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Scientific explanation is one of the most core concepts in science education, and

its mastery level is crucial for a deep understanding of the nature of science. As a

new generation of assessment theory, cognitive diagnostic assessment (CDA) can get

the knowledge of students’ mastery of fine-grained knowledge. Based on the extant

research, this research has formed eight attributes of scientific explanation concepts. By

coding the Trends in International Mathematics and Science Study (TIMSS) test items, a

CAD tool was formed. Data collected from 574 Grade 4 students in Hangzhou, China,

combined with the data of the United States, Singapore, Australia, the United Kingdom,

and Russia, were used in our study. The Deterministic Inputs, Noisy “And” gate (DINA)

model was used to analyze the results from three aspects: the probability of mastery of

attributes, the international comparison of knowledge states, and the analysis of learning

paths. This study provided a new perspective from a CDA approach on the assessment

of scientific explanation.

Keywords: scientific explanation, cognitive diagnosis, TIMSS, international comparison, learning path

INTRODUCTION

One of the goals of science education is to help students become scientifically literate individuals
capable of participating in science discourses and practices (McNeill et al., 2006; Anderson, 2013).
To meet this goal, cultivating students to construct scientific explanations and supporting science
teachers in assessing students’ explanations is essential for science learning and teaching around
the world (National Research Council, 1996; Ministry of Education, P. R. China, 2011; NGSS Lead
States, 2013). For example, the Nest Generation Science Standards (NGSS) Lead States in 2013
include “constructing scientific explanation” as one of the eight science and engineering practices.
The National Research Council (NRC) emphasizes that “scientists evaluate the explanations
proposed by other scientists by examining evidence, comparing evidence, identifying faulty
reasoning, pointing out statements that go beyond the evidence, and suggesting alternative
explanations for the same observations” (p. 148). The Chinese Science Curriculum Standards
(Ministry of Education, P. R. China 2011, p. 13–14) specifies that “students should be able to
know scientific explanations that are based on empirical evidence, scientific knowledge, and
scientific reasoning.”

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://doi.org/10.3389/fpsyg.2021.795497
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2021.795497&domain=pdf&date_stamp=2021-12-17
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:18198689070@126.com
https://doi.org/10.3389/fpsyg.2021.795497
https://www.frontiersin.org/articles/10.3389/fpsyg.2021.795497/full


Hu et al. Scientific Explanation Based on CDA

Assessing students’ ability to construct scientific explanations
is crucial for science teaching and learning. Researchers designed
tasks that allow students to provide written responses to an
investigated question or a phenomenon [e.g., McNeill, 2011;
Yao and Guo, 2018]. Researchers then evaluate students’ written
explanations with a predetermined rubric. Such assessments
could provide both summative and formative feedback; however,
it is challenging to offer timely feedback for a large group
of students. A more effective assessment is needed to report
students’ ability to construct scientific explanations. This article
assessed students’ ability to construct scientific explanations with
an analysis on the TIMSS 2011 data from a cognitive diagnostic
assessment (CDA) approach.

REVIEW OF RELEVANT LITERATURE

This study was grounded in two areas of the literature: (1) the
meaning of scientific explanation and how science educators
assess the quality of students’ scientific explanation traditionally
and (2) the promise of cognitive diagnostic modeling (CDM) for
assessing students’ ability to construct scientific explanations via
large-scale datasets.

Scientific Explanation and Associated
Assessments
What a scientific explanation constitutes is different for
philosophers, research scientists, and science educators
(Edgington, 1997). Philosophers concern the ideological and
historical aspects of scientific explanation. Research scientists
apply different explanation models in practices (Edgington,
1997; Alameh and Abd-El-Khalick, 2018). The nature of
scientific explanations is a set of implicitly shared cultural
elements within the specific field (Edgington, 1997). Scientific
explanations in science education have looser philosophical
grounds (Edgington, 1997) and seem to be left undefined among
researchers and practitioners (Alameh and Abd-El-Khalick,
2018). Constructing scientific explanation in K-12 context serves
at least two purposes: (1) as means to evoke students’ conceptual
understanding of scientific phenomena and mechanisms and
(2) as guidance for engaging students in scientific inquiry
(Kuhn and Reiser, 2005). Researchers who emphasize students’
understanding of science concepts view scientific explanations
as an application of theory, facts, or principles to make sense
of a phenomenon (Tang, 2016; Yao and Guo, 2018). The
phenomenon to be explained is derived from premises (e.g.,
laws, theories, or observables) and is generally in no doubt
(Osborne and Patterson, 2011). For example, one of the scientific
explanation tasks developed by Yao and Guo (2018) requires
students to explain why the “red soup” side of a “Yuanyang
hotpot” always boils first. Students apply physics concepts
around heat transfer to explain the phenomenon. Drawing
from philosophy of science, research in science education, and
standard documents [e.g., NGSS, NRC, Ministry of Education,
P. R. China, 2011], Yao and Guo (2018) develop a phenomenon-
theory-data-reasoning (PEDR) framework to conceptualize
scientific explanation in the K-12 setting.

