because a parallel risk assessment of ZVD and dengue under a spatio-temporal setting is not
current research practice, perhaps because of the recent emergence of ZVD in the affected countries.
For the Colombian case, Krystosik et al. [45] associate perceived risk factors such as proximity to
standing water, canals, poverty, localized violence, and military migration, with density maps of
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dengue, ZVD, and Chikungunya virus disease (CVD) cases at the city level, using spatial point pattern
methods. Krystosik et al. identified suitable areas for disease transmission, ignoring the temporal
nature of the data, which our study considers, although we did not consider an association between
covariates for environmental or socioeconomic factors and dengue or ZVD.

Chien et al. [46] published another case study using Colombian data, exploring a quasi-Poisson
spatial nonlinear model to investigate the association among weekly ZVD infection and lagged effects
of weather variables, using the department as the spatial unit, from January 2015 to December 2016.
The modeling results suggest that mean humidity, total rainfall, and the maximum temperature can
help to predict a ZVD infection outbreak at least 3 months in advance, suggesting the model could
be applicable in the development of a ZVD surveillance system by public health authorities. The
study of Chien et al. also modeled the relative risk of ZVD; however, the relative risk was based
on non-smoothed estimates. In addition, they ignored the spatio-temporal nature of the outcome
variable while investigating the lagged effects of the covariates, and thus their results were based on a
fixed-in-time outcome variable, and the risk association between areas mediated by the spatial nature
of the data was ignored. They also used a spatial aggregation unit much larger than that presented in
our study, and finally, they analyzed only ZVD, not dengue or CVD.

For the city of Bahía de Caráquez in Ecuador (a country neighboring Colombia),
Stewart-Ibarra et al. [47] associated the degree of psychological distress with the presence of dengue,
CVD, and Zika infections in a suburban community after the 2016 earthquake. The study followed a
survey methodology, without considering the temporal or spatial nature of the data and collapsing all
three arboviral diseases studied into one composite variable. Thus, this paper did not investigate the
possible differences in transmission for the diseases.

In the course of the concurrent disease outbreaks of CVD and ZVD in French Polynesia and the
French West Indies between 2013 and 2016, Riou et al. [48] modeled the joint transmission of both
diseases using a Bayesian time-dependent susceptible–infectious–recovered (TSIR) framework [49]
including information on weather conditions (temperature and precipitation). This study is interesting
because the findings can be related to our results. The authors found that after controlling for
locality and weather conditions, the difference in transmission between the two viruses was minimal,
suggesting that the epidemic dynamics were more dependent on factors related to the mosquito
abundance and local environmental and socioeconomic conditions than a result of the intrinsic
characteristics of the viruses. In addition, the authors modeled the risk between ZVD and CVD,
considering the between-island association, which we also accounted for in our modeling framework.

In Brazil, one of the American countries most affected by the 2015–2016 ZVD epidemic,
Aguiar et al. [50] assessed the potential spatial risk of ZVD and CVD using a maximum entropy
(MaxEnt) approach, estimating the optimal conditions for infection on the basis of the disease
occurrence and environmental and social factors for 2015–2016 at the municipality level. A local
empirical Bayesian (LEB) analysis was performed using the cases of ZVD and CVD reported by
municipalities, and then, the municipalities with LEB rates greater than zero were included in the
MaxEnt analysis. The analyses provided joint risk maps of ZVD and CVD. Although the study by
Aguiar et al. included covariates for the analysis, the authors also ignored the spatio-temporal nature
of the data, such as those described in the previous studies shown in the current section.

The spatio-temporal models of relative risk shown here are available to study dengue and
ZVD transmission, acting as predictive models to help public health officers anticipate the time
and place the next outbreak of ZVD or other emerging arboviral diseases will occur [51]. Identifying
high-risk areas of vector-borne diseases at a small geographic resolution using within-sample predictive
models or short-time-ahead, out-of-sample predictive models supports the control and prevention of
vector-transmitted diseases, which is one the advantages of the spatio-temporal methods applied in
the present study [52]. The modeling approach in our study could easily be combined with covariates
originating from vectorial ecology, socioeconomic, and infrastructural data, improving the information
generated from the modeling exercise, as demonstrated for dengue by Wijayanti et al. [30]. Such studies
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could clarify the role of factors such as land cover, meteorological, and socioeconomic determinants of
arboviral diseases [53].

This study presents some limitations. For dengue data, it is well known that underreporting
could reach almost 70%, because many affected people do not approach health services and some
of the patients attending the health services are not correctly diagnosed [54]. There are few ZVD
studies addressing the quality of the reporting and diagnosis; however, one study from the National
Institute of Health in Colombia, carried out in a hyperendemic ZVD town in Colombia, described
around 49% of ZVD underreporting for people detected in a community active search of ZVD cases
and 81% of ZVD underreporting for people detected in a health service active search [55]. The intrinsic
characteristics of the data make the results of the study prone to the same inaccuracies as the event
reports produced by the public health surveillance system, because we used exactly the same data
registered and analyzed by the system. For instance, the system’s event notification depends on the
medical doctor’s ability to recognize and register the notifiable event, only using laboratory testing
for severe dengue cases or for pregnant women and children with ZVD. Even with the surveillance
system underreporting ZVD and dengue, the spatio-temporal risk estimates would complement the
current information generated by the system.

To end our discussion, we need to mention that we modeled ZVD and dengue independently
before combining the risk to obtain a joint risk estimation. However, a framework of spatial joint models
of relative risk exist [37] and could be explored to include several diseases at the same time. In addition,
it would be possible to fit longitudinal spatio-temporal joint models, providing a full structure for
estimation of relative risk, although the implementation is not straightforward. A following step of our
research is to test joint spatial and spatio-temporal models of dengue, ZVD, CVD, and other emerging
vector-borne infectious diseases.

5. Conclusions

We explored a statistical method to express the risk of ZVD and dengue using spatio-temporal
models of relative risk, providing a coherent, systematic, and structured approach to model
implementation, applying the modern INLA technique for Bayesian parameter estimation.
We argue that the spatio-temporal risk framework has advantages for public health officers,
epidemiologists, biostatisticians, and data analysts involved in controlling vector-borne infectious
diseases, corresponding with fast and accurate risk estimation (provided that good quality data are
available), risk smoothing for trend visualization, and the generation of credible intervals expressing
the risk probability, which could be portrayed in spatial or temporal features. We also observed shared
areas of ZVD and dengue high risk with high probability, given a probability threshold imposed by
the data analyst. We searched the literature for parallel modeling of dengue and ZVD risk, detecting a
lack of spatio-temporal risk models for arboviral diseases. This study thus presents a helpful statistical
method as a tool for decision making in preventing and controlling vector-borne emergent diseases.
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Abbreviations

The following abbreviations are used in this manuscript:

CI Credible Intervals
CAR Conditional Autorregressive
DANE Departamento Nacional de Estadística
EW Epidemiological Week
INLA Integrated Nested Laplace Approximation
IR Incidence Rate
LEB Local Empirical Bayes
LS Logarithmic Score
RW1 Random Walk 1
RW2 Random Walk 2
SD Standard Deviation
SIR Standardized Incidence Ratio
SIVIGILA Sistema de Vigilancia en Salud Pública (Public Health Surveillance System)
TSIR Time-dependent Susceptible-Infectious-Recovered
WAIC Watanabe-Akaike Information Criterion
ZVD Zika Virus Disease
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