
Phylogenetics

Many-core algorithms for high-dimensional gradients on

phylogenetic trees

Karthik Gangavarapu 1, Xiang Ji2, Guy Baele 3, Mathieu Fourment4, Philippe Lemey 3,

Frederick A. Matsen IV 5,6,7,8, Marc A. Suchard 1,9,10,*
1Department of Biomathematics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA, United
States
2Department of Mathematics, School of Science & Engineering, Tulane University, New Orleans, LA, United States
3Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
4Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW, Australia
5Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
6Department of Statistics, University of Washington, Seattle, WA, United States
7Department of Genome Sciences, University of Washington, Seattle, WA, United States
8Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
9Department of Biostatistics, Jonathan and Karin Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA,
United States
10Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States

*Corresponding author. Department of Biomathematics, David Geffen School of Medicine at UCLA, University of California, 695 Charles E. Young Dr, South Los
Angeles, CA 90095, United States. E-mail: msuchard@ucla.edu

Associate Editor: Yann Ponty

Abstract
Motivation: Advancements in high-throughput genomic sequencing are delivering genomic pathogen data at an unprecedented rate, positioning
statistical phylogenetics as a critical tool to monitor infectious diseases globally. This rapid growth spurs the need for efficient inference techni-
ques, such as Hamiltonian Monte Carlo (HMC) in a Bayesian framework, to estimate parameters of these phylogenetic models where the dimen-
sions of the parameters increase with the number of sequences N. HMC requires repeated calculation of the gradient of the data log-likelihood
with respect to (wrt) all branch-length-specific (BLS) parameters that traditionally takes OðN2Þ operations using the standard pruning algorithm. A
recent study proposes an approach to calculate this gradient in OðNÞ, enabling researchers to take advantage of gradient-based samplers such
as HMC. The CPU implementation of this approach makes the calculation of the gradient computationally tractable for nucleotide-based models
but falls short in performance for larger state-space size models, such as Markov-modulated and codon models. Here, we describe novel mas-
sively parallel algorithms to calculate the gradient of the log-likelihood wrt all BLS parameters that take advantage of graphics processing units
(GPUs) and result in many fold higher speedups over previous CPU implementations.

Results: We benchmark these GPU algorithms on three computing systems using three evolutionary inference examples exploring complete
genomes from 997 dengue viruses, 62 carnivore mitochondria and 49 yeasts, and observe a >128-fold speedup over the CPU implementation
for codon-based models and >8-fold speedup for nucleotide-based models. As a practical demonstration, we also estimate the timing of the first
introduction of West Nile virus into the continental Unites States under a codon model with a relaxed molecular clock from 104 full viral
genomes, an inference task previously intractable.

Availability and implementation: We provide an implementation of our GPU algorithms in BEAGLE v4.0.0 (https://github.com/beagle-dev/bea
gle-lib), an open-source library for statistical phylogenetics that enables parallel calculations on multi-core CPUs and GPUs. We employ a
BEAGLE-implementation using the Bayesian phylogenetics framework BEAST (https://github.com/beast-dev/beast-mcmc).

1 Introduction

Genomic sequencing has become a critical tool in monitoring
the evolution and spread of infectious pathogens to inform pub-
lic health interventions, as the unprecedented number of
genomes sequenced to monitor the emergence and growth of
variants during the ongoing SARS-CoV-2 pandemic demon-
strates (Oude Munnink et al. 2021, Brito et al. 2022). This has
created the need for statistical phylogenetic methods that can be
used to derive useful insights in a timely manner from these large
molecular sequence alignments. Within a Bayesian framework,

such analyses typically employ Markov chain Monte Carlo
(MCMC) methods such as the random walk Metropolis-
Hastings (MH) algorithm (Metropolis et al. 1953, Hastings
1970) to simultaneously infer the discrete tree topology and con-
tinuous branch-length-specific (BLS) parameters such as the
branch lengths (or correspondingly, node heights) and branch-
specific evolutionary rates. However, the number of possible
tree topologies increases super-exponentially, while the dimen-
sionality of continuous BLS parameters further increases linearly
with the number of sequences in the alignment. There exist

Received: 24 March 2023; Revised: 20 December 2023; Editorial Decision: 3 January 2024; Accepted: 15 January 2024
VC The Author(s) 2024. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 2024, 40(2), btae030
https://doi.org/10.1093/bioinformatics/btae030

Advance Access Publication Date: 18 January 2024

Original Paper

https://orcid.org/0000-0002-5027-3440
https://orcid.org/0000-0002-1915-7732
https://orcid.org/0000-0003-2826-5353
https://orcid.org/0000-0003-0607-6025
https://orcid.org/0000-0001-9818-479X
https://github.com/beagle-dev/beagle-lib
https://github.com/beagle-dev/beagle-lib
https://github.com/beast-dev/beast-mcmc

state-of-the-art MCMC algorithms such as Hamiltonian Monte
Carlo (HMC) that use Hamiltonian dynamics to traverse the pa-
rameter space more efficiently compared to a random walk pro-
posal distribution (Neal 2011). Using HMC enables
phylogenetic methods to more efficiently infer continuous high-
dimensional BLS parameters, sparing valuable compute time to
search the discrete space of possible tree topologies.
Nonetheless, this efficiency comes with the cost of needing to
calculate the gradient of the molecular sequence alignment log-
likelihood function with respect to (wrt) all BLS parameters, an
aspect that remains computationally intensive.

One generally assumes that the individual alignment sites arise
conditionally independently from a continuous-time Markov
chain (CTMC) process acting along the branches of an estimable
evolutionary tree relating the N sequences, where a branch
length and, often, an associated evolutionary rate-scalar charac-
terize the branch-specific processes. Under this CTMC model,
Felsenstein’s pruning algorithm (Felsenstein 1981) renders the
calculation of the likelihood computationally tractable. The
pruning algorithm calculates the probability of only the ob-
served sequence data below each internal node in the tree in a
single post-order traversal that visits each node in a descendant-
to-parent fashion. By efficiently reusing these partial likelihood
vectors from previously visited nodes, the algorithm reduces the
computational complexity of calculating the likelihood to just
OðNÞ with respect to the number of sequences N. The same al-
gorithm can be used to calculate the gradient of the log-
likelihood wrt a single BLS parameter by substituting the
CTMC transition probability matrix along one branch with its
derivative (Kishino et al. 1990, Bryant et al. 2005, Kenney and
Gu 2012). In this manner, calculating the gradient of the log-
likelihood wrt all BLS parameters requires OðN2Þ operations.
Several software packages, such as RaxML (Stamatakis 2014)
and GARLI (Zwickl 2006), utilize this pruning algorithm ap-
proach for low-dimensional gradient calculations by selectively
optimizing BLS parameters directly affected by a tree rearrange-
ment. For instance, they may optimize BLS parameters for only
the three local branches adjacent to the point of insertion follow-
ing a topological change. Until recently, the computational cost
of evaluating the gradient of the log-likelihood wrt all BLS
parameters has proved too prohibitive for the use of high-
dimensional gradient-based samplers or optimizers in statistical
phylogenetics.

Guindon and Gascuel (2019) and Ji et al. (2020), however,
propose algorithms to calculate this gradient in linear-time.
The former work assumes time-reversibility in the CTMC
process and reuses the post-order partial likelihood vectors,
while the latter makes no restrictions on the process. To ac-
complish this, Ji et al. (2020) introduce a pre-order traversal
of the tree that involves visiting each node in a parent-to-
descendant fashion after the post-order traversal. Combining
the post- and pre-order partial likelihoods vectors calculated
at each node with their branch-specific process derivative
yields the whole gradient. Calculation of the pre-order partial
likelihood vectors and their contribution to the gradient is
straight-forwardly parallelizable in a multi-core CPU setting
by dividing sites in the alignment into conditionally indepen-
dent partitions that define separate computational tasks.
These calculations may offer further parallelization across dif-
ferent rate categories for models that incorporate among-site
rate variation often using a discrete approximation to the con-
tinuous gamma distribution (Yang 1996). Despite these exist-
ing parallelization schemes on CPUs, the widespread

availability of specialized hardware such as graphics process-
ing units (GPUs) opens up the possibility of further speeding
up these calculations by many-fold.

