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In the central nervous system (CNS) of man, evolutionary pressure has preserved some capability for remyelin-
ation while axonal regeneration is very limited. In contrast, two efficient programmes of regeneration exist in
the adult fish CNS, neurite regrowth and remyelination.The rapidity of CNS remyelination is critical since it not
only restores fast conduction of nerve impulses but also maintains axon integrity. If myelin repair fails, axons
degenerate, leading to increased disability. In the human CNS demyelinating disease multiple sclerosis (MS),
remyelination often takes place in the midst of inflammation. Here, we discuss recent studies that address the
innate repair capabilities of the axon-glia unit from fish toman.We propose that expansion of this research field
will help find ways to maintain or enhance spontaneous remyelination in man.
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Introduction
Confronted with the urgency of combating the loss of
function in multiple sclerosis (MS) patients, neuroscientists
and neurologists have generated a wealth of new data on
mechanisms of remyelination which restores rapid saltatory
conduction along myelinated tracts and prevents axonal
loss. These data come from gene expression analysis of MS

neural tissues and experiments in a variety of animal models.
Discoveries regarding the molecular basis of myelination and
the biology of adult neural stem cells have also influenced
views on myelin repair in the adult central nervous system
(CNS) (reviewed in Dubois-Dalcq et al., 2005; Miller and
Mi, 2007). Here, we present our viewpoint on these studies
by apposing observations in man and human tissues to
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results obtained in experimental models. We particularly
want to draw attention to the importance of restoring fast
conduction in demyelinated axons by rapid remyelination
in man and of developing strategies to enhance remyelin-
ation at the early stages of MS based on visualization of
ongoing, recent demyelinating events by imaging.

Endogenous remyelination occurs in white and grey
matter in MS and fully remyelinated areas are often referred
to as ‘shadow plaques’ by neuropathologists (Patrikios
et al., 2006; Albert et al., 2007; Patani et al., 2007 among
others). Newly made myelin sheaths are indeed thinner
than normal, have shorter internodes and variability in
nodal length (Perier and Grégoire, 1965). These variations in
myelin thickness and internode distance in shadow plaques
might decrease the robustness of saltatory conduction along
myelinated axons. Yet, in animal models, the conduction
velocity increases during remyelination. For instance,
grafting of embryonic glial cells into the dorsal columns of
myelin-deficient rats resulted in a significant increase in
conduction velocity compared to non-transplanted regions,
provided a sufficient density of sodium channels is restored
at the nodes of Ranvier (Utzschneider et al., 1994).

Unexpectedly, extensive remyelination has been observed
not only in the early phase of MS, but also in patients with
long-standing disease (Patrikios et al., 2006). An important
question is whether genes modulating disease severity influence
myelin repair. A case to study is HLA-G which is involved in
materno-foetal tolerance and expressed in the CNS in
inflammatory conditions. In women with relapsing-remitting
MS, levels of expression of HLA-G in blood mononuclear cells
and in serum during pregnancy and postpartum inversely
correlate with disease activity (Airas et al., 2007). Discovery of
genes modulating repair will expand our understanding of the
physiological and molecular basis of endogenous CNS
remyelination. It will likely provide clues as to how to develop
strategies to enhance this spontaneous repair process that has
been preserved by evolutionary pressure since the appearance
of myelin in the first gnatostomes, the placoderms. This is a
highly successful fish group that arose about 425 million years
ago, and was a dominant organism in the ocean during the
Devonian period (Zalc and Colman, 2000; Zalc, 2006; Zalc
et al., 2008 in press).

An ancient neural regeneration programme,
starting in fish
It is rather fascinating to browse through papers on fish
CNS regeneration as they outline many of the processes
occurring during axonal regeneration and remyelination in
mammals. The process of axonal regeneration is also
relevant to MS in view of the extensive axonal damage,
including transection, which occurs in this disease. The
optic nerve, a frequent site of the first clinical manifestation
of MS, has been the focus of several early fish studies.
Murray (1976) studied cytoskeletal and organelle changes
during regeneration of goldfish retinal axons after optic

nerve transection, reporting that ‘the regenerating axons
gradually increase in diameter but do not reach preopera-
tive sizes’ while ‘remyelination is delayed and proceeds
slowly’. Wolburg’s study (1981) of goldfish optic nerve
crush described that the regenerating axons acquired
thinner myelin sheaths. The author proposed that ‘a
neuron is capable of inducing a normally developed
myelin sheath when its axon contacts an oligodendrocyte
for the first time whereas a neuron whose axon contacts an
oligodendrocyte the second time is not capable of forming
a normal myelin sheath in the adult animal’. Nona et al.
(2000) later found that, after optic nerve injury in fish,
remyelination only occurred after the regenerating axons
had reached the tectum where the axon terminals refine
their map. Myelin repair was synchronous throughout the
optic nerve and exacted by both Schwann cells and
oligodendrocytes. Myelin protein zero, the major myelin
protein in the mammalian peripheral nervous system
(PNS), is present in zebrafish optic nerve and spinal cord
where its expression increases during regeneration
(Schweitzer et al., 2003). These fish studies therefore
underline the requirement of connectivity of damaged
CNS axons before axons can be remyelinated. This is in
keeping with developmental studies in the mouse showing
the crucial role of electrical activity along axons to induce
myelination (Demerens et al., 1996; Stevens et al., 2002).
It may also be important in MS where the maintenance or
re-establishment of connectivity of demyelinated axons may
be a prerequisite for remyelination.

In recent years, zebrafish mutant screens have identified
genes essential to the development of myelinated axons
(Kazakova et al., 2006; Pogoda et al., 2006). Most of these
have homologues in higher vertebrates but, in some cases,
new unexpected functions linked to myelination were
discovered as in the case of NSF, a protein essential for
vesicular fusion at synapses and ion channel clustering on
axons (Woods et al., 2006). We advocate the use of fish
models not only for studying neurite regeneration but also
for remyelination in view of the rapid, convenient mutant
analysis and the possibility to follow oligodendrocyte
movement and activities in the living animal.