Researchers and science educators who focus on engaging
students in scientific practices use the notion of scientific
explanation with the features of scientific argumentation (Kuhn
and Reiser, 2005; McNeill et al., 2006; Berland and Reiser,
2009; Braaten and Windschitl, 2011). These researchers view
the construction of scientific explanation as an inherent part
of scientific inquiry that students develop evidence-based
explanations through their investigations (Kuhn and Reiser,
2005; McNeill et al., 2006; Berland and Reiser, 2009; Ruiz-Primo
et al., 2010). For example, McNeill et al. (2006) propose a claim-
evidence-reasoning (CER) model of scientific explanation to
help students “justify their claims using appropriate evidence
and scientific principles” (p. 155). Usually, students are involved
in complex inquiry tasks in which the claim to be made has
less certainty. In addition, they often encounter contradictory
evidence or data that require them to justify in what way
the evidence results in a certain claim. Osborne and Patterson
(2011) point out that these elements are features of an argument
(Toulmin, 1958). Researchers such as McNeill argue that the
complexity of such practices and the student difficulties demand
the conflation of explanation and argumentation. Their scientific
explanation of the CER model is also consistent with school
cultures and the standard documents (McNeill et al., 2006).

In this study, we used the notion with an emphasis on
student’s conceptual understanding of scientific phenomenon
and mechanism. Here, scientific explanation was used as an
individual effort to make sense of a phenomenon by applying
theory, facts, or principles to scientific data (Tang, 2016; Yao
and Guo, 2018). Engaging in the construction of scientific
explanations, students develop an understanding of science
content knowledge, and also the nature of scientific knowledge
(Sandoval, 2001; Ruiz-Primo et al., 2010). Current efforts for
assessing student’s scientific explanations are mostly qualitative
by nature, relying on student’s written scientific explanation as a
product of a curriculum (e.g., McNeill, 2011; Yao and Guo, 2018).
In these studies, researchers developed rubrics for assessing
students’ written explanations in response to an investigated
question or a phenomenon.

Assessments of Cognitive Diagnostic
Models via Large-Scale Datasets
Assessments at a qualitative end provide both summative and
formative feedback; however, it is challenging to offer timely
feedback for a large group of students. A more effective
assessment is needed to report students’ ability to construct
robust scientific explanations. Achievement-based assessments,
such as the Program for International Student Assessment
(PISA), Trends in International Mathematics and Science Studies
(TIMSS), and National Assessment for Educational Progress
(NAEP), have the potential to provide students with timely
diagnostic feedback and enable large-scale assessments. Each
of the three measures holds unique features in terms of their
purpose, population, and content (McGrath, 2008). The purpose
of NAEP is to establish benchmarks of the performance of
students in the United States, whereas PISA and TIMSS are the
two major international large-scale assessment programs that
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provide comparative information (McGrath, 2008; Breakspear,
2012; OECD, 2013a,b; Wu et al., 2020, 2021b). PISA emphasizes
the yield of the education system and students’ competencies
of applying knowledge and skills in authentic contexts, whereas
TIMSS and NAEP emphasize school-based curricular. In terms
of population, PISA targets students aged 15, TIMSS targets
students in Grades 4 and 8, and the target population of NAEP
is students in Grades 4, 8, and 12. The age-based feature of
PISA distinguished it from the grade-based feature of TIMSS
and NAEP. The science content areas are organized differently
in PISA, TIMSS, and NAEP. For example, physical science is
included as one content area in NAEP but is split into physics
and chemistry in TIMSS. In this study, we selected TIMSS due
to the following two reasons: (1) the internationally comparative
information provided by TIMSS serves for our research purpose,
and (2) there exists successful use of applying CDM analysis on
TIMSS data (Chen et al., 2017; Wu et al., 2020, 2021b).

However, TIMSS cannot be readily applied to assess students’
ability to construct scientific explanations due to the following
reasons. First, the IRTmodel (Lord andNovick, 2008) adopted by
TIMSS conflates examinees’ latent ability into a few dimensions
(Yamaguchi andOkada, 2018), failing to report fine-grained skills
(or attributes) needed to assess students’ ability to construct a
scientific explanation. Second, items in TIMSS were originally
designed to assess a mixture of students’ fundamental knowledge
and critical competencies (Wu et al., 2020, 2021c), which places
a challenge to isolate attributes for a scientific explanation from
the raw data.

As a new generation of assessment theory, CDA makes
substantial assumptions about the process and knowledge
structure that learners use in completing tasks to guide diagnosis,
with a combination of cognitive science and psychometrics.
Cognitive diagnosis requires precise specifications to describe
the item’s characteristics that trigger the cognitive process
(Embretson, 1998). It aims to provide formative diagnostic
feedback through fine-grained reports on learners’ skill
mastery (Tatsuoka, 1983; Embretson, 1998; Hartz, 2002;
DiBello et al., 2007). In the past 30 years, cognitive diagnosis
has been developed, especially in the field of education and
psychometrics. CDM is especially suitable for decomposing
the multidimensional content in assessment tools to provide
clear information about the subject, which can help experts to
make an accurate diagnosis and guide their decision-making.
From complex cognitive stimuli in educational psychometrics to
responsive clinical assessment, appropriate cognitive diagnosis
can accurately classify and ultimately accurately diagnose
where and how the subject is defective (Templin and Henson,
2010). As traditional tests, cognitive diagnosis requires detailed
empirical evidence and a theoretical basis to specify the basis
of the item to support the inferences and interpretations drawn
from the diagnostic assessment (Yang and Embretson, 2007).
However, it is worth noting that the key elements of CDA
are not unique to these models but derived from other major
psychological measurement and statistical frameworks, such
as classical testing theory (CTT, Thissen, 2001), item response
theory (IRT, de Ayala, 2009), Bayesian estimation (Lynch, 2007),
and so on. CDMs are a class of psychometric models that