GPUs were originally designed for image rendering but have
since become ubiquitous for scientific computing. The availability
of application programming interfaces such as OpenCL (Stone
et al. 2010) and CUDA (Cook 2012) expanded the use of GPUs
for general purpose computing beyond graphics processing. Since
then, GPUs have been utilized to effectively parallelize computa-
tion for many statistical problems. Beam et al. (2016) leveraged
GPUs to evaluate the gradient of the log-likelihood of a multino-
mial model, achieving nearly a 100-fold acceleration in inference
via HMC. Similarly, Yang et al. (2023) employed GPUs in sur-
vival analyses with the Cox and Fine-Gray models, resulting in a
35–70-fold speed increase. Other problems benefiting from GPU
acceleration include mixture modeling (Suchard et al. 2010), non-
negative matrix factorization (Zhou et al. 2010), and Bayesian
multidimensional scaling (Holbrook et al. 2021). Additionally,
GPU-optimized libraries have emerged in machine learning, such
as XGBoost (Mitchell and Frank 2017) for gradient boosting and
cuDNN (Chetlur et al. 2014) for deep learning.

Modern GPUs come equipped with thousands of simple
cores, enabling them to carry out a vast number of lock-
stepped calculations in parallel. In contrast, CPUs contain
significantly fewer cores, yet each core can perform complex,
independent tasks. This difference allows GPUs to deliver
much higher parallelization compared to CPUs for fine-scale
numerical operations on large blocks of data. Please refer to
Supplementary Section S1.1 for a detailed description of the
aspects of GPU architecture such as streaming multiproces-
sors (SM), global memory, shared memory, and ‘coalesced’
global memory transactions, which inform the design of our
algorithms. In the phylogenetic setting, Suchard and Rambaut
(2009) first described how to calculate the post-order partial
likelihood vectors with fine-scale parallelization on GPUs and
Ayres et al. (2019) report recent performance gains.

Building upon this prior work, we present here two novel
algorithms that utilize GPUs to calculate the pre-order partial
likelihood vectors and the gradient of the log-likelihood wrt
all BLS parameters. We then benchmark computational per-
formance in inferring BLS parameters using our algorithms
on the GPU compared to the existing CPU implementation.
We apply our algorithms to date the timing of the first intro-
duction of West Nile virus into the continental United States
under a codon model with branch-specific evolutionary rates,
an inference task that was previously intractable. Finally, we
highlight the limitations of our current approach and discuss
future work to address these limitations and further exploit
many-core algorithms for statistical phylogenetics.

2 Materials and methods

The molecular sequence alignment Y ¼ ðY1; . . . ;YCÞ com-
prises C aligned columns or sites, where column data Yc ¼
ðY1c; . . . ;YNcÞ0 contains one homologous sequence character
for each column c ¼ 1; . . . ;C and each of the N taxa.
Following standard practice since Felsenstein (1981), we as-
sume that Yc are conditionally independent and identically
distributed. Thus, it suffices to compute the post- and pre-
order partial likelihood vectors and gradient using only the
unique Yc. We can appropriately reweigh these values based
on the number of occurrences of a unique Yc. Each aligned
character Ync for n ¼ 1; . . . ;N exists in one of S possible

2 Gangavarapu et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae030#supplementary-data

states that we arbitrarily label f1; . . . ; Sg. For nucleotide
alignments, the state-space size S¼ 4; likewise amino acid and
codon alignments yield S¼ 20 and S¼ 61, respectively.
Additionally, for phylogeographic inference, S can be large,
often comparable to codon models (Dudas et al. 2017, Lemey
et al. 2020) and has eclipsed 200 in Markov-modulated
CTMC models (Baele et al. 2021). We observe these charac-
ters from N taxa related by an (often) unknown phylogeny F .
This phylogeny is a directed, bifurcating graph with N tip
nodes corresponding to the taxa that we label
ð1; . . . ;NÞ; N � 2 internal nodes that we label ðN þ
1; . . . ; 2N � 2Þ and one root node that we label 2N � 1.
Connecting each parent node to its child in F are 2N � 2
edges or branches with branch lengths ðb1; . . . ;b2N�2Þ that
we index via their child node number. Each branch length bi

for i ¼ 1; . . . ; 2N � 2 can measure the expected number of
character substitutions along that branch or be the difference
between the parent and child node heights measured in time-
units multiplied by a (possibly branch-specific) evolutionary
rate scalar. Without loss of generality, unrooted phylogenies
are nested within this formulation by setting one of the
branch lengths emerging from the root to zero.

An S� S infinitesimal generator matrix Q characterizes the
CTMC process. Into this formulation, we further incorporate
site-specific rate variation using the popular discretized models
(Yang 1994) that modulate the CTMC for each column inde-
pendently through a finite mixture of rate categories r ¼
f1; . . . ;Rg where each category corresponds to an overall rate
scale cr drawn with probability PðcrÞ. Thus under rate category
r, the CTMC posits that substitutions at the parent and child
nodes of any branch i in F are governed by an S� S finite-time
transition probability matrix PðrÞðbiÞ ¼ fPðrÞst ðbiÞg, where

PðrÞðbiÞ ¼ exp ðcrbiQÞ; (1)

such that the stth element PðrÞst ðbiÞ is the probability of ob-
served or unobserved state t at the child node of branch i
given observed or unobserved state s at the parent node.

To form the partial likelihood vectors calculated during the
post- and then pre-order traversals and understand how they
relate to the sequence likelihood and then its gradient, we re-
quire some data augmentation. For column c, let Yic for i ¼
N þ 1; . . . ;2N � 1 represent the unobserved (latent) character
states at the internal and root nodes. Further, we can divide
the observed characters Yc at the tips into two disjoint sets
wrt any node in F . Let Ybicc be the observed characters at the
tips descendant of node i, noting that Yb2N�1;cc ¼ Yc, and let
Ydice ¼ Yc=Ybicc denote the observed characters at the tips not
descendant from node i.

The post-order partial likelihood vector is denoted by
pirc ¼ ðpirc1; . . . ;pircSÞ0, where pircs ¼ PðYbiccjYic ¼ s; crÞ at node
i for column c under rate category r with a realized rate scalar cr.
We compute these vectors using Felsenstein’s pruning algorithm
via recursive application of

pkrc ¼ ½PðrÞðbiÞ�pirc � ½PðrÞðbjÞ�pjrc; (2)

where node k is parent to node i and its sibling node j and �

signifies component-wise multiplication. If we let p ¼
ðPðY2N�1;c ¼ 1Þ; . . . ;PðY2N�1;c ¼ SÞÞ0 denote an arbitrary

prior state distribution vector at the root that is often set equal
to the stationary distribution of Q, then

PðYÞ ¼
YC
c¼1

XR

r¼1

PðYcjcrÞPðcrÞ

¼
YC
c¼1

XR

r¼1

½p02N�1;rcp�PðcrÞ
(3)

yields the sequence likelihood. Suchard and Rambaut (2009)
develop massively parallel algorithms for calculating matrices
PðrÞðbiÞ for all i and r simultaneously and vectors pirc for all r
and c simultaneously on GPUs. Supplementary Figure S2
depicts the parallel thread-block design for the algorithm to
calculate the post-order partial likelihood vectors described in
Suchard and Rambaut (2009).