A see-through fish in lieu of a mouse?
The recognition of axons by migrating oligodendrocytes
processes has been visualized in intact nearly transparent
zebrafish larvae in which oligodendrocytes—and some
axons—of the spinal cord expressed membrane-localized
GFP under the control of the nkx2.2 promoter (Kirby et al.,
2006). A continuous process of oligodendrocyte extension
and branching precedes the final positioning and wrapping
of the axon by oligodendrocytes. When such oligodendro-
cytes were ablated by laser microsurgery, other oligoden-
drocytes compensated for the loss by rapidly extending
new processes and migrating towards the region aban-
doned by the dying oligodendrocyte (Fig. 1). After all
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oligodendrocytes were ablated in five hemi-segments of the
spinal cord, oligodendrocyte precursor cells (OPCs) from
the intact hemi-segments rapidly migrated toward the
lesion site whilst dividing. The result was that 50% of
oligodendrocytes had already been replaced on the lesion
side at 1 day (ibidem).

Imaging such repair processes could be done in mutant
medaka fish that are transparent throughout life (Wakamatsu
et al., 2001). GFP-expressing transgenics of this fertile fish
have been made, allowing non invasive studies of internal
organs (ibidem). If nkx2.2-GFP transgenics could be obtained
in medaka as in zebrafish, one could possibly succeed in
performing multiple oligodendrocyte laser ablation in the

spinal cord (a close equivalent to focal chemical lesions in
rodent, discussed below) and imaging demyelination/remye-
lination in the living animal. As in demyelinated mammals,
one would predict that fish-activated macrophages and
lymphoid cells (Zapata et al., 2006) would be attracted
to the lesion site. The transparent medaka fish stock of
Nagoya University are available to interested scientists
(Y. Wakamatsu, personal communication).

Whatever progress is made in fish, however, must be
translated to mammals, which have an immune system that
is more similar to that of humans.

Animal models of remyelination in mammals
A variety of rodent animal models has helped to elucidate
some of the mechanisms involved in CNS remyelination.
As there is no perfect model for MS, one particular animal
model may be chosen to examine one specific aspect of MS
to be investigated. These models include the induction of
a focal demyelinated lesion by a toxin such as lysolecithin
or ethidium bromide (Hall, 1972; Woodruff and Franklin,
1999). A cuprizone diet causes demyelination in major
myelinated tracts such as the corpus callosum and cerebellar
peduncles and is followed by myelin repair when the diet is
stopped (Blakemore, 1973; Ludwin, 1978).

The value of viral-mediated and auto-immune demyelin-
ation lies mostly in their modelling of the immune cells in
MS lesions. Some neurotropic strains of mouse corona
virus induce demyelinating lesions mostly in the spinal cord
followed by immune-mediated clearing of the virus,
remyelination and recovery (Kristensson et al., 1986;
Armstrong et al., 1990). Another viral model is the
Theiler virus-induced murine encephalomyelitis whose
chronic inflammation in gray and white matter mimics
some aspects of MS and where natural IgM autoantibodies
were shown to enhance remyelination (discussed in Arnett
and Viney, 2007; Rodriguez, 2007).

Injection of a CNS-specific myelin protein such as myelin
oligodendrocyte glycoprotein with adjuvants induces
experimental autoimmune encephalitis (EAE) which
mimics different clinical presentations of MS and its
multifocal inflammatory lesions more closely. EAE has
been extensively used to identify immunoregulators for
preclinical trial in MS (reviewed in Gold et al., 2006) and
also to assay remyelination as in a study on the role of
Notch in repair (Seifert et al., 2007). Recently, cortical
demyelination was induced by focal injection of pro-
inflammatory cytokines in subclinically MOG-immunized
rats, a model originally developed in the spinal cord
(Kerschensteiner et al., 2004; Merkler et al., 2006). After
cortical inflammation subsided, rapid remyelination
occurred, mimicking extensive remyelination observed in
MS cortical lesions (Albert et al., 2007). Mice deficient in
neural and immune system genes have been used
extensively in these models to study their impact on
remyelination.

Fig. 1 Time-lapse recording and OPC ablation experiment in
transgenic olig2 EGFP zebrafish larva (at 60h post fertilization)
which expresses EGFP both in axons and OPCs. Image of spinal
cord (dorsal side up) before and after laser ablation. Membrane
bound GFP+oligodendrocyte-lineage cells which had migrated
dorsally were targeted by their fluorescence and ablated using
approximately five pulses of 440nm light generated by a Photonics
Micropoint Laser System. At time zero after ablation, the oligo-
dendrocyte (arrow) extends new processes into the area vacated
by the ablated cell (arrowhead) and later starts to enwrap axons
between 3 and 8h.The larvae were anaesthesized during both
ablation and time lapse and then placed on their side on glass-
bottomed 35mm Petri dishes.The timelapseimageswere captured
using 40� oil-immersion objectives mounted on a motorized
Zeiss Axiovert 200 microscope equipped with a Perkin Elmer
ERS spinningdiskconfocal systemwith a heated stage and chamber
tomaintain embryos at 28.5oC (Kirbyetal., 2006).Figureand
Methodology: CourtesyofNorioTakada and BruceAppel,Vanderbilt
University,Tennessee,USA. Scalebar: 24mm.
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To understand how remyelination is initiated, a series of
studies have characterized the precursors of remyelinating
cells in rodent and man.

Origin of remyelinating cells in the adult
mammalian CNS
The first event in myelin repair is the recruitment of OPCs
to the demyelinated lesions (reviewed by Chandran et al.,
2008). In rodents, there are at least two known sources of
remyelinating oligodendrocytes in the adult mammalian
CNS: the first is the large pool of OPCs expressing the
proteoglycan NG2 and/or PDGF-receptor alpha, the second
comes from precursors in the adult subventricular zone
(SVZ) (Menn et al., 2006; reviewed in Zhao et al., 2008).
Both rodent and MS white matter OPCs express Olig 2,
Nkx2.2 and Myt1 transcription factors when recruited to
demyelinating lesions (Sim et al., 2002; Fancy et al., 2004;
Nait-Oumesmar et al., 2007; Vana et al., 2007b). In mouse
SVZ, some OPC markers such as NG2 and olig 2 are
sometimes expressed in type C precursors which are derived
from GFAP-expressing neural stem cells (Doetsch et al.,
2002; Aguirre et al., 2004). The finding of OPC markers in
some SVZ precursors may be due to the rapid commitment
to an oligodendrocyte fate when precursors move out of the
SVZ or a pre-commitment of these precursors to this fate
within the SVZ (Delaunay et al., 2008) as described also in
the case of neurons (Kohwi et al., 2007).