combine modern statistical methods with cognitive theories
and therefore produce feedbacks that reflect the cognitive
and psychological characteristics of the subjects (Templin and
Henson, 2010; Wu et al., 2020, 2021c). It holds great promise
in providing fine-grained feedback (Leighton and Gierl, 2007;
Templin and Bradshaw, 2014; Chang et al., 2021). For diagnostic
purposes, CDMs could identify multiple criterion-referenced
interpretations for numerous attributes in solving the test items.
Therefore, the associated feedback can help students and teachers
to discover ones’ strengths and weaknesses in a set of attributes
(Rupp and Templin, 2008). There has been increasing interest
in using CDMs for educational and psychological assessments
recently due to its potential in integrating the test objective into
the cognitive models (Stout, 2002; Tatsuoka, 2002; Chen and
Chen, 2016).

In the field of mathematics education, a variety of CDMs have
been fitted to the TIMSS assessment data to provide readily useful
evidence for researchers and educators on fine-grained attributes
(Greeno, 1991; Rumelhart, 1991; Schneider and Graham, 1992;
Zhan et al., 2018; Carpenter and Moser, 2020). In science
education, there are very few studies that fit CDMs to the
TIMSS data for science learning and teaching assessment. Kim
et al. (2015) extracted nine attributes from the TIMSS 2011
science data to discover the characteristics of Korean middle
school students’ science learning based on cognitive diagnostic
theory. Among the nine attributes, Korean students considered
“use models,” “interpret information,” “draw conclusions,” and
“evaluate and justify” as easier attributes, and considered “recall
or recognize,” “explain,” “classify,” “integrate,” and “hypothesize
and design” as harder attributes. Zhan et al. (2019) applied a
multiorder CDM on the science assessment data of PISA 2015 to
assess scientific literacy. They treated scientific literacy as a third-
order latent trait that consists of “competencies,” “knowledge,”
“contexts,” and “attitudes.” Results highlighted that knowledge
was the most influential attribute on scientific literacy. To our
knowledge, CDMs for assessing students’ ability to construct
scientific explanations have yet to be developed and validated.

This study aimed to apply CDM to assess students’ abilities
and construct scientific explanations with TIMSS 2011 dataset.
Through the analysis of cognitive attributes, cognitive diagnosis
integrates the test objectives into the cognitive model. Cognitive
diagnosis captures the students’ cognitive process when items
are answered. Thus, it reflects the subjects’ internal knowledge
acquisition and their mastery of fine-grained knowledge states.
With this, we can understand their internal knowledge mastery
states and obtain the participants’ learning situation through
the relationship between the knowledge chains to better guide
learning. Wu et al. (2020, 2021c) put forward a method for
constructing learning paths and learning progressions based
on cognitive diagnosis theory, which provides a reference
for further in-depth analysis of CDA results. Here, we used
TIMSS 2011 Grade 4 science test items and selected data from
the United States, Singapore, Russia, the United Kingdom,
Australia, and also data collected from Hangzhou, China, for
a comparative analysis of attribute mastery and tried to find
out what problems might exist in terms of students’ scientific
interpretation. Eight attributes were extracted in this study based

Frontiers in Psychology | www.frontiersin.org 3 December 2021 | Volume 12 | Article 795497

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Hu et al. Scientific Explanation Based on CDA

TABLE 1 | Definitions of the cognitive attributes for assessing student’s ability to construct scientific explanation.

Code Attributes Definition

OP Observing the

phenomenon

Must observe the pictures of scientific phenomena when answering the test questions (only observing the pictures can

make the correct answer)

DP Describing phenomena When solving the problem, it is necessary to describe the scientific phenomenon and make the phenomenon in the problem

specific. For instance, “nocturnal animals are more active,” you need to restore “active” to specific behaviors such as

“frequently running” and “howling.”

OD Obtaining data Use the information about the phenomenon clearly provided in the title, such as text description of the phenomenon, data

chart information (if the information in the question is not needed, it will be scored 0 if you can directly answer with the

original concept understanding)

AD Analyzing data Analyze and process data that cannot be directly concluded. The data presented in the question cannot be directly used to

draw conclusions. It needs to be analyzed and processed to become evidence before conclusions can be drawn (if you

have given relevant data, you cannot draw a conclusion based on the data immediately, you need to process the data first).