Ji et al. (2020) introduce the pre-order partial likelihood vec-
tor qirc ¼ ðqirc1; . . . ; qircSÞ0, where qircs ¼ PðYic ¼ s;YdicejcrÞ at
node i for column c under rate category r and demonstrate how
to compute these vectors recursively given the post-order partial
likelihood vectors and transition matrices. Starting from the root
and assigning q2N�1;rc ¼ p, we continue toward the tips via

qirc ¼ ½PðrÞðbiÞ�0fqkrc � ½PðrÞðbjÞ�pjrcg: (4)

The value of these pre-order partial likelihood vectors
shines in the realization that

PðYÞ ¼
YC
c¼1

XR

r¼1

½p0ircqirc�PðcrÞ for any node i; (5)

and this insight enables a linear-in-N-time approach to evalu-
ate the gradient of the log-likelihood wrt all BLS parameters

r logPðYÞ ¼ @

@b1
logPðYÞ; . . . ;

@

@b2N�2
logPðYÞ

� �0
; (6)

because

@

@bi
logPðYÞ ¼

XC

c¼1

@

@bi
logPðYcÞ (7)

and

@

@bi
logPðYcÞ ¼

@

@bi
log
�XR

r¼1

½p0ircqirc�PðcrÞ
�

¼

PR
r¼1

@

@bi
½p0ircqirc�PðcrÞPR

r¼1½p0ircqirc�PðcrÞ

¼

PR
r¼1 p0irc

@

@bi
qirc

� �
PðcrÞPR

r¼1½p0ircqirc�PðcrÞ

¼
PR

r¼1 cr½p0ircQ0qirc�PðcrÞPR
r¼1½p0ircqirc�PðcrÞ

;

(8)

or, more intuitively, all elements in the gradient are simple
weighted sums of weighted inner products involving pirc and qirc.

Many-core algorithms for gradients on phylogenetics trees 3

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae030#supplementary-data

2.1 Computing the pre-order partial likelihood

vectors

For a node i with parent k and sibling j, Algorithm 1 out-
lines our approach to massively parallelize the computation
of Equation (4) across all r and c simultaneously on a GPU,
with each (r, c, s)-entry processed in its own short-lived
thread. This algorithm builds on the post-order partial like-
lihood algorithm of Suchard and Rambaut (2009) with sev-
eral important differences. First, lines 7–10 and 13–16 split
the matrix-vector multiplications into two serial operations
to satisfy the dependencies of Equation (4), which necessi-
tates calculating an element-wise product before the final
matrix-vector multiplication with PðrÞðbiÞ0. Threads within a
thread-block start executing operations on PðrÞðbiÞ0 only af-
ter completing operations involving PðrÞðbjÞ. While this
reduces instruction-level parallelism, it removes the burden
of storing both matrices in shared memory (ShM) simulta-
neously. This is especially important for transition matrices
with a large state-space size in which case storing all the
entries of PðrÞðbjÞ would overflow ShM. The second impor-
tant difference is that Equation (4) requires the transpose of
PðrÞðbiÞ. When the state-space size is small as is the case for
nucleotide models with S ¼ 4, we can calculate the trans-
pose of the matrix while reading it from global memory
(GM) and comfortably hold all 16 elements of the matrix in

ShM. However, for models with a large state-space size
such as codon models with S¼ 61, all S2 transition proba-
bilities do not fit in ShM simultaneously. For such cases, we
also develop a ‘matrixTranspose’ kernel to calculate the
transpose of PðrÞðbiÞ in a parallelized manner using the GPU
according to Algorithm S1 (Supplementary Fig. S4). The
resulting transposed matrix is stored in GM and subse-
quently used to calculate the pre-order partial likelihood
vector qirc.Per thread, a surprisingly small portion of the code is
dedicated to actually compute qirc. Most of the work involves
efficiently fetching the transition probabilities and pre- and post-
order partial likelihood vectors from GM into ShM to be reused
by threads within a block. Figure 1 outlines the parallel thread-
block design for Algorithm 1. We observe in Equation (4) that
all S partials in qirc for a column c under a rate class r, depend
on the same partial likelihood vectors qkrc and pjrc.
Consequentially, we construct R� dC=CBSe thread blocks,
where d:e is the ceiling function and column-block size (CBS) is
a design constant that controls the number of columns processed
in a block. Each thread-block shares S� CBS threads that corre-
spond to all S states for CBS columns. All S� CBS threads
within a block cooperatively fetch S-lengthed vectors qkrc and
pkrc for CBS columns. Equation (4) also shows that under a rate
class r, qirc for all columns c 2 C depends on the same finite-
time transition probability matrices, PðrÞðbiÞ and PðrÞðbjÞ. Hence,
we use S threads to fetch columns from each of these matrices
which are then reused by all threads in the thread-block. Each
thread-block computes CBS pre-order partial likelihood vectors
each with S partials.

To coalesce GM transactions and efficiently utilize the
available memory bandwidth, we ensure that consecutive
threads within a block attempt to access consecutive mem-
ory addresses only in multiples of 16 values at a time. For
models with a state size S that is not a multiple of 16, we
embed the transition matrices and the partial likelihood vec-
tors into a larger space by adding zeroes as extra entries.
This approach is called ‘padding’ and ensures optimal utili-
zation of the memory bandwidth. For example, for codon
models with S¼ 61, we pad the S with three zero entries
yielding a state-space size of 64. For nucleotide models with
S¼ 4, each thread simply processes four columns of the
alignment instead of one.

Since each thread-block can have up to 512 threads (or
1024 threads depending on the hardware), we set CBS to
be as large as possible such that S� CBS � 512 without
overflowing ShM on the device. For nucleotide models, we
set CBS ¼ 16 with each thread processing 4 columns. An
additional complication arises for models with large state-
space sizes such as codon models wherein all S2 transition
probabilities do not fit in ShM. In such cases, S threads
within a thread-block cooperatively fetch columns of the
matrix in peeling-block size (PBS) length chunks from GM
into ShM. Thus, for codon models, we set CBS ¼ 8 along
with an additional design constant, PBS ¼ 4. To ensure that
the GM reads of the matrix columns are coalesced, we ex-
ploit a column-wise flattened representation of the finite-
time transition probability matrices which differs from the
standard row-wise representation in modern computing.
While newer GPUs have larger ShM available and can ac-
commodate larger values of PBS and CBS, we set these de-
sign constraints to ensure compatibility across a broad
range of devices.

Algorithm 1. GPU-based parallel computation of pre-order

partial likelihood vectors

1: define COLUMN_BLOCK_SIZE (CBS) ¼ number of columns

processed in parallel per thread-block

2: define PEELING_BLOCK_SIZE (PBS) ¼ number of states proc-

essed in parallel per inner-loop

3: for all thread-blocks (rate category r ¼ 1; . . . ;R and column-

block B ¼ 1; . . . ; dC=CBSe) in parallel do

4: for all threads in thread-block (column c ¼ 1þ ðB � 1Þ �
CBS; . . . ;B � CBS and state s ¼ 1; . . . ;S) in parallel do

5: prefetch post-order partial likelihood elements pjrcs and pre-

order partial likelihood elements qkrcs for CBS columns

(reused by all threads in thread-block) where node k is par-

ent to node i and its sibling node j.