Of important relevance to CNS remyelination in man,
OPCs have been isolated from normal appearing white
matter obtained in the course of surgery for epilepsy and
found to be multipotential in vitro (Nunes et al., 2003).
When grafted into dysmyelinating shiverer mice—which
lack myelin basic protein—these human OPCs extensively
migrate and remyelinate the mouse white matter (Windrem
et al., 2004). As remyelination occurs in MS, it is presumed
that OPCs recruited from normal appearing white matter to
lesions have similar remyelinating properties. The transcrip-
tional profile of freshly sorted human OPCs was compared
to that of the white matter from which they were isolated.
The results indicate that adult human OPCs are responsive
to local factors triggering distinct signaling pathways either
regulating their self maintenance or inducing their differ-
entiation (Sim et al., 2006).

Another source of remyelinating cells in the CNS is
Schwann cells. In some MS cases, Schwann cells were found
in the spinal cord and hindbrain where they synthesize PNS
myelin around demyelinated CNS axons (reviewed in
Compston et al., 2006). Importantly, the Schwann cells
that migrate and remyelinate CNS lesions after experi-
mental demyelination of rat dorsal columns by ethidium
bromide (EB) restore fast conduction ‘within normal limits’
(Felts and Smith, 1992). Moreover, a normal pattern of
sodium and potassium channels at the nodes of Ranvier
was maintained 1 year after a similar EB lesion was made
(Black et al., 2006). Normal conduction velocity was also

restored after grafting labelled cultured Schwann cells into
EB-treated, glial free dorsal columns (Honmou et al., 1996).
These observations strongly suggest that PNS myelin made
by remyelinating Schwann cells may restore conduction of
CNS axons also in MS. Thus Schwann cell migration into
the CNS is a remarkable natural repair mechanism.
However, we do not know how extensive this is and what
attract these repair cells to the CNS. Could it be the same
factors that attract OPCs?

Regulators of OPCs mitosis/migration may
help remyelination
Epidermal growth factor (EGF) and platelet-derived growth
factor A (PDGFA) stimulate OPCs to divide and migrate
during CNS development (reviewed in Rogister et al.,
1999). Experiments in transgenic mice have also revealed
a role for these factors in remyelination. Indeed, mouse
OPCs overexpressing human EGF-R showed increased
mitotic and migratory activity toward a corpus callosum
lesion and this resulted in acceleration of remyelination and
functional recovery (Aguirre et al., 2007). Transgenic mice
overexpressing the human PDGF A gene and submitted to
a cuprizone diet that caused chronic demyelination, showed
enhanced remyelination and oligodendrocyte numbers after
removal of the diet (Vana et al., 2007a). The migration
response of OPCs to PDGF is enhanced in vitro by the
polysialylated form of the neural adhesion molecule (PSA-
NCAM) (Zhang et al., 2004). In response to a demyelinat-
ing event in the corpus callosum, some SVZ precursors
expressing PDGFR alpha and PSA-NCAM divide, migrate
away from the SVZ and generate OPCs in the lesion (Menn
et al., 2006). Accordingly, the SVZ of MS patients shows a
significant increase in PSA-NCAM expressing precursors
which also appear to migrate toward lesions (Nait-
Oumesmar et al., 2007). Interestingly, both OPCs and
Schwann cells engineered to overexpress PSA on N-CAM
show enhanced migratory properties in the rodent CNS
(Lavdas et al., 2006; Glaser et al., 2007).

Semaphorins, a class of molecules providing guidance
cues for developing neurons, have been shown to also
regulate developing OPC migration. Semaphorins 3A and F
are repulsive or attractive, respectively for embryonic OPCs
(Spassky et al., 2002). In MS, Sema3A and Sema3F
expression is elevated in glial cells in and around active
lesions and also in neurons whose axons have been
demyelinated. There is a differential expression pattern, so
that more Sema3F (attractive) expression is seen around
and within those plaques which are very active with a dense
inflammatory infiltrate, compared to more Sema3A (repul-
sive) expression around and within less active plaques
(Williams et al., 2007). These results suggest that repulsive
or attractive properties of different semaphorins can
influence OPC migration, a prerequisite for MS plaque
remyelination. In addition, these observations are in good
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agreement with several reports on the pro-remyelinating
influence of inflammation.

A link between inflammation and
remyelination
There have been several recent studies on MS tissues that
argue convincingly for a link between components of the
inflammatory milieu in and around the lesions and myelin
repair, a concept that has been reinforced by animal studies
of remyelination, including gain or loss of function
experiments (discussed in Zhao et al., 2005).

Nervous tissue inflammation generally implies the
presence of T and/or B cells with macrophages/microglia
showing signs of activation, leading to the local release of
immune mediators. Abundance of T cells and activated
macrophages/microglia are frequently observed in areas of
active remyelination. Foamy macrophages and CD3 and
CD8-positive T cells are often present in early MS lesions
that at the same time show striking signs of remyelination
(Fig. 2). Further evidence for a link between inflammation
and remyelination comes from the presence of HLA-DR
positive microglial cells close to areas of remyelination in
MS shadow plaques (Patani et al., 2007). Accordingly, loss
of function experiments have shown that MHC type II
antigens are necessary for efficient remyelination in mice
(Arnett et al., 2003).

The cause–effect relationship between myelin repair and
macrophage activation/tissue invasion in MS was confirmed
by experiments in rodent focal demyelination models
showing that macrophage depletion impairs remyelina-
tion (Kotter et al., 2005; reviewed in Zhao et al., 2005).

The clearing of myelin debris by macrophages may
contribute to create an environment favourable to OPC
recruitment for repair (ibidem). Moreover, induction of
acute inflammation in chronically demyelinated tissue
triggers remyelination in spinal cord (Foote and Blakemore,
2005) and acute inflammation also enhances myelination of
retinal axons by OPCs grafted in the eye (Setzu et al.,
2006).

Could antibodies detected in lesions also have a role in
myelin repair? The evidence that accumulation of B cells in
submeningeal follicles is associated with extensive demyelin-
ation in some MS patients argues against this possibility
(Magliozzi et al., 2007). Unfortunately, the natural auto-
antibodies that enhance remyelination in the mouse Theiler
virus model (Rodriguez, 2007) have not been detected in
MS tissues or correlated with remyelination in the human
disease.