UF Using facts Use scattered knowledge or facts. Students can describe and “explain” daily phenomena based on their daily experiences,

or scattered facts learned from books, the Internet, and other media

CR Constructing reflection Connect the phenomenon in the question with the concept used to answer the question. Establish a mapping relationship

between scientific concepts and phenomena (such as linking “insects” with the characteristics of insects such as six legs,

two pairs of antennae, etc.). Use key variables as clues to choose (direct autonomous selection) scientific concepts, laws,

principles or theories (at the mapping level)

ST Systematic use of

theory

Use two or more concepts, theories or principles involved in the phenomenon in the title to analyze. Use two or more

scientific concepts, laws, principles or theories to conduct system thinking

SR Scientific reasoning Use the information in the topic to perform scientific reasoning activities such as induction, deduction, and analogy.

on the phenomenon-theory-data-reasoning (PTDR) framework
developed by Yao and Guo (2018). We further compared the
typical knowledge states among the different countries, that
is, to analyze the ranking of the number of knowledge states
and to obtain the characteristics of the scientific explanation
for different countries. Based on this, the learning path of
scientific explanation for students in Hangzhou, China, was
further constructed. We tried to make predictive assumptions
about students’ learning and subsequently provided a reference
for students’ personalized learning arrangements.

METHODOLOGY FOR COGNITIVE MODEL
CONSTRUCTION

To assess students’ ability to construct scientific explanations,
we started with the construction of a cognitive model for the
cognitive diagnostic test. By fitting an appropriate CDM to the
TIMSS 2011 data, we can obtain the knowledge states for each
student. According to the theory of cognitive diagnosis, students’
knowledge states can be reflected by cognitive attributes; the
attributes are connected to test items via Q-matrix. This section
first introduced how we constructed attributes for assessing
students’ ability to construct scientific explanations and then
described the associated Q-matrix.

Cognitive Attributes for Scientific
Explanation
Attributes are at the heart of cognitive attributes as their quality
directly determines the effectiveness of the CDA (Wu et al.,
2020, 2021a). Cognitive attributes took multiple meanings in
the field of measurement ranging from knowledge and thinking
skills needed to solve a test item (Tatsuoka et al., 2004; Dogan
and Tatsuoka, 2008), to process skills and knowledge structures

needed to complete a task (Leighton and Gierl, 2007). In
this study, we defined cognitive attributes for constructing
scientific explanation as a set of thinking skills and constructed
eight attributes (Table 1) based on the existing framework of
scientific explanation.

As reviewed earlier, various frameworks were proposed for
assessing students’ ability to construct scientific explanations
with different instructional goals. For example, the CER
framework (McNeill et al., 2006) was proposed to engage
students in constructing scientific explanations toward their
own investigation, whereas the PRO (Tang, 2016) and PTDR
(Yao and Guo, 2018) frameworks emphasized more on the
application of scientific knowledge to explain phenomena. The
purpose of this study was to assess students’ ability in explaining
science phenomena, so we extended the PTDR framework
(Yao and Guo, 2018) to construct the attributes. The PTDR
framework more clearly explains the process and attributes
of scientific explanation, which is more suitable for cognitive
diagnosis. Based on the PTDR framework and the TIMSS 2011
assessment framework, eight attributes were constructed along
with their corresponding definitions (Table 1). These are the
following: observing phenomenon (OP), describing phenomena
(DP), obtaining data (OD), analyzing data (AD), using facts (UF),
constructing reflection (CR), systematic use of theory (ST), and
scientific reasoning (SR).

Q-Matrix
The eight attributes for assessing students’ ability to construct
scientific explanations above were connected to the test items in
TIMSS 2011 via a Q-matrix. We selected 30 TIMSS test items
that were jointly tested by the students in the six countries we
studied, which resulted in a 30 × 8 matrix. A value of 1 for
the Q-matrix entry indicates that an attribute is measured for a
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corresponding item while 0 is not. According to the definition
of the attributes of scientific explanation in Table 1, two groups
of experts coded the test items without a mutual exchange of
info and finally formed the Q-matrix of the test, as shown in
Table 2.

It can be seen fromTable 2 that the eight attributes of scientific
explanation all have at least one item to test, which deems
reasonable in the distribution of attributes and can provide more
diagnostic information for model diagnosis.

TABLE 2 | Q-matrix of test items in TIMSS.