6: initialize / 0

7: for t ¼ 1; . . . ;S in PBS-sized parallel chunks do

8: prefetch transition probability elements P
ðrÞ
st ðbj Þ for

PBS states (reused by all threads in the thread-block)

and synchronize

9: increment / /þ P
ðrÞ
st ðbj Þ � pjrct

10: end for

11: form component-wise product ~qkrcs qkrcs � /
12: initialize x 0

13: for t ¼ 1; . . . ;S in PBS-sized parallel chunks do

14: prefetch (transposed) transition probability P
ðrÞ
ts ðbi Þ for

PBS states (reused by all threads in the thread-block)

and synchronize

15: increment x xþ ~qkrct � P
ðrÞ
ts ðbi Þ

16: end for

17: return x as qircs

18: end for

19: end for

4 Gangavarapu et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae030#supplementary-data

2.2 Computing the gradient of the log-likelihood wrt

all branch-specific parameters

Algorithm 2 outlines our implementation of Equation (8) to
calculate the column-specific contribution to the gradient of
the log-likelihood wrt all BLS parameters. To do this, we re-
use the pre-order partial likelihood vectors calculated using
Algorithm 1 and the post-order partial likelihood vectors cal-
culated using the algorithm described in Suchard and
Rambaut (2009). When a post-order partial likelihood vector
pirc points to a tip node and Yic is directly observed, research-
ers often store this vector in a compressed format that entails
a single integer (or smaller) filled with the character state to
reduce memory access demands. So, for the tip nodes we sim-
ply read in the integer representation of the character state
and form pirc on-the-fly such that pircs ¼ 1 if Yic ¼ s and 0 for
all other character states. In case of missing or ambiguous
data, we assign pircs ¼ 1 for the set of possible character
states.

The vector-vector multiplications needed for Equation (8)
are split into two serial operations in lines 7–19 and 20 –23.
Lines 7–19 perform element-wise multiplications involving
pirc and qirc serially across rate categories. Within this section
of the algorithm, lines 13–16 also perform the matrix-vector
multiplication of the infinitesimal rate matrix QðrÞ and qirc.
Taken together, lines 7–19 yield S state-specific entries for the
numerator /c and the denominator xc. Lines 20–23 reduce
these state-specific entries in parallel to calculate the column-
specific contribution to the gradient wrt a BLS parameter
@
@bi

logPðYcÞ.The CPU implementation of Equation (8) only par-
allelizes calculations across conditionally independent blocks of
the sequence alignment, but Algorithm 2 takes advantage of the
GPU to introduce a great deal of fine-scale parallelization across
nodes and columns. Similar to Algorithm 1, most of the work
per thread involves effectively caching values in ShM to be
reused by the threads within a thread-block. Figure 2 outlines
the parallel thread-block design for Algorithm 2. Since the
weights PðcrÞ of the rate categories are the same for all columns,

we use R threads within a block to fetch these weights into
ShM. Equation (8) shows that calculating @

@bi
logPðYcÞ for node

i and column c involves taking a weighted sum of rate-specific
entries. Each rate-specific entry depends on the same S partial
likelihoods from each of the partial likelihood vectors qirc and
pirc. Based on this observation, we construct ð2N � 2Þ �
dC=CBSe thread-blocks with each thread-block sharing S�
CBS threads. All S� CBS threads within a block concurrently
fetch S-lengthed vectors qirc and pirc for CBS columns from GM
into ShM. We also observe that the rate-specific entries for all
columns depend on the same infinitesimal rate matrix QðrÞ. This
allows us to use S threads within a block to fetch columns from
the rate matrix in PBS chunks from GM into ShM as described
previously in Algorithm 1. Each thread-block computes
@
@bi

logPðYcÞ for one node and CBS columns.
Since columns in the sequence alignment are assumed to be

independent, arising from conditionally independent CTMCs
acting along each branch, we can calculate @

@bi
logPðYÞ by re-

ducing the partial derivatives across all columns C according
to Equation (7). We wrote a ‘nodeSiteReduction’ kernel to
perform this reduction in parallel with each thread-block
reading in 128 column-specific contributions to the gradient.
For certain models such as those that assume a strict molecu-
lar clock, it might be more convenient to further reduce the
partial derivatives across a set of branches and report a single
value. We currently perform this final reduction on the CPU
to maintain the ability to specify any desired set of branches.
The design constants CBS and PBS for Algorithm 2 are the
same as Algorithm 1 with CBS ¼ 16 for nucleotide models
and CBS ¼ 8 PBS ¼ 4 for codon models.

Our current model assumes QðrÞ ¼ crQ, but we have left the
algorithm for the more general case when QðrÞ can vary arbi-
trarily across rate categories. Without this generalization, we
could reduce some memory transactions by reading c1; . . . ; cR
and Q once and forming QðrÞ ¼ crQ on-the-fly. Another
limitation of Algorithm 2 arises when R > S� CBS even though
R � 10 is adequate for most common phylogenetic analyses

Figure 1. Parallel thread-block design to compute pre-order partial likelihood vectors qirc. One block evaluates column block size ðCBSÞ � S entries in

parallel and prefetches pruning block size ðPBSÞ � S transition probability entries at a time within an inner serial loop (Algorithm 1: Lines 7–10 and 13–16).

Entries fetched from global memory (GM) into shared memory (ShM) are indicated in green and an instance of a single-thread operation is shown in

orange

Many-core algorithms for gradients on phylogenetics trees 5

(Jia et al. 2014). In such a case, lines 7–19 in Algorithm 2 can be
executed serially on chunks of rate categories that can be con-
trolled by introducing a new, rate-block-size design constant.

Finally, it is worth noting that direct recursive application
of Equation (2) to evaluate PðYÞ often generates floating-
point underflow. To side-step this issue, one can instead ma-
nipulate re-scaled post-order likelihood vectors p̂irc ¼ pirc=Mic

where Mic are node- and column-specific scalars selected to
keep the elements of p̂irc bounded. Fortuitously, replacing pirc
with p̂irc in Equations (4) and (8) does not change the evalua-
tion of Equation (8) since the constants in the numerator and
denominator cancel. As a consequence, one can directly use
the rescaled likelihood vectors to evaluate the gradient, while
avoiding underflow. Supplementary Section S1.2 provides
further details.

3 Results

We use three datasets to illustrate the performance gains
afforded by the algorithms presented in this paper: (i) a den-
gue virus dataset of 997 genomes with 6869 unique nucleo-
tide site patterns across 10 genes and 3343 unique site

patterns when translated into a 61 state universal codon
model, (ii) a carnivores dataset of 62 genomes with 5565
unique nucleotide site patterns and 3600 unique site patterns
when translated into a 61 state vertebrate mitochondrial co-
don model, and (iii) a yeast dataset of 49 genomes with
12 878 unique nucleotide site patterns and 22 151 unique site
patterns when translated into a 61 state universal codon
model. To provide comprehensive estimates of performance
gains, we use three systems with varied technical specifica-
tions. System 1 is equipped with a 10-core 3.3 GHz Intel
Xeon W-2155 processor, 32 GB 2.6 GHz DDR4 RAM and
an NVIDIA Quadro GV100 GPU with 5120 cores running at
1.1 GHz and 32 GB global memory. System 2 is equipped
with a 20-core 2.2 GHz Intel Xeon E5-2698 processor, 512
GB 2.6 GHz DDR4 RAM and an NVIDIA Tesla V100 GPU
with 10 240 cores running at 1.53 GHz and 32 GB global
memory. System 3 is equipped with a 48-core 2.3 GHz AMD
EPYC 7642 Processor, 512 GB DDR4 RAM and an AMD
MI50 GPU with 3840 cores running at 1.73 GHz and 32 GB
global memory.

For each dataset, we infer branch-specific evolutionary
rates given fixed trees from a Bayesian analysis for two substi-
tution models, the general time reversible (GTR) nucleotide
model (Tavaré and Miura 1986) including discrete gamma-
distributed rate variation with four categories and the Yang
codon model (Yang et al. 2000). We perform this analysis on
each of the three systems and measure the wall-time of five
iterations of the MCMC using HMC as described in Fisher
et al. (2020) and implemented in the Bayesian phylogenetic re-
construction software package BEAST (Suchard et al. 2018).
We report the corresponding speedup of multi-threaded CPU
and GPU instances over a single-threaded CPU in Fig. 3. For
the GTR model, we see that performance on the CPU reaches
saturation at 32 threads on systems 2 and 3 with a near 4-fold
speedup as compared to single-core performance on all three
datasets. On system 1 which is equipped with a less powerful
CPU, we see that the multi-threaded CPU implementation
offers more modest speedups of <2-fold. On system 3 which
has a CPU with 48 cores, we see that increasing the number
of threads over 32–64 and 96 results in longer wall-times.
Our algorithms that utilize the GPU offer a higher speedup of
near 16-fold on all three systems.