Many chemokines, which are potent mediators of
immune cell migration, are released by lymphocytes and
macrophages in MS tissues. Three alpha chemokine
receptors CXCR1, CXCR2, CXCR3, expressed by OPCs
and oligodendrocytes in the normal adult CNS, showed
enhanced expression in MS but also in other CNS diseases.
Yet, their respective ligands, chemokines CXCL8, 1 and 10,
were specifically detected in reactive astrocytes at the edge
of active MS lesions (Omari et al., 2005). It was proposed
that CXCL1 could stop OPC migration as it does during
development (reviewed by Miller and Mi, 2007). CXCL12,
which is essential to immune and nervous system develop-
ment (Lazarini et al., 2003), was detected in astrocytes around
MS lesions as well as in the CSF of relapsing-remitting MS
patients (Calderon et al., 2006; Krumbholz et al., 2006).

Fig. 2 Early remyelination of a demyelinated lesion with abundant inflammation in a brain biopsy from an MS patient. Pictures were
taken from adjacent, sequential sections; the first section (A) was stained with luxol fast blue for myelin and PAS (nuclei are stained blue
by hematoxylin) while all other sections were stained by peroxidase immunolabelling for different antigens (B ^F). (A) Extensive
demyelination with scarce, thin and irregular remyelinated fibres in light blue (arrows). (B) Proteolipid protein antibody stains abundant
thin, apparently newly formed myelin sheaths. (C) Oligodendrocytes in the lesion are strongly immunolabelled (in brown) forTPPP/p25,
the brain-specific tubulin polymerization promoting protein (Kovacs et al., 2004). Source: Antibody kindly provided by Poul H. Jensen,
Aarhus, Denmark. (D^F) Abundant immune cells are detected in the same remyelinating lesion and identified as foamy macrophages
(KiM1P in D) as well asT cells stained for CD3 (E) and CD8 (F). Scale bar: 50mm.
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During mouse embryonic development, CXCL12 is an
attractant for rodent neural precursors and OPCs express-
ing its CXCR4 receptor (Dziembowska et al., 2005). As
CXCR4 is downregulated on mature oligodendrocytes
and has not been described on adult rodent and human
OPCs, the role of CXCL12 in MS lesions is presently
unclear.

Two haemopoietic cytokines are released in MS inflam-
matory lesions. Leukemia inhibitory factor (LIF) is
produced by myelin reactive T cells infiltrating demyelinat-
ing lesions (Vanderlocht et al., 2006). Interleukin 11 is
expressed by astrocytes at lesion edges while its receptor is
detected on nearby oligodendrocytes (Zhang et al., 2006).
Both cytokines promote oligodendrocyte survival and
myelination in vitro and LIF promotes remyelination in
EAE (Butzkueven et al., 2002, 2006; Stankoff et al., 2002;
Zhang et al., 2006). LIF has therefore emerged as a potential
therapy to enhance remyelination.

Collectively, these human and experimental studies
strengthen the proposal that some immune mediators,
either membrane bound or secreted by T cells and
macrophages, may positively influence endogenous remye-
lination in MS. Yet other components of the inflammatory
cascade such as nitric oxide production and free radicals
can damage axons, underlining the importance of protect-
ing demyelinated axons from degeneration.

Neuroprotection: the first line of defence
before remyelination
Even if remyelination is the best way to provide axon
protection, this process takes time during which recently
demyelinated axons risk exposure to nitric oxide, oxidative
stress, glutamate-induced excitotoxicity as well as calcium
influx and alterations of mitochondrial function (reviewed
in Smith, 2006; Greenberg and Calabresi, 2008). Therefore,
it would be beneficial to ‘protect’ axons at this time to
enhance their survival, maintain axon connectivity and
facilitate re-emergence of myelinating signals whilst OPCs
are being recruited to the lesion site (reviewed in Scolding
and Dubois-Dalcq, 2008). Some neurotrophic factors
released either by immune cells or neurons may act locally
to protect demyelinated axons in MS lesions. First, the
synthesis of ciliary neurotrophic factor (CNTF) or brain-
derived neurotrophic factor (BDNF) by immune cells is
increased in MS patients treated with glatiramer acetate
(a synthetic peptide mimicking MBP structure and inhibit-
ing T cell peptide binding) or interferon (IFN) beta1a, the
two major immunomodulators used to treat relapsing-
remitting MS (Sarchielli et al., 2007). Thus these treatments
are also potentially neuroprotective. Second, cortical
neurons in MS showed increased expression of CNTF, its
tripartite receptor complex composed of CNTR alpha, LIFR
beta and gp130, and their phosphorylated downstream
products (Dutta et al., 2007).

In the neuropharmaceutical world, a number of neuro-
protective agents have been successfully used in EAE to
target ion channels or NMDA/AMPA receptors, and some
are being tested in clinical trials. Molecules known for other
biological effects in man such as erythropoietin and statins
were discovered to also exhibit neuroprotective properties
(reviewed in Scolding and Dubois-Dalcq, 2008; Greenberg
and Calabresi, 2008). Yet, one would predict that statins,
which are inhibitors of cholesterol synthesis, might not help
remyelination, taking into account that cholesterol repre-
sents 25% of myelin lipids, which in turn accounts for 70%
of myelin constituents. Nevertheless, with several drugs
at hand, there is reason to believe that healthy axons
could be maintained until OPCs arrive in the vicinity
of demyelinated fibres, allowing successful recognition of
axons and remyelination.

Towards discovery of specific mechanisms
of remyelination
During demyelination in MS, it is thought that normal
saltatory conduction is rapidly disturbed due to the loss of
clustering of axonal sodium channels at the nodes of
Ranvier (reviewed in Waxman, 2006). Yet, as observed in
the visual system, partial restoration of current can occur in
a continuous manner due to the presence of Nav1.2
channels along otherwise undamaged demyelinated axons.
The paranode and juxtanode which surround the node are
structures particularly vulnerable during demyelination
(reviewed in Zawadzka and Franklin, 2007). The paranode,
containing paranodin (Caspr) and the glial form of
neurofascin (Nfasc155), is indeed dismantled in MS lesions,
allowing Kv1.2 channels to diffuse to the node (Howell
et al., 2006). This results in a diffuse distribution of Nav1.2
channels, paranodin and Kv1.2 channels on intact demye-
linated axons (Coman et al., 2006; Howell et al., 2006).