OP DP OD AD UF CR ST SR

Item 1 0 0 1 0 1 1 0 0

Item 2 0 0 1 0 1 0 0 0

Item 3 1 1 1 1 1 1 0 0

Item 4 1 1 1 1 1 1 0 0

Item 5 1 1 1 1 1 1 0 0

Item 6 1 1 1 1 1 1 0 0

Item 7 1 1 1 1 1 1 0 0

Item 8 0 1 0 0 1 0 0 0

Item 9 0 0 1 0 1 0 0 0

Item 10 0 1 0 0 1 1 0 0

Item 11 1 0 1 1 1 1 1 0

Item 12 1 1 1 1 1 1 1 0

Item 13 1 0 1 1 1 1 1 1

Item 14 1 0 1 1 1 1 1 1

Item 15 0 0 0 0 1 0 0 0

Item 16 0 0 1 1 1 0 0 0

Item 17 0 0 0 0 1 1 0 0

Item 18 0 0 0 0 1 0 0 0

Item 19 1 0 1 0 1 1 1 0

Item 20 1 0 1 0 1 1 0 0

Item 21 0 0 0 0 1 1 0 0

Item 22 0 0 0 0 1 1 1 1

Item 23 0 0 0 0 1 1 0 0

Item 24 0 1 0 0 1 1 1 0

Item 25 0 1 0 0 1 1 1 0

Item 26 1 0 1 1 1 1 1 1

Item 27 0 0 0 0 1 0 0 0

Item 28 1 0 1 1 1 1 1 0

Item 29 1 0 1 1 1 0 0 0

Item 30 1 0 1 1 1 0 0 0

Testing of Tools for CDA
This study selected 574 Grade four students from two schools
in Hangzhou, China (CHZ) for the test. The time length for
this test was 90min. A uniform scoring standard was used for
each test, and it was strictly consistent with the TIMSS test
scoring standard. After calculation, the reliability of the test α

= 0.795, which had a high degree of credibility. Among the
model selection, this study selected the commonly used DINA
model. This model assumes that the participant must master all
the attributes of the item to complete a certain item. The absence
of any attribute will make the probability of correctly answering
the item very low. It belongs to a completely uncompensated
cognitive diagnosis model, which has been widely used in the
practice of educational assessment. To further test the quality of
the test questions, we also tested the fit and discrimination of the
items separately.

Item Level Fit
The degree of fit between the test item and themodel is significant
in CDA. To a certain extent, it explains the quality of the cognitive
diagnostic test item. In this study, the root mean square error of
approximation (RMSEA) was used as the test parameter for item
fit. The RMSEA of the 30 items was shown in Table 3.

According to the standard of RMSEA, the closer the value
of RMSEA is to 0, the smaller the deviation of the fit and the
better the fit effect. Oliveri and von Davier (2011) take 0.1 as
the critical value of item fit, that is, RMSEA > 0.1 indicates that
the item fit is poor. According to this standard, it can be seen
in Table 3 that, except for Item 11, Item 13, and Item 21, the
test item parameter values were slightly higher, whereas the other
parameters were all <0.1. It showed that the item level of fit was
acceptable and reasonable.

Item Differentiation
The degree of discrimination of test items is an important
indicator in evaluating the quality of a test. The discrimination
of the cognitive diagnostic test is defined as

dj = Pj (1) − Pj(0)

Among them,Pj (1) refers to the probability of answering the
item correctly with grasping all the attributes of item j; dj(0)
refers to the probability of answering the item correctly without
grasping all the attributes of item j. The smaller the dj , the
smaller the influence of whether mastering the attribute on
correctly answering this item, that is, the smaller the degree
of discrimination. On the contrary, the greater the degree of

TABLE 3 | RMSEA parameters of 30 test items for scientific explanation.

Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 Item 7 Item 8 Item 9 Item 10

0.0227 0.0494 0.0070 0.0366 0.0443 0.0420 0.0693 0.0508 0.0096 0.0663

Item 11 Item 12 Item 13 Item 14 Item 15 Item 16 Item 17 Item 18 Item 19 Item 20

0.1420 0.0747 0.1122 0.0167 0.0039 0.0169 0.0333 0.0144 0.0078 0.0417

Item 21 Item 22 Item 23 Item 24 Item 25 Item 26 Item 27 Item 28 Item 29 Item 30

0.1019 0.0417 0.0365 0.0179 0.0561 0.0343 0.0465 0.0677 0.0418 0.0919
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TABLE 4 | Discrimination statistics of 30 test items for scientific explanation.

Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 Item 7 Item 8 Item 9 Item 10

0.5332 0.3452 0.2671 0.4274 0.6411 0.0474 0.8726 0.2301 0.3484 0.0180

Item 11 Item 12 Item 13 Item 14 Item 15 Item 16 Item 17 Item 18 Item 19 Item 20

0.1653 0.2379 0.2974 0.2861 0.1696 0.2232 0.1299 0.3547 0.2195 0.4276

Item 21 Item 22 Item 23 Item 24 Item 25 Item 26 Item 27 Item 28 Item 29 Item 30

0.2492 0.5855 0.4853 0.2099 0.2823 0.3369 0.0242 0.3629 0.5997 0.5931

discrimination. A large discrimination is a sign of high-quality
test items. Through applying the GDINA package in the R
package, the distinction between different items was shown in
Table 4.

From Table 4, most of the test items had a high degree of
discrimination, and a small number of items had a low degree
of discrimination, especially the discrimination degree of Item 6
and Item 10 was <0.1. The quality of these two test items was
relatively low; however, considering the fit effect of all the test,
these items were still retained.

Based on the above analysis, the results of RMSEA showed
that 30 items have a good fit with the DINA model, and
the test results of item discrimination showed that 30 items
had good discrimination, and the test had a good degree of
discrimination (α = 0.795). Therefore, the 30 items selected
here are appropriate for performing cognitive diagnostic analysis
on the eight attributes for scientific explanation. The following
section presents our comparative analysis and results of attribute
mastery, knowledge states ranking, and the learning path.