We consistently see higher performance gains for the Yang
codon model with a state-space size of 61 compared to the 4-
state GTR model on both the CPU and GPU. For the Yang co-
don model, the performance of the CPU implementation
reaches saturation at 8, 16, and 32 threads on systems 1, 2,
and 3 respectively. On the CPU, we see a maximum speedup
of near 8-fold on system 1 and near 16-fold on systems 2 and
3 for all three datasets with the exception of the yeast dataset
on system 3. The yeast dataset yields a much higher number
of unique site patterns when translated into a 61-state codon
model compared to the other two datasets and the powerful
48-core CPU on system 3 offers a maximum speedup of near
32-fold. As we previously observed for the GTR model, using
>32 CPU threads on system 3 results in a decrease in perfor-
mance. The GPU for the Yang codon model offers speedups
of >128-fold on all three systems, which far exceeds the per-
formance gain that can be obtained from a multi-threaded
CPU.

To determine whether increasing the state-space size be-
yond 61 would result in higher performance gains on the
GPU, we also inferred branch-specific evolutionary rates

Algorithm 2. GPU-based parallel computation of the gradi-

ent of the log-likelihood wrt all branch-specific parameters

1: define COLUMN_BLOCK_SIZE (CBS) ¼ number of columns

processed in parallel per thread-block

2: define PEELING_BLOCK_SIZE (PBS) ¼ number of states proc-

essed in parallel per inner-loop

3: for all thread-blocks (node i ¼ 1; . . . ;2N � 2 and column-block

CB ¼ 1; . . . ; dC=CBSe) in parallel do

4: for R threads in thread-block (rate r ¼ 1; . . . ;R) in parallel do

5: prefetch weight Pðcr Þ (reused by all threads in thread-block)

6: end for

7: for all threads in thread-block (column c ¼ 1þ ðB � 1Þ �
CBS; . . . ;B � CBS and state s ¼ 1; . . . ;S) in parallel do

8: initialize /cs 0; xcs 0

9: for r ¼ 1; . . . ;R in series do

10: prefetch post-order partial likelihood elements pircs and

pre-order partial likelihood elements qircs for CBS col-

umns (reused by all threads in thread-block) and

synchronize

11: increment xcs xcs þ pircs � qircs � Pðcr Þ
12: initialize d 0

13: for t ¼ 1; . . . ;S in PBS-sized parallel chunks do

14: prefetch infinitesimal rate elements Q
ðrÞ
st for PBS

states (reused by all threads in the thread-block)

and synchronize

15: increment d dþQ
ðrÞ
st � qirct

16: end for

17: increment /cs /cs þ pircs � d� P ðcr Þ
18: end for

19: end for

20: for CBS tasks (c ¼ 1; . . . ;CBS) with S threads (s ¼ 1; . . . ;S)

each in parallel do

21: reduce /c
PS

s¼1 /cs and xc
PS

s¼1 xcs

22: return /c=xc as column-specific contribution @
@bi

logPðYcÞ
23: end for

24: end for

6 Gangavarapu et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae030#supplementary-data

for the yeast dataset using a Markov-modulated model
(MMM) composed of two Yang codon models yielding a
combined state-space size of 122. The speedups for the
MMM model are very similar to the Yang codon model,

showing that the resources on the GPU are maximally uti-
lized at a state-space size of 61 (Supplementary Fig. S3).

Further, we report the performance gains specifically for
calculating the pre-order partial likelihood vectors and the

Figure 2. Parallel thread-block design to calculate the column-specific contributions to the gradient of the log-likelihood wrt all BLS parameters for all

columns C. One block evaluates the column-specific contribution to the gradient wrt a BLS parameter @
@bi

logPðYcÞ for CBS columns by prefetching

S � CBS entries from the pre- and post-order partial likelihood vectors qirc and pirc in parallel (Algorithm 2: Line 10) and S � PBS entries at a time from QðrÞ

within an inner serial loop (Algorithm 2: Lines 13–16). Each block performs a serial reduction over rate categories (Algorithm 2: Lines 7–19) and a

parallelized reduction over states (Algorithms 2: Lines 20–23). Entries fetched from global memory (GM) into shared memory (ShM) are indicated in green

and an instance of a single-thread operation is shown in orange

Figure 3. Speedup of GPU and multi-core CPU instances over a single CPU thread for five MCMC iterations to infer branch-specific evolutionary rates for

a GTR model with state-space size of 4 and a Yang codon model with a state-space size of 61. The comparisons are reported for three datasets on three

different systems. Speedup factors are on a log-scale

Many-core algorithms for gradients on phylogenetics trees 7

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae030#supplementary-data

gradient of the log-likelihood wrt all BLS parameters in
Table 1. We see that for the GTR model, the GPU implemen-
tation offers over 19-fold improvement for calculating the
pre-order partial likelihood vectors and over 7-fold improve-
ment for calculating the gradient. The GPU implementation
for the Yang codon model with a larger state-size of 61 shows
a much higher performance gain with over 170-fold improve-
ment for calculating the pre-order partial likelihood vectors
and over 225-fold improvement for calculating the gradient.
For a complete overview, we report both the achieved
speedup and the percentage of wall-time consumed for all the
parallelizable functions in Supplementary Table S1.

Since our algorithm for the pre-order traversal builds on
the post-order traversal algorithm described in Suchard and
Rambaut (2009), we measured the total time expended by the
relevant kernels on the GPU while inferring branch-specific
evolutionary rates under the Yang codon model using the car-
nivores dataset (Supplementary Table S2). It is important to
note that this metric differs from the previously cited wall-
time. The total time used by a given kernel on a GPU includes
the durations of individual kernel calls, some of which may be
executed concurrently on the GPU. This enables a precise
comparison between the massively parallel algorithms for the
post- and pre-order traversal. We observe that the average
time per function call for the post-order traversal (126 096 ns)
is faster than the pre-order traversal (177 096 ns). The pre-
order kernel is also called nearly two times more than the
post-order kernel since pre-order partial likelihoods must be
calculated at the tip nodes, whereas the Yic is directly observed
for the post-order partial likelihoods at the tip nodes. This
latter point also explains why the small speed-difference is
unsurprising. In spite of the reduced burden on ShM, the pre-
order traversal requires larger GM transactions than the post-
order traversal immediately above and at the tip nodes; when
Yic is observed, the post-order partial likelihoods are sparse,
while the pre-order partial likelihoods are always dense.
Overall, the pre-order kernel takes 44.62% of the total wall-
time while the post-order kernel takes 17.21%. In addition to
Algorithms 1 and 2, we also implemented two additional ker-
nels, namely, the matrixTranspose kernel to transpose transi-
tion matrices for models with large state-space sizes and the
nodeSiteReduction kernel to reduce the column-specific con-
tributions to the gradient across columns. Both these kernels
require very little execution time, with the matrixTranspose
and nodeSiteReduction kernels taking roughly 0.26% and
0.04% of the total wall-time, respectively (Supplementary
Table S2).

Apart from state-space size S, another dimension that influ-
ences the effectiveness of parallelization on GPUs is the num-
ber of unique site patterns or alignment columns C. For a

small number of columns, the overhead of caching values in
ShM might outweigh the performance gain afforded by the
parallelization of the numerical calculations. As the number
of columns increases, we expect performance to increase until
it reaches saturation when the resources on the GPU are fully
utilized. To measure how performance scales with the number
of columns, we truncated the codon alignment of the carni-
vores dataset to obtain an increasing number of unique site
patterns and report the associated speedup on the GPU over a
single-threaded CPU instance in Fig. 4. Even for a single col-
umn, we observe a speedup of nearly 31-fold with perfor-
mance reaching saturation at C¼ 1, 024 indicating the
maximal utilization of the resources on the GPU at that point
followed by marginal increases in performance as more col-
umns are added.