To begin understanding the process of remyelination, it
seems appropriate to consider what has been learned from
developmental myelination in rodents. A mouse postnatal
transcriptome performed on oligodendrocytes and their
precursors acutely isolated during the first postnatal month
has revealed two waves of gene expression patterns during
CNS myelination (Cahoy et al., 2008). The first wave
of myelin gene up-regulation, concomitant with down-
regulation of cytoskeleton maintenance-related genes, leads
to ensheathment of nerve fibres. The second wave of
up-regulation of intercellular junction genes may be linked
to the assembly of the nodes of Ranvier.

How Ranvier nodes and paranodes form during rodent
CNS development is not fully understood but apparently
requires two steps (Kaplan et al., 2001; Dupree et al., 2005;
Schafer et al., 2006). A complete, functional nodal region
depends on each myelin loop maintaining a septate-like
junction with the axon, while Kv1.2 channels are kept at
bay in the juxtanodes. A first event in node formation is the
induction of axonal Nav1.2 channel clusters, possibly by an
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as yet uncharacterized soluble factor made by oligoden-
drocytes (Kaplan et al., 1997, 2001). This process defines
domains where oligodendrocytes position themselves
along the axon to synthesize myelin internodes. Myelin
excludes axonal Nav1.2 channels along the internode and
promotes clustering of newly emerging Nav1.6 channels
at the node while specific axon–glia interactions result
in paranode/juxtanode formation. In the case of axon
branching, collaterals dictate the position of the nodes of
Ranvier. Since collaterals are branching before OPCs
migrate towards axons, the position of branching points
determines where the nodes of Ranvier will assemble.
Thus, the putative oligodendroglial clustering factor can
only regulate the distribution of nodes between two
collaterals, therefore controlling the number (n) and the
length (L) of the internode. The latter is calculated by the
simple equation: L=Dc/n, where Dc is the distance between
two branch points (Lubetzki and Zalc, 2001).

Our knowledge of internodal axonal signals is also
derived from developmental myelination studies in rodents.
The adhesion molecule L1 positively regulates CNS and
PNS myelination whereas Neuregulin 1 (Nrg1) type III is a
major regulator of PNS myelination (Barbin et al., 2004;
Coman et al., 2005; Nave and Salzer, 2006). Although Nrg1
is also expressed on CNS axons, its role in CNS myelination
is not clear. Induction of Fyn kinase in OPCs by axons
triggers oligodendrocyte process extension which is an
essential event preceding myelin wrapping (Klein et al.,
2002). Nrg1 and Laminin 2 on axons may strengthen axon
recognition by OPC processes bearing their respective ErbB
and alpha 6 beta1 integrin receptors. Laminin2 has a second
receptor on OPCs called dystroglycan which regulates
myelin membrane synthesis and the terminal stages of
myelination (Colognato et al., 2007).

During the period preceding myelination in juvenile rats,
unmyelinated axons of the corpus callosum release
glutamate by exocytosis in response to electrical stimulation
and groups of vesicles are detected at the axon contact sites
with OPC processes (Kukley et al., 2007). Also, in optic
nerve, small clusters of axonal vesicles are seen at ‘arbitrary’
sites of contact with OPCs, suggesting that axonal
glutamate release mediates the recorded axo-glial currents
at a premyelinating stage (ibidem). The concept emerging
from these studies is that glutamate release by axons helps
OPCs to find axons through an activity-dependent process,
reinforcing the importance of electrical activity in OPC
development and myelination (Barres and Raff, 1993;
Demerens et al., 1996; Stevens et al., 2002; Karadottir and
Attwell, 2007). Another important mediator liberated by
firing axons is ATP which induces astrocytes to synthesize
LIF. LIF in turn promotes myelination by cultured
oligodendrocytes (Ishibashi et al., 2006).

Returning to the subject of remyelination in man,
it appears that the first requirement is to reset the nodes
by re-assembly of specific molecular complexes with
adhesion molecules (Sasaki et al., 2006). The scenario for

remyelination in MS is proposed as starting with the
formation of several nodal-like clusters of Nav channels,
often in partially remyelinated lesions as visualized on fibres
that are still PLP-negative (Coman et al., 2006). In the
rodent PNS, Nav channel clustering is promoted by
gliomedin at the tips of Schwann cells and its cleavage
product released in the node area (Eshed et al., 2007;
Maertens et al., 2007). Gliomedin has been detected in the
CNS but it is not yet fully characterized (Manuel Koch,
personal communication). As CNS myelin synthesis pro-
gresses, Nav1.6 clusters are emerging and associate with the
neuronal form of neurofascin (Nfasc186), a signature of
node restoration (Howell et al., 2006). Consolidation of
node organisation may occur at the time when persisting
currents with glutamate release sites along demyelinated
axons may guide the correct positioning of adult OPCs
processes before they enwrap axons to make myelin
internodes. Intriguingly, this proposed sequence of repair
events in MS is the reverse of the one predicted from the
developmental waves of mouse oligodendrocyte gene
expression discussed above where myelin internode synth-
esis starts first (Cahoy et al., 2008). If the nodes of Ranvier
are recontructed when internode synthesis is not yet
occurring or is far from completion, could it result in
node/internode abnormalities?

Why is repaired and developmental myelin
different?
Is it true that a neuron whose axon is contacted for the
second time by an oligodendrocyte is not able to trigger
normal myelin sheath synthesis (Wolburg, 1981)? As
mentioned above, a thin myelin sheath and increased
nodal length are often observed during remyelination in
vertebrates. Yet the association of remyelinating cells with
naked axons in rodents closely resembles that in normal
myelin (reviewed in Franklin and Hinks, 1999). These
characteristics are observed whether remyelinating cells are
endogenous or exogenous and also in remyelination by
Schwann cells. There is no substantial increase in axon
diameter during remyelination whereas during develop-
ment, as the animal grows and matures, the axons increase
in length and diameter leading to an increase of myelin
internode length and thickness. This suggests that axons
may bear or release molecules that increase in density or
production proportional to growth to control these
parameters.