COGNITIVE DIAGNOSTIC ANALYSIS AND
RESULTS

Cognitive diagnostic assessment can provide each student the
mastery of different attributes; that is, the knowledge states of
each student will be obtained. This study selected five countries
with representative TIMSS scientific test results from the
United States (USA), Russia (RUS), Australia (AUS), Singapore
(SGP), and the United Kingdom (ENG) and compared the
results with that collected from Hangzhou, China. In the
selection process of data, we first considered the distribution
of the data and selected representative countries from different
states. Considering the selection of influential countries in
the TIMSS test as the comparison object, three aspects were
compared overall: the international comparative analysis of
attribute mastery, knowledge states ranking, and the learning
path analysis of scientific explanation.

International Comparative Analysis of
Attribute Mastery
The study assessed the model with the commonly used cognitive
diagnosis model, DINA model and obtained the mastery of the
attributes of each student in each country with the DINA package
in R. Overall, the mastering probabilities of the eight attributes in
each country were shown in Table 5.

TABLE 5 | Results of the eight attributes mastered in six countries for

scientific explanation.

OP DP OD AD UF CR ST SR

CHZ 50.17% 89.37% 55.23% 54.88% 56.97% 96.86% 55.23% 59.23%

USA 71.85% 68.49% 100.00% 73.53% 68.49% 95.80% 62.18% 60.92%

SGP 100.00% 68.55% 70.72% 62.91% 61.17% 100.00% 97.40% 67.68%

RUS 71.70% 85.85% 84.28% 65.41% 71.70% 92.77% 87.74% 67.61%

ENG 74.22% 62.39% 74.22% 80.80% 75.56% 95.20% 55.13% 61.05%

AUS 74.37% 65.22% 88.79% 83.07% 78.49% 98.63% 64.41% 70.48%

According to Table 5, a line chart of the attributes of different
countries was also shown in Figure 1.

According to Figure 1, the probability of mastery of attribute
constructing reflection (CR) mastery was consistently high for
all six countries, reaching more than 95%. Mastery probability
for the rest attributes was different, resulting in different patterns
for the six countries. CHZ students have a higher probability of
attributes mastery for DP and CR. Their probability of attributes
mastery for OP, OD, AD, and UF, ST, and SR were relatively lower
(<60%). USA students had a higher probability of attributes
mastery for OD and CR (>95%). The mastery probability of
the rest four attributes is between 60 and 73%. SGP students
had obvious advantages in the three attributes OP, CR, and ST,
all of which were highest among the six countries. It also fully
embodied the advantages of SGP in scientific explanation. RUS,
ENG, and AUS students did not show apparent advantages or
disadvantages of any attributes. Their mastery probability of each
attribute was at an average level among six countries. It should
be noticed that ENG and AUS demonstrated similar attribute
mastery patterns.

International Comparative Analysis of the
Ranking of Knowledge States
The essence of the process of cognitive diagnosis is also the
process of diagnostic classification. Therefore, CDM is also
called the diagnostic classify model. The results of cognitive
diagnosis could be accurately classified for the test participants
to achieve the effect of instructing the students in accordance
with their aptitude. In this study, the knowledge states of different
countries were integrated with the same knowledge states being
put together, and then, the top five knowledge states of different
countries were concluded, which was shown in Table 6.
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FIGURE 1 | The probability of students’ mastery of each attribute of scientific interpretation in different countries.

TABLE 6 | The top five knowledge states in different countries.

1st 2rd 3rd 4th 5th

CHZ (1111 1111) (0100 0100) (1011 1111) (0011 1111) (0000 1000)

44.25% 37.80% 4.18% 1.39% 1.39%

USA (1011 1111) (0110 0100) (1111 1111) (1111 1101) (1111 1100)

28.99% 26.47% 21.85% 5.46% 3.36%

SGP (1011 1111) (1100 0110) (1111 1111) (1111 0111) (1110 0111)

31.02% 27.33% 26.46% 4.99% 3.90%

RUS (1111 1111) (0100 0110) (1011 1111) (1111 1011) (1110 1111)

38.68% 13.84% 13.21% 6.60% 5.35%

ENG (1011 1111) (1111 1111) (0100 0100) (1111 1101) (1111 1100)

29.02% 19.20% 16.85% 8.48% 8.48%

AUS (1111 1111) (1011 1111) (1111 1101) (0100 0100) (1111 1100)

25.17% 19.45% 13.55 11.21% 7.78%

According to Table 6, students’ knowledge states in CHZ,
RUS, and AUS (1111 1111) ranked first, especially the proportion
of knowledge states in CHZ accounted for 44.25%. It showed
that a considerable number of students have mastered all the
attributes of scientific explanation. To some extent, it indicated
that most students of CHZ have a good grasp of scientific
explanation. The USA’s student knowledge states (1111 1111)
ranked the third, which showed that most students in the USA
did not master at least one of the attributes, and the cultivation
of students’ scientific explanation still needs to be worked on
according to the need of different students. Additionally, almost
all the knowledge states of CHZ students were in the top two,
which accounted for 80% of the population. The distribution
of other countries was relatively scattered; especially in USA,
ENG, and AUS, the top four attributes all accounted for a larger
proportion. It explained to a certain extent the polarization

of CHZ, because 37.80% of the knowledge state (0100 0100)
only mastered two attributes, whereas the distribution of other
countries was comparatively more diverse.