4 Example

To demonstrate the utility of the algorithms presented in this
paper, we infer the date of the first introduction of West Nile
virus into the United States under the Yang codon model with
branch-specific evolutionary rates. West Nile virus is a
mosquito-borne RNA virus that was first detected in the
United States in New York City in August 1999 [Centers for
Disease Control and Prevention (CDC) 1999]. Since its first
detection on the East Coast in 1999, the virus spread west-
ward across the continental United States and was first
detected on the West Coast in California in November 2003
(Reisen et al. 2004). The virus has caused over 52 000 cases
and over 2400 deaths as of 2020, making it the leading cause
of domestically acquired arbovirus disease in the continental
United States (Soto et al. 2022).

Here, we use a dataset of 104 full viral genomes collected in
the continental United States between 1999 and 2007 (Pybus
et al. 2012). Each genome encodes for a single polyprotein
precursor that is post translationally cleaved into three struc-
tural and seven nonstructural proteins (Brinton 2002). When
translated into a 61-state universal codon model, this align-
ment yields 1126 unique site patterns. We infer the age of the
root of these genomes from a Bayesian analysis under the
Yang codon model with a 4-class discrete-C model for site
rate variation (Yang 1996), an uncorrelated relaxed clock
model (Drummond et al. 2006) and a skyline nonparametric
coalescent prior (Drummond et al. 2005) on the unknown
tree. Figure 5 displays the maximum clade credibility (MCC)
tree inferred using BEAST with HMC over the branch-
specific rate scalars, node heights, and the parameters of the
skyline population model. The default transition kernels were
used over the remaining random parameters including the un-
known tree and codon model parameters. We ran this analy-
sis for 10 million MCMC iterations with the first 10% of
iterations discarded as burn-in. The effective sample size (ESS)
for all scientifically relevant parameters was above 200.
Convergence of the chain and ESS of parameters were
assessed using Tracer (Rambaut et al. 2018) and the MCC
tree was constructed using TreeAnnotator 1.10 and visualized
using baltic (https://github.com/evogytis/baltic).

Table 2 reports the marginal posterior estimates for the age
of the root, the transition: transversion ratio j, and the nonsy-
nonymous: synonymous rate ratio x.

The posterior median estimate for the age of the root was 1
August 1998 (95% highest posterior density [HPD] interval:
[September 1997, February 1999]) that stands in line with

Table 1. Speedup in calculating pre-order partial likelihood vectors and the

gradient of the log-likelihood for a GTR model and a Yang codon model on

the GPU relative to a single-threaded CPU.

State count Dataset Pre-order traversal Gradient calculation

Sys 1 Sys 2 Sys 3 Sys 1 Sys 2 Sys 3

4 Carnivores 23 27 19 23 32 16
Dengue 29 31 24 7 8 14
Yeast 31 39 24 19 35 18

61 Carnivores 231 225 216 225 402 284
Dengue 170 195 179 429 819 586
Yeast 312 544 290 446 812 588

8 Gangavarapu et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae030#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae030#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae030#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae030#supplementary-data
https://github.com/evogytis/baltic

previous studies that inferred the age of the root from a
Bayesian analysis under a nucleotide model (Pybus et al.
2012). This result is also consistent with prior research that

suggested a similar introduction time based on circumstantial
evidence (Lanciotti et al. 1999). As reported previously in
A~nez et al. (2013), the virus has been subjected to strong puri-
fying selection since its introduction as evidenced by a poste-
rior median dN/dS ratio x estimate of 0.14 (95% HPD:
[0.12, 0.16]). The consistency with prior findings from the lit-
erature also validates the estimates from our GPU-based algo-
rithms. We performed this analysis on a desktop equipped
with a 20-core 2.2 GHz Intel Xeon E5-2698 processor, 512
GB 2.6 GHz DDR4 RAM and an Nvidia Tesla V100 GPU
with 10 240 cores running at 1.53 GHz and 32 GB global
memory. We estimated that this analysis would take �1500
days on a CPU based on executing 26 000 iterations which
took �3600 h/million iterations. Using our algorithms on the
GPU, we were able to complete this analysis in just roughly
100 hours, a substantial improvement compared to the esti-
mated runtime on a CPU.

5 Discussion

The algorithms presented in this paper utilize GPUs to deliver
several orders of magnitude speedup over corresponding CPU
implementations in calculating the pre-order partial likeli-
hood vectors and subsequently evaluate the gradient of the
data log-likelihood wrt all BLS parameters. Multi-core CPUs
can provide an increase in performance but eventually reach a
saturation point beyond which increasing the number of
threads results in a decrease in performance. The algorithms
presented in this paper are memory-bound on both the CPU
and the GPU but GPUs typically offer a substantially larger
memory bandwidth than CPUs. For instance, on system 3, the
48-core AMD EPYC 7642 processor has a maximum memory
bandwidth of 200 GB/s (AMD 2019) while the AMD MI50
GPU boasts a maximum memory bandwidth of 1 Tb/s (AMD
2018). Consequently, using multiple cores on the CPU will re-
sult in the exhaustion of the available memory bandwidth,
and ultimately lead to a decrease in performance. The larger
memory bandwidth and the availability of fine-scale paralleli-
zation on GPUs, enable our algorithms to achieve perfor-
mance gains that cannot be attained trivially by adding more
threads available on a CPU. The improvement in performance
for nucleotide models is noteworthy, but becomes even more
remarkable when applied to models with a large state-space
size such as codon models. This performance gain enables
Bayesian phylogenetic analyses to infer branch-specific
parameters using gradient-based samplers like HMC, as
showcased by the example of dating the first introduction of
West Nile virus into the continental United States. We also
note that while libraries such as the Phylogenetic Likelihood
Library (Flouri et al. 2015) provide high performance CPU
implementations of likelihood calculations required for phylo-
genetics, to the best of our knowledge, no other existing soft-
ware implements algorithms to calculate the gradient wrt BLS
parameters similar to the ones presented in this study. There
also exist general-purpose machine learning libraries such as
PyTorch and TensorFlow that use automatic differentiation
(AD) to evaluate the gradients of arbitrary models. Fourment
et al. (2023) use the CPU versions of TensorFlow, PyTorch,
JAX and Stan to evaluate the gradient of phylogenetic likeli-
hood functions and benchmark these implementations against
the analytical gradients used in the CPU implementation of
the algorithms presented in this study. The authors find that
the analytical gradients are at least eight times faster than the

Figure 4. Speedup on the GPU relative to a single threaded CPU scaled

by the number of unique alignment columns C using the codon-alignment

of the carnivores dataset. Speedup factors are on the log-scale

Figure 5. Reconstructed codon-based maximum clade credibility (MCC)

tree of 104 West Nile virus genomes sampled in the continental United

States between 1999 and 2007

Table 2. Parameter estimates of Yang codon model for 104 West Nile

virus genomes sampled in the continental United States between 1999

and 2007.

Parameter Posterior
median

95% Bayesian credible
interval

Age of root 1998.58 (1997.72–1999.10)
Transition: transversion rate j 11.34 (9.33–13.55)
dN/dS ratio x 0.14 (0.12–0.16)

Many-core algorithms for gradients on phylogenetics trees 9

fastest AD implementation with varied performance across
different AD implementations. Additionally, their preliminary
experiments with GPU-acceleration in these libraries does not
yield significant improvements in speed, underscoring the im-
portance of carefully designed GPU kernels for effective per-
formance improvement.