In developing peripheral nerves, myelin thickness is
regulated by Nrg1 Type III isoform with the number of
myelin wraps proportional to gene dosage (Michaelov
et al., 2004). Despite recent data, a role for Nrg1 in
CNS myelination is questionable (Taveggia et al., 2008).
However, it is quite possible that another axonal surface
molecule, yet to be discovered, control CNS myelin
thickness. A decrease in concentration of this putative
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axonal molecule in the adult would result in a thinner
myelin sheath during remyelination.

Loss of function studies in mutant mice have revealed
several other candidate molecules for the control of CNS
myelin thickness such as the transmembrane aspartyl
protease Bace (Hu et al., 2006). Deletion of the chemokine
receptor CXCR2 in oligodendrocytes also results in thinner
myelin (Padovani-Claudio et al., 2006) suggesting the
possibility that CXCL1 (released by axons?) may enhance
oligodendrocyte wrapping by signalling through the CXCR2
receptor on OPCs. In the case of the axonal adhesion
protein Tag1, Tag1 defective adult mice show thinner
myelin sheaths as well as increased numbers of nodes of
Ranvier compared to controls (E. Chadzopollou and
J.L. Thomas, personal communication).

A zebrafish mutant lacking alpha II spectrin shows
abnormally long nodes (Voas et al., 2007). In wild type
zebrafish, alpha II spectrin is normally enriched in nodes
and paranodes during development and is essential to
stabilize sodium channel clusters and the maturation of the
nodes of Ranvier. This channel clustering is controlled by
neurons, as wild-type neurons can rescue the mutant. It is
presently unclear whether channel clustering at the nodes is
also controlled by neurons in mammals and whether
neuronal expression of alpha II spectrin is increased at
nodes during repair in MS.

The presence of thinner and shorter myelin internodes
does not appear to have a strong impact on physiological
impulse conduction (Utzschneider et al., 1994; Honmou
et al., 1996 among others). However, it is unclear whether
this makes myelin more vulnerable to future injury (Smith,
2006). Funch and Faber (1984), who measured myelin
sheath resistance, commented that ‘altering myelin thick-
ness will be expected to have only minimal effects on the
axon currents flowing in the axon’, whereas . . . ‘minor
changes in the paranodal junctions may have major
consequences’. In that context, nature may have provided
the best way to start remyelination by first securing the
reconstruction of the nodes/paranodes. This brings us to
the next question on how to enhance the endogenous
remyelination program.

Remyelination enhancement strategies
Finding new targets
Transcriptome studies are powerful tools to unravel which
neural and immune genes are differentially expressed in the
course of human myelin repair. These studies are now
considerably facilitated by the expansion of MS tissue banks
where tissue integrity is optimized, providing access to a
range of demyelinated lesions starting to be remyelinated
and where remyelination is completed (shadow plaques).
Such human studies may be guided by technologies already
successfully applied to developmental myelination. A
comparative transcriptome analysis from fish to man
would consolidate the list of essential, conserved genes

involved in signalling myelin repair and help the design of
small compounds acting on their signalling pathways.
As Olig 1 is a transcription factor essential for rodent
remyelination (Arnett et al., 2004), ongoing gene profiling
studies comparing remyelination in Olig1 deficient mice to
wild-type mice is likely to yield interesting data on key regu-
lators of remyelination downstream from Olig1 (S. Fancy,
R. Franklin, and D. Rowitch, personal communication).

It would be a milestone if transcriptome data would
reveal candidate neural or immune molecules or signalling
pathways that could both decrease immune-mediated
demyelination and enhance remyelination. For instance,
TGF beta 2 is a potent inhibitor of inflammation but can
also promote oligodendrocyte differentiation (Mc Kinnon
et al., 1993), which may be useful when OPCs have arrived
in demyelinating plaques. Unfortunately, TGF beta 2 is also
nephrotoxic, but if this toxicity could be suppressed, it may
down-regulate the immune response and reduce relapses in
MS (discussed by Arnett and Viney, 2007). However,
TGFbeta 2 may also down-regulate the promyelinating
components of inflammation. This hypothetical double-
edged sword highlights the importance of transcriptome/
proteome studies to identify the exact pathways that favour
myelin repair.

Testing pro-remyelinating therapies
To test potential pro-remyelinating therapies, we need
suitable and appropriate animal models, and imaging
correlates differentiating demyelination and remyelination.

In spite of the fact that only a small proportion of
biologics active in mouse EAE have reached the bed side,
those that modulate successfully T-cell activation and their
traffic to the brain were first identified in EAE models and
proved beneficial to relapsing-remitting MS patients (Arnett
and Viney, 2007). This is the case of Nataluzimab, an
antibody to alpha 4 integrin, which decreases the number of
relapses in relapsing-remitting MS. The anti-CD20 B-cell
antibody rituximab, now in phase II clinical trials, has
a rapid effect on acute disease activity and also reduces the
number of clinical relapses. This antibody effect may result
from an inhibition of B-cell antigen presentation to T cells
as well as the re-emergence of naı̈ve B cells, leading to a
reduction in the number of pathological antibodies
(Mc Farland, 2008). The possibility that both of these
treatments also promote or facilitate remyelination will
have to be explored.

In considering translational aspects of pro-remyelinating
strategies, a ‘sensible use’ of animal models is a key factor
(Arnett and Viney, 2007). Using animal models of
progressive complexity would seem appropriate. For
candidate drugs for myelin repair, first compounds could
be rapidly screened in a demyelination/remyelination fish
model. Then rodent chemical demyelination models would
be used. Finally, one could use focal EAE models in rodents
for testing the selected candidate molecules.
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Inhibitors and promoters of remyelination
as targets
Promoters of remyelination and antagonists of myelination
inhibitors are extremely interesting as therapeutic targets
for MS. During developmental myelination, positive and
negative regulators control the timing of myelination
(Miller and Mi, 2007). In the adult-diseased CNS, some
inhibitory immune mediators may contribute to the demise
of oligodendrocytes.
Among developmental regulators of myelination, at least

three may inhibit myelin repair. One is PSA-NCAM which
is re-expressed on demyelinated axons in MS while axons in
remyelinated plaques do not express PSA (Charles et al.,
2002), which is consistent with the known down-regulation
of axonal PSA preceding myelination. PSA re-emergence
could also be related to axonal regrowth. In contrast to
axonal PSA, PSA on glial precursors promotes rather than
inhibits remyelination by stimulating migration (Zhang
et al., 2004; Glaser et al., 2007). Therefore, inhibiting PSA-
NCAM expression could be a double-edged sword.