Analysis of the Learning Path of Scientific
Explanation
Based on CDA, Wu et al. (2020) proposed a hypothetical
construction method for learning path, which was based on
the following two hypotheses. First, it is supposed that students
acquire attributes step by step and attributes are to be mastered
one by one; second, it is believed that the state of knowledge
displayed by different students in a group is impacted by the
inherent characteristics of the group, such as the teachers’
teaching style, the students’ learning resources, and so on.
Therefore, the types of knowledge states shown by students
in different levels can be regarded as a stage of student
learning. According to this hypothesis, the changes in the group’s
knowledge states can reflect the learning path of this group to
a large extent. Based on this method, this study constructed a
learning path diagram for scientific explanation in China, which
was shown in Figure 2.

According to Figure 2, the learning path reflected the
inclusion relationship among different knowledge states, and
it also reflected the knowledge state path from no attribute
mastered (0000 0000) to finally all attributes mastered (1111
1111). From Figure 2, the learning paths of students showed
diversity; that is, students can choose different paths to finally
master all attributes. The red path in the figure represented the
main learning path, because this learning path carried the largest
number of people. It showed that this group of students was
more inclined to this learning path during the learning process.
Therefore, students also try to give priority to the main learning
path, which is more in line with group learning resources,
learning styles, learning habits, etc., and is also more in line
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FIGURE 2 | The learning path of CHZ students’ scientific explanation.

with students’ cognitive development rules, and learning may
be more efficient. This learning path (0000 0000) (0100 0000)
(0100 0100) (0100 0101) (0100 0111) (0110 0111) (0110 1111)
(0111 1111) (1111 1111). The order of learning represented by
this learning path was as follows: DP, CR, SR, ST, OD, UF, AD,
and OP. This order may be inconsistent with the logical order
of the subjects, but it embodies the “voice” of the students in the
learning arrangement.

DISCUSSION AND IMPLICATIONS

In this study, we introduced a CDM-based methodology to
assess students’ ability to construct scientific explanations using
the TIMSS 2011 Grade 4 science dataset of the United States,
Singapore, Russian, the United Kingdom, Australia, and data we
collected from Hangzhou, China. CDM approach was selected
due to its ability to provide readily useful evidence to researchers
and educators on students’ fine-grained attributes (Greeno, 1991;
Rumelhart, 1991; Schneider and Graham, 1992; Zhan et al.,
2018; Carpenter and Moser, 2020). Eight cognitive attributes
of students’ ability were employed to construct scientific
explanations, and the attribute mastering patterns of different
students were obtained, based on which we built a learning path
for students’ knowledge states of mastery. Results from our study
agreed with previous studies about scientific explanation and
scientific literacy at a coarse-grained level (McNeill et al., 2006;
Yao and Guo, 2018; Zhan et al., 2019); the information provided

at fine-grained levels further illustrated the relationship among
the eight attributes.

We found that students’ ability to construct scientific
explanations was topic-specific, highlighting the relationship
between students’ understanding of content knowledge and their
ability to construct scientific explanations. For example, we
found students from Hangzhou, China, mastered higher-level
attributes (e.g., “CR” and “ST”) on topics that they have a deeper
understanding of the associated content knowledge (e.g., energy,
force, and motion). However, they failed to master attributes
at lower levels (e.g., “UF”) when their encountered unfamiliar
topics. “UF” was considered as a basic level attribute in traditional
assessment, whereas “CR” and “ST” were in-depth ones (Yao and
Guo, 2018). A possible explanation was the TIMSS we use that
involves knowledge in various fields. Still, the more in-depth
investigations are often the more classic fields of science (such as
force and magnetism). The knowledge of these traditional fields
involved in the teaching materials is relatively solid. Still, the
knowledge involved in the teaching materials is relatively narrow
compared with other countries (such as the United States).
Therefore, even if some test questions only require students to use
basic scientific facts, they have hardly been exposed to this field,
so they cannot complete the explanation of these projects. Thus,
some students may have a poor grasp of the broad attributes of
“UF” but have a better grasp of the attributes of “CRs” and “ST.”
Our finding agreed with previous studies in science education.
For example, Yao et al. (2016) showed that students’ competencies
in scientific explanations were advanced when the instruction
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of scientific explanation was integrated with the disciplinary
core idea of energy. Applying a CDM analysis on the PISA2015
science test dataset, Zhan et al. (2019) concluded that the content
knowledge students have mastered had the greatest influence on
their scientific literacy. This finding implies that students’ ability
to construct scientific explanations appears to be domain-general
knowledge, but we cannot assume such ability mastered from
one content area is readily transferred into another. It is also
necessary to include topic-specific scaffolds within a curriculum
to improve students’ ability to construct scientific explanations.