Our algorithms also have implications for researchers look-
ing to invest in hardware upgrades in order to increase com-
putational speed in a cost-effective manner. As of January
2023, AMD Ryzen Threadripper PRO 5975WX with 64
cores (retails for around $6500 on Newegg) has the highest
number of cores among commercially available CPUs but
costs twice as much as an Nvidia Tesla V100 GPU (retails for
around $3500 on Newegg) which has sufficient double-
precision floating point performance for phylogenetic analy-
ses. Thus, GPUs offer a much lower price-performance ratio
compared to CPUs which is of consequence for any decision
regarding the purchase of new systems or the upgrade of
existing systems for individuals as well as high performance
computing clusters at academic and nonacademic institutions.
The ubiquity of cloud computing has allowed researchers to
perform computationally intensive analyses without having to
purchase their own hardware. Even in this scenario, the cost
of a compute instance equipped with a single GPU is more
cost-efficient compared to one equipped with a large number
of CPU cores. For instance, on Amazon web services as of
January, 2023, the on-demand pricing of p3.2xlarge with 1
Tesla V100 is $3.06/h whereas the c6g.8xlarge with 32
threads (vCPUs) costs $1.088/h. However, the speedups
afforded by our algorithms using the GPU are 4- to 6-fold
higher than using 32 threads on a CPU making the former
more cost-efficient. Considering the ongoing decline in com-
puting costs, GPUs are poised to remain more cost-effective
than CPUs for phylogenetic analyses.

An additional key consideration when evaluating GPU and
CPU performance is their respective energy efficiencies.
Energy consumption on a GPU can be assessed using com-
mand line utilities such as nvidia-smi or libraries like the
NVIDIA Management Library. Conversely, quantifying the
energy consumption on a CPU is nontrivial, complicating di-
rect energy efficiency comparisons between running our algo-
rithms on a GPU versus a CPU. Here, we attempt to bound
this relative efficiency by considering the maximum energy
specification of the CPU and GPU used on System 2. System 2
was equipped with a 20-core 2.2 GHz Intel Xeon E5-2698
processor and an NVIDIA Tesla V100 with a maximum
power consumption of 135 W and 300 W, respectively. Given
that even the GPU implementation requires CPU time for ini-
tializing the phylogenetic model and issuing the relevant nu-
merical tasks to be performed on the device, we roughly
estimate the energy efficiency of running an algorithm for an
equivalent duration on the GPU versus the CPU to be
135þ300

135 � 3:2. As shown in Fig. 3, the GPU implementation
for the 61-state Yang codon model is at least 13-fold faster
compared to the fastest CPU implementation utilizing 32
cores, making it more energy-efficient than the CPU. For the
4-state GTR model, however, we observe a speedup of � 2.5
for both the carnivores and Dengue datasets suggesting that
the CPU is marginally more energy-efficient compared to the
GPU in these cases. Although on the yeast dataset, we see
�4.8 speedup on the GPU showing that for a large number of
unique site patterns, a GPU could be more energy efficient
even for a 4-state model. As energy efficiency is an important

criterion in employing hardware like GPUs, these results will
shape subsequent work aimed at optimizing the energy effi-
ciency of the kernels, especially for the smaller 4-state models.

There remain several limitations to our current massively
parallel algorithms. Among these, for S>4, we currently take
as input the transpose of a transition probability matrix for
the pre-order computation, and we compute this transposi-
tion via a separate matrixTranspose kernel. Currently, we
compute all matrix transpositions in parallel to avoid an addi-
tional kernel launch for each pre-order evaluation. This
requires storing both the original matrices and their trans-
poses in GM. In a piece of on-going research, we are utilizing
the log-likelihood gradient wrt over 20 000 branch lengths
under an S¼256 model. These transposed matrices require
approximately 20;000� 256� 256� 8bytes � 10GB of ad-
ditional RAM in double-precision, severely restricting the
range of GPUs that we can employ. Memory constraints due
to too many columns can be addressed by using multiple
GPUs but this is not a solution for transition matrix memory
constraints. We could, however, split this operation by sched-
uling separate kernels across multiple command queues (or
CUDA streams for NVIDIA devices) with each queue concur-
rently computing the transpose of a single transition matrix
and the corresponding pre-order partial likelihoods. This
would remove the need to store all the transition matrices and
their transposes in GM simultaneously.

The CPU implementation used in this study utilizes explicit
single-instruction multiple-data (SIMD) vectorization through
SSE2 instructions for the 4-state GTR model while for the 61-
state codon model we rely on the compiler automatically issu-
ing vectorized FMA instructions, storing memory operands in
XMM registers. There exist additional ways to improve per-
formance on the CPU to evaluate the log-likelihood gradient.
The current CPU implementation only allows concurrent exe-
cution across conditionally independent blocks of columns in
the alignment but additional parallelization across nodes can
also be exploited. However, it is unlikely that any additional
parallelization on the CPU would lead to a speedup that is on
the same scale as the improvement achieved by using GPUs.

While the algorithms in this study were presented in a
Bayesian framework, they also have applications in nonlinear
optimization in a maximum-likelihood framework. To make
our algorithms available to the broader audience of develop-
ers working on statistical phylogenetics, we provide imple-
mentations in the open-source BEAGLE v4.0.0 library (Ayres
et al. 2019) that uses OpenMP for multi-core CPUs, CUDA
and OpenCL for GPUs.

Supplementary data

Supplementary data are available at Bioinformatics online.

Conflict of interest

None declared.

Funding

This work was supported through National Institutes of Health
[R01 AI153044, R01 AI162611]. We gratefully acknowledge
support from NVIDIA Corporation and Advanced Micro
Devices, Inc. with the donation of parallel computing resources
used for this research. P.L. and M.A.S. acknowledge support

10 Gangavarapu et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae030#supplementary-data

from the European Union’s Horizon 2020 research and innova-
tion programme [725422-ReservoirDOCS] and from the
Wellcome Trust through project 206298/Z/17/Z. P.L. acknowl-
edges support from the Research Foundation—Flanders (‘Fonds
voor Wetenschappelijk Onderzoek—Vlaanderen’, G0D5117N
and G051322N) and from the European Union’s Horizon 2020
project MOOD [874850]. G.B. acknowledges support from the
Research Foundation—Flanders (‘Fonds voor Wetenschappelijk
Onderzoek—Vlaanderen’, G0E1420N and G098321N) and
from the Internal Funds KU Leuven [C14/18/094]. F.A.M. is an
Investigator of the Howard Hughes Medical Institute.

Data availability

Complete BEAST XML files and associated scripts to repro-
duce the three performance study datasets and WNV example
are available at https://github.com/suchard-group/parallel_gra
dients_supplement. The log files from the benchmarking and
the results from the WNV analysis have been deposited at
https://doi.org/10.5281/zenodo.7697474.

Software availability

The algorithms described in this article have been imple-
mented in BEAGLE v4.0.0 available at https://github.com/bea
gle-dev/beagle-lib/releases/tag/v4.0.0.

References

AMD. AMD Radeon Instinct MI50 Specifications, Santa Clara,
California, United States. 2018.

AMD. AMD EPYC 7642 Specifications, Santa Clara, California, United
States. 2019.

A~nez G, Grinev A, Chancey C et al. Evolutionary dynamics of West Nile
Virus in the United States, 1999–2011: phylogeny, selection pressure
and evolutionary time-scale analysis. PLoS Negl Trop Dis 2013;7:
e2245.

Ayres DL, Cummings MP, Baele G et al. BEAGLE 3: improved perfor-
mance, scaling, and usability for a high-performance computing li-
brary for statistical phylogenetics. Syst Biol 2019;68:1052–61.

Baele G, Gill MS, Bastide P et al. Markov-modulated continuous-time
Markov chains to identify site- and branch-specific evolutionary var-
iation in BEAST. Syst Biol 2021;70:181–9.

Beam AL, Ghosh SK, Doyle J. Fast Hamiltonian Monte Carlo using
GPU computing. J Comput Graph Stat 2016;25:536–48.