FGF2 is a strong mitogen for postnatal rodent OPCs.
This proliferative effect is later over-ridden by positive
regulators of oligodendrocyte differentiation and by FGF
receptor switching (reviewed by Rogister et al., 1999; Fortin
et al., 2005). Furthermore siRNA to FGFR1, but not FGFR2
or 3, releases this FGF2-induced block of oligodendrocyte
differentiation (Zhou et al., 2006). In adult mouse CNS
demyelinated by corona virus infection or exposed for a
long time to cuprizone, FGF2 increases in the lesions,
leading to chronic demyelination whereas FGF2-deficient
mouse OPCs repopulate the lesions and remyelinate
completely (Armstrong et al., 2002, 2006). These results
show that deletion of FGF creates a permissive environment
for endogenous remyelination. Studies of FGF2 expression
and its possible correlation with lack of remyelination of
demyelinated lesions in MS are awaited.

Lingo-1 is a protein interacting with the Nogo-receptor
complex (Nogo is one of the three or four major
components of myelin that inhibit neurite regeneration
(reviewed in Schwab et al., 2006). Lingo-1 is made by
oligodendrocytes and neurons, and inhibits oligodendrocyte
differentiation and myelination (Mi et al., 2005; Lee et al.,
2007). This inhibition is reversed by treatment with human
soluble Lingo-1-Fc which increases Fyn kinase phosphor-
ylation and myelination. When Lingo-1 antibody was
delivered intrathecally by osmotic pump in rats with EAE,
it enhanced remyelination and axonal integrity in the spinal
cord (Mi et al., 2007). If Lingo-1 expression was found to
be increased in MS demyelinating lesions, a Lingo-1
antagonist would be a candidate to promote endogenous
remyelination (Miller and Mi, 2007).
Among immune mediators, IFN gamma has long been

identified as an inhibitor of recovery/repair. It is present in
active MS lesions and, when administered to MS patients,
it aggravated clinical signs and this was attributed to an

increase in immune activation (Panitch et al., 1987). In
hindsight, this detrimental effect may have also been due
partly to oligodendrocyte death and/or stress as both occur
in mice overexpressing this cytokine. Such effects can be
attenuated by Stat pathway inhibitors such as the
‘suppressor of cytokine signalling’ (Balabanov et al.,
2006). The effect of IFN gamma at the lesion site—at
concentrations close to those observed in vivo—was
examined in mice by inducing cytokine release during
recovery from EAE or cuprizone treatment (Lin et al.,
2006). In both models, the induction of IFN gamma
synthesis strongly inhibited lesion repopulation by OPCs,
remyelination and clinical recovery (in the case of EAE).
This was correlated with endoplasmic reticulum stress in
remyelinating oligodendrocytes, suggesting that inhibitors
of such stress responses may help repair in MS.

Lymphotoxin (Lt) beta receptor (LtBr) expressed on
microglia in MS could be activated by its ligand Lt alpha/
beta made by astrocytes. Such activation might be
detrimental and is also observed during demyelination in
the cuprizone model. After stopping the cuprizone diet,
repeated intraperitoneal injection of a fusion decoy, LtBr-Ig,
dramatically enhanced spontaneous remyelination (Plant
et al., 2007). Therefore, LtBr-Ig may be another candidate
antagonist to enhance myelin repair.

Chondroitin sulfate proteoglycans such as NG2 and
proteoglycans with glycosaminoglycan (GAG) chains can
often accumulate in lesions and be inhibitory to repair
(reviewed in Sherman and Back, 2008). OPC proliferation
is inhibited by NG2 whose protein backbone can be
degraded by metalloproteases MMP-9 which in turn
facilitates remyelination (Larsen et al., 2003). The GAG
hyaluronan is synthesized at the inner surface of cell
membranes and composed of repeating units of glucuronic
acid and N-acetyl glycosamine. It is made by reactive
astrocytes, inhibits oligodendrocyte differentiation in vitro
and accumulates in chronic lesions in MS and EAE (Back
et al., 2005). These effects can be reversed by hyaluronidase,
providing another avenue to enhance repair.

Among pro-myelinating molecules, the strongest candidate
may be LIF which, as mentioned before, enhances
oligodendrocyte survival and myelin repair in different
experimental models while it also decreases demyelination
(Marriott et al., 2008). In addition, OPC promigratory
factors such as PDGF, EGF and Semaphorin 3F, discussed
above, are promising, also in view of the possible use of
synthetic peptides stimulating their downstream signalling
pathway. Experimental models should be used to determine
whether a local vector delivery or placement of a delivery
pump nearby a large demyelinated lesion is a feasible
and safe approach. Ongoing studies are also exploring
the possible effects on neuroprotection and remyelin-
ation of progesterone and thyroid hormone (Schumacher
et al., 2007; M. Schumacher and S. Ghandour, personal
communication).
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In the long term, it should become possible to combine
neuroprotective and remyelination strategies with the most
efficient immunomodulators tailored to each type of MS
presentation. Most importantly, appraisal of any clinical
trial in this field will rely on the ability to detect the status
of the demyelinating lesions by imaging.

Imaging remyelination
Before embarking on any clinical trial to promote
endogenous remyelination, the functional benefits of
remyelination need to be solidly established in primates
(including man) and good imaging correlates of remyelina-
tion should be available. There are many as yet unanswered
questions. How many axons need to be remyelinated to
restore function in a particular fibre tract and how tightly is
remyelination correlated with clinical recovery? Thus an
essential milestone before testing pro-remyelinating thera-
pies in man is to image newly demyelinated axons and
endogenous remyelination in vivo while measuring its effect
on functional recovery.

The most frequently used imaging technology in this
regard is currently MRI. Conventional T1 hypointense
lesions likely indicate irreversible demyelination and axonal
loss while T2 hyperintense lesions may reflect inflammation
or persisting damage (reviewed in Neema et al., 2007).
However both measures lack specificity to assess myelin loss
and repair. The use of newer technologies such as
magnetisation transfer imaging, myelin water imaging,
diffusion tensor imaging, and high field MRI strongly
enhance the specificity of myelinated white matter imaging
(Zivadinov, 2007).