We demonstrated that the CDM is a promising tool to provide
timely diagnostic feedback on students’ mastery of attributes in
scientific explanation, which was an advantage over traditional
assessments based on a qualitative approach [e.g., McNeill
et al., 2006; Yao and Guo, 2018]. Researchers such as McNeill
et al. (2006) and Yao and Guo (2018) categorized students’
scientific explanations into different levels and evaluated their
scientific explanations as a summative report. Their studies
successfully reflected the overall quality of individual students’
scientific explanation, but they did not place their focus on
students’ mastery of individual attributes. In addition, the
development of students’ mastery of attributes is an evolving
process, which placed challenges for qualitative approaches to
provide timely feedback. Using a CDM approach, teachers could
diagnose students’ mastery of individual attributes. With this,
they could select instructional materials, strategies, activities, and
evaluation methods that emphasize the development of specific
attributes accordingly.

Assessing students’ ability using large-scale datasets enabled
by CDM made it possible to reflect different attributes mastery
patterns for students from different countries. The patterns allow
us to delineate which attributes were considered as challenging
for a certain group of students. For example, our study reported
the different mastery levels on eight attributes of students
from different countries. We found 44.25% of students from
Hangzhou, China, mastered all eight attributes, which was the
highest among the six countries. However, the rest of the
students from China mastered a significantly fewer number of
attributes. Comparing it to those in other countries, although
fewer students mastered all eight attributes, the number of
attributes mastered by individual students was higher. There
appeared to be polarization in students’ ability to construct
scientific explanations in Hangzhou, China. Attribute mastery
patterns reflect the uniqueness of learning resources and learning
environments in different locations. CDM results provide an
entry for educators to reflect their education system, standards,
curriculum, and assessments and consider the cultural influences.

To our knowledge, using CDM to delineate the learning
path for students’ scientific explanations based on large-scale
datasets is a novel approach in the field of science education.
The learning path we constructed here was based on the
arrangement of individual and group attribute mastery levels.
Extracted from assessment-based data, our learning path was
objective and scientific. The learning path represents the
cognitive order that a specific group of students followed
in a specific context, as opposed to the logical order of
a discipline offered in the form of a curriculum. Such a

learning path reflects students’ learning process and promotes
their development (Confrey et al., 2009), as opposed to
reflecting a discipline-centered learning path. This sets the
boundary between learner logic and subject logic (Corcoran
et al., 2009). Combining results from individual students and
their learning mode, the learning path that constructed via
a CDM approach has the potential to provide guidance for
science teachers to select instructional materials, strategies,
activities, and evaluation methods. It should be emphasized
that we distinguish between the learning path we constructed
in this study and the well-studied “learning progression” [e.g.,
Songer et al., 2009] in the field of science education. Our
learning path represents the order in which students master
different attributes. Although our ultimate goal was the same
as researchers studying learning progression (i.e., capturing
the pathway how students master core concepts of scientific
explanation), further evidence is needed to show that our
learning pathway agrees with existing research on learning
progression in science education. However, we demonstrated the
potential of CDM and called upon the science educators and
researchers to consider the novel tool for assessing students’
ability to construct scientific explanations.

RESEARCH LIMITATIONS

In this study, we adopted a CDM approach to mine science
dataset in TIMSS 2011, extracted the mastery level of students’
ability to construct scientific explanations, and constructed the
learning path that reflects on students’ learning progress. Our
study provided a new perspective on assessing students’ ability
to construct scientific explanations by taking advantage of
the existing large-scale dataset and possibilities to offer timely
diagnostic feedback. However, there existed limitations in our
study and room for improvement. First, the eight attributes
we constructed for this study were extended from Yao and
Guo (2018) PTDR framework, which was conceptualized by
synthesizing research in the philosophy of science, science
education, and standard document. Further research is to be
conducted to validate whether these attributes truly capture
students’ knowledge and skills. Second, the eight attributes
we constructed focused more on students’ skills to construct
scientific explanations, weighing less on the students’ knowledge
about scientific explanation (e.g., what constitute a scientific
explanation). Third, the test items in TIMSS were not designed
for assessing students’ ability to construct scientific explanations.
Although our results were in agreement with prior studies in
science education at a coarse-grained level, further evidence
should be collected to ensure the validity of using CDM as
a diagnostic tool for scientific explanations on TIMSS data.
Fourth, the learning path we constructed in this study was
based on a cross-sectional dataset. The underlying assumption
was that knowledge states captured from different students in a
group at one time reflect different stages of individual student’s
learning, that is, the embodiment of group consciousness in
the individual (Xin et al., 2015). This assumption is rational
because collective characteristics of students’ knowledge states
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are determined by the inherent factors within their group,
such as learning resources, learning environment, and teaching
strategies. Although this assumption is yet to be confirmed
by empirical research, there exists successful use of cross-
sectional dataset to reflect characteristics of longitudinal dataset
via a CDM approach in mathematics education (Chen et al.,
2017; Wu et al., 2020, 2021b). For future study, we are
planning to take account of the analysis of longitudinal data
to establish the reliability and stability of the method for
science education.
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