Brinton MA. The molecular biology of West Nile Virus: a new invader
of the Western Hemisphere. Annu Rev Microbiol 2002;56:371–402.

Brito AF, Semenova E, Dudas G et al.; Swiss SARS-CoV-2 Sequencing
Consortium. Global disparities in sars-cov-2 genomic surveillance.
Nat Commun 2022;13:7003.

Bryant D, Galtier N, Poursat M-A. Likelihood calculation in molecular
phylogenetics. Math Evol Phylogeny. 2005;33–62. https://doi.org/
10.1093/oso/9780198566106.003.0002.

Centers for Disease Control and Prevention (CDC). Outbreak of West
Nile-like viral encephalitis–New York, 1999. MMWR Morb Mortal
Wkly Rep 1999;48:845–9.

Chetlur S, Woolley C, Vandermersch P et al. cuDNN: efficient primitives
for deep learning. arXiv, arXiv:1410.0759 [cs], 2014, preprint: not
peer reviewed.

Cook S. 2012. CUDA Programming: A Developer’s Guide to Parallel
Computing with GPUs, 1st edn. San Francisco, CA: Morgan
Kaufmann Publishers Inc.

Drummond AJ, Ho SYW, Phillips MJ et al. Relaxed phylogenetics and
dating with confidence. PLoS Biol 2006;4:e88.

Drummond AJ, Rambaut A, Shapiro B et al. Bayesian coalescent infer-
ence of past population dynamics from molecular sequences. Mol
Biol Evol 2005;22:1185–92.

Dudas G, Carvalho LM, Bedford T et al. Virus genomes reveal factors
that spread and sustained the Ebola epidemic. Nature 2017;544:
309–15.

Felsenstein J. Evolutionary trees from DNA sequences: a maximum like-
lihood approach. J Mol Evol 1981;17:368–76.

Fisher AA, Ji X, Zhang Z et al. Relaxed random walks at scale. Syst Biol
2020;70:258–67.

Flouri T, Izquierdo-Carrasco F, Darriba D et al. The phylogenetic likeli-
hood library. Syst Biol 2015;64:356–62.

Fourment M, Swanepoel CJ, Galloway JG et al. Automatic differentia-
tion is no panacea for phylogenetic gradient computation. Genome
Biol Evol 2023;15:evad099.

Guindon S, Gascuel O. Numerical Optimization Techniques in
Maximum Likelihood Tree Inference, Vol. 29. Cham: Springer
International Publishing. Series Title: Computational Biology, 2019.

Hastings WK. Monte Carlo sampling methods using Markov chains
and their applications. Biometrika 1970;57:97–109.

Holbrook AJ, Lemey P, Baele G et al. Massive parallelization boosts big
Bayesian multidimensional scaling. J Comput Graph Stat 2021;30:
11–24.

Ji X, Zhang Z, Holbrook A et al. Gradients do grow on trees: a linear-
time o(n)-dimensional gradient for statistical phylogenetics. Mol Biol
Evol 2020;37:3047–60.

Jia F, Lo N, Ho SYW. The impact of modelling rate heterogeneity
among sites on phylogenetic estimates of intraspecific evolutionary
rates and timescales. PLoS One 2014;9:e95722.

Kenney T, Gu H. Hessian calculation for phylogenetic likelihood based
on the pruning algorithm and its applications. Stat Appl Genet Mol
Biol 2012;11:Article 14.

Kishino H, Miyata T, Hasegawa M. Maximum likelihood inference of
protein phylogeny and the origin of chloroplasts. J Mol Evol 1990;
31:151–60.

Lanciotti RS, Roehrig JT, Deubel V et al. Origin of the West Nile virus
responsible for an outbreak of encephalitis in the northeastern
United States. Science 1999;286:2333–7.

Lemey P, Hong SL, Hill V et al. Accommodating individual travel his-
tory and unsampled diversity in Bayesian phylogeographic inference
of SARS-CoV-2. Nat Commun 2020;11:5110.

Metropolis N, Rosenbluth AW, Rosenbluth MN et al. Equation of state
calculations by fast computing machines. J Chem Phys 1953;21:
1087–92.

Mitchell R, Frank E. Accelerating the XGBoost algorithm using GPU
computing. PeerJ Computer Science 2017;3:e127.

Neal RM. MCMC using Hamiltonian dynamics. Handbook Markov
Chain Monte Carlo 2011;2:113–62.

Oude Munnink BB, Worp N, Nieuwenhuijse DF et al. The next phase of
sars-cov-2 surveillance: real-time molecular epidemiology. Nat Med
2021;27:1518–24.

Pybus OG, Suchard MA, Lemey P et al. Unifying the spatial epidemiol-
ogy and molecular evolution of emerging epidemics. Proc Natl Acad
Sci USA 2012;109:15066–71.

Rambaut A, Drummond AJ, Xie D et al. Posterior summarization in
Bayesian phylogenetics using Tracer 1.7. Syst Biol 2018;67:901–4.

Reisen W, Lothrop H, Chiles R et al. West Nile virus in California.
Emerg Infect Dis 2004;10:1369–78.

Soto RA, Hughes ML, Staples JE et al. West Nile virus and other domes-
tic nationally notifiable arboviral diseases—United States, 2020.
MMWR Morb Mortal Wkly Rep 2022;71:628–32.

Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and
post-analysis of large phylogenies. Bioinformatics 2014;30:1312–3.

Stone JE, Gohara D, Shi G. OpenCL: a parallel programming standard
for heterogeneous computing systems. Comput Sci Eng 2010;12:
66–72.

Many-core algorithms for gradients on phylogenetics trees 11

https://github.com/suchard-group/parallel_gradients_supplement
https://github.com/suchard-group/parallel_gradients_supplement
https://doi.org/10.5281/zenodo.7697474
https://github.com/beagle-dev/beagle-lib/releases/tag/v4.0.0
https://github.com/beagle-dev/beagle-lib/releases/tag/v4.0.0
https://doi.org/10.1093/oso/9780198566106.003.0002
https://doi.org/10.1093/oso/9780198566106.003.0002

Suchard MA, Lemey P, Baele G et al. Bayesian phylogenetic and phylo-
dynamic data integration using BEAST 1.10. Virus Evol 2018;4:
vey016.

Suchard MA, Rambaut A. Many-core algorithms for statistical phyloge-
netics. Bioinformatics 2009;25:1370–6.

Suchard MA, Wang Q, Chan C et al. Understanding GPU programming
for statistical computation: studies in massively parallel massive mix-
tures. J Comput Graph Stat 2010;19:419–38.

Tavaré S, Miura RM. Lectures on mathematics in the life sciences. Am
Math Soc 1986;17:57–86.

Yang J, Schuemie MJ, Ji X et al. Massive parallelization of massive
Sample-Size survival analysis. J Comput Graph Stat 2023;00:
1–14.

Yang Z. Maximum likelihood phylogenetic estimation from DNA
sequences with variable rates over sites: approximate methods. J Mol
Evol 1994;39:306–14.

Yang Z. Among-site rate variation and its impact on phylogenetic analy-
ses. Trends Ecol Evol 1996;11:367–72.

Yang Z, Nielsen R, Goldman N et al. Codon-substitution models for
heterogeneous selection pressure at amino acid sites. Genetics 2000;
155:431–49.

Zhou H, Lange K, Suchard MA. Graphics processing units and high-
dimensional optimization. Stat Sci 2010;25:311–24.

Zwickl DJ. Genetic algorithm approaches for the phylogenetic analysis
of large biological sequence datasets under the maximum likelihood
criterion. Ph.D. Thesis, The University of Texas at Austin. 2006.

12 Gangavarapu et al.

	Active Content List
	1 Introduction
	2 Materials and methods
	3 Results
	4 Example
	5 Discussion
	Supplementary data
	Conflict of interest
	Funding
	Data availability
	Software availability
	References