Magnetisation transfer imaging is based on the interac-
tion and exchange of unbound protons in free water with
protons bound to macromolecules such as those present in
myelin. A decrease of exchange of these protons occurring
in injured CNS structures can result in a decreased
magnetization transfer ratio (MTR). A reduced MTR
likely reflects loss of myelin whereas an MTR increase
may indicate remyelination (Deloire-Grassin et al., 2000;
Barkhof et al., 2003; Chen et al., 2005). Importantly, the
persistent loss of MTR in lesions is linked with disability
and disease modifying treatments may cause an increase in
MTR measures (Neema et al., 2007). Moreover, in optic
neuritis, MTR correlates with function as assayed by visual
evoked potential latency and optical coherence tomography,
a measure of retinal neuroaxonal loss (Trip et al., 2007).
The measure of myelin water fraction, which probably
corresponds to water trapped within the myelin bilayer, has
been shown to correlate with MTR measures on MRI of MS
lesions and to luxol fast blue staining of myelin on
histopathology (Tozer et al., 2005; Laule et al., 2006).

Diffusion tensor imaging (DTI), a measure of diffusion
of water molecules and anisotropy, has provided details of
tissue microstructure and has allowed fibre tractography
which reveals brain anatomy in the living (Le Bihan et al.,

2001; reviewed by Nucifora et al., 2007). Studies of animal
models indicate that a decrease in water axial diffusivity is
associated with axonal degeneration, whereas increased radial
diffusivity reflects demyelination in corpus callosum (Song
et al., 2002, 2005). Accordingly radial diffusivity decreases
during remyelination, indicating the importance of applica-
tions of DTI to measure repair in man. A DTI-fibre tracking
study using 7 Tesla field MRI on marmosets has accurately
traced damage in the cortico-spinal tract after spinal cord
hemisection (Fujiyoshi et al., 2007). Experiments are ongoing
to improve this technology in order to visualize regenerating
fibres, information also of relevance to MS.

Seven Tesla high-field MRI can be combined with a
multi-channel detector of increased sensitivity to reveal the
heterogeneity of white matter intensity (Li et al., 2006) as
well as its relation to vasculature (Bagnato et al., 2007).
This method produced T2-weighted images with increased
spatial resolution, revealing differences between fibre tracts
and details of the brain cortical substructure (Duyn et al.,
2007). Such structural aspects revealed by high-field MRI
are presently being analysed in MS patients, and this should
allow characterization of myelin changes during different
phases of the disease (Bagnato et al., 2007).

In addition to these major advances in MRI techniques,
it would be useful to develop a molecular imaging
technique specific for myelin that would quantify CNS
remyelination and further validate the MRI approaches.
This could be achieved using positron emission tomogra-
phy (PET). Of great interest is the recent identification of
a newly synthesized fluorescent Congo red derivative, 1,4-bis-
(p-aminostyryl)-2-methoxy benzene), also named BMB,
that selectively binds to myelin ex vivo and in vivo
(Fig. 3A; Stankoff et al., 2006). This compound allowed
the detection of dysmyelination in myelin mutants and of
demyelinated lesions in EAE. In MS brain samples, levels
of BMB staining can differentiate remyelination in shadow
plaques from either demyelinated lesions or normal
appearing white matter (Fig. 3B), suggesting that this
biomarker could be used to quantify myelin loss and repair.
BMB was shown to cross the blood brain barrier and, when
radiolabelled with carbon-11, imaging of CNS myelin was
obtained by PET in non-human primates (Fig. 3C).
Interestingly, a similar affinity for CNS myelin was reported
for several other Congo red derivatives (Xiang et al., 2005;
Wu et al., 2006). As Congo red derivatives were previously
known to be amyloid markers, these findings suggest the
existence of a molecular target common to amyloid plaques
and CNS myelin. In favour of this proposal is the
observation that other amyloid markers, related to
thioflavinT, could also stain myelin and be used as a PET
radiotracer for myelin (Stankoff et al., unpublished data).

Conclusion
Where do we go from here? Ideally, the best way to
promote remyelination and therefore protect demyelinated
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axons is to promote efficient endogenous remyelination by
native cells rather than surgically introducing exogenous
cells. As the advantages and risks of transplantation
approaches in MS have been reviewed elsewhere (Lubetzki
et al., 2005; Zujovic et al., 2007; Chandran et al., 2008;
Scolding and Dubois-Dalcq, in press), we have chosen here
to discuss spontaneous remyelination in the CNS because
expansion of this field of research might bring promyelinat-
ing therapies to the bedside. To do this, we must continue to
learn more about the normal repair process in all animal
models, including fish. We also must be able to consistently
visualise remyelination in living mammals and correlate this
to functional recovery, otherwise in vivo testing of putative
remyelination enhancers will be slow and uncertain.
Concomitantly, the postulated impact of remyelination on
the clinical course of MS should become measurable with
increasingly myelin-specific imaging technologies.

We may be able to learn from research into spinal cord
injury, where there is great interplay between damaged axons
and myelin-forming cells and where stimulation of remye-
lination plays an important role in functional recovery
(Pearse et al., 2007). Promoters of neurite outgrowth may
also be important in MS as transected and damaged axons
cannot be effectively remyelinated. The characterization of
the NOGO receptor complex, its interaction with myelin
inhibitors (reviewed by Schwab et al., 2006) and the
demonstration that intracellular cAMP and its downstream
targets may promote axonal regeneration (reviewed by
Hannila and Filbin, 2008), have led to new clinical
approaches in attempting to treat spinal cord injury
(Rossignol et al., 2007). If patients with spinal cord injury
show motor improvement in clinical trials, it might also be
of benefit in some MS patients with acute axonal damage.

Bearing in mind that remyelination was only described in
the CNS in 1961 (Bunge et al., 1961) and in MS in 1965

(Perier and Gregoire, 1965), we have made great progress,
but effective clinical promotion of remyelination is still not
quite within our reach. However, as discussed here and
before (Lubetzki et al., 2005), there are a number of
promising avenues being explored that might reach the
bedside in the next few years provided that research in basic
and clinical science keeps its momentum.
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