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Abstract: In order to solve the problem of imbalanced and noisy data samples for the fault diagnosis
of rolling bearings, a novel ensemble capsule network (Capsnet) with a convolutional block attention
module (CBAM) that is based on a weighted majority voting method is proposed in this study. Firstly,
the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) method
was used to decompose the raw vibration signal into different IMF signals, which are noise reduction
signals. Secondly, the IMF signals were input into the Capsnet with CBAM in order to diagnose the
fault category preliminarily. Finally, the weighted majority voting method was utilized so as to fuse
all of the preliminary diagnosis results in order to obtain the final diagnostic decision. In order to
verify the effectiveness of the proposed ensemble of Capsnet with CBAM, this method was applied
to the fault diagnosis of rolling bearings with imbalanced and different SNR data samples. The
diagnostic results show that the proposed diagnostic method can achieve higher levels of accuracy
than other methods, such as single CNN, single Capsnet, ensemble CNN and an ensemble capsule
network without CBAM and that it has stronger immunity to noise than an ensemble capsule network
without CBAM.

Keywords: ensemble capsule network; imbalanced dataset; fault diagnosis

1. Introduction

Bearings work as key components of rotary machinery, as such their states directly
affect a machine’s performance. When they work for a long time under variable working
conditions, they can suffer various faults [1–3]. Fault diagnosis is an effective measure
that is used to maintain the normal operation of mechanical equipment. However, in real
industrial production, the amount of normal data within the sample is greater, the amount
of fault data within the sample is lesser and the data sample is contaminated by noise [4].
It is very important to be able to diagnose these bearing faults under the conditions of
imbalanced data samples and strong noise [5].

Deep learning has been used to reform intelligent fault diagnosis due to its end-to-end
diagnostic ability, which can employ a hierarchical network in order to extract the fault
features from the raw data, layer by layer, automatically, rather than requiring artificial
feature extraction. In this process, the output layer is replaced by an artificial neural
network (ANN)-based classifier due to its high capability in multiclass classification in
the diagnosis of the health states of bearings [5]. Due to these merits, many deep learning
models have been suggested for application to the fault diagnosis of mechanical equipment,
such as the denoising autoencoder (DAE), deep belief network (DBN), convolutional neural
network (CNN) and so on [5–9].
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It is well known that the deep learning-based diagnostic method needs large-scale
and balanced training data samples [5]. Imbalanced data samples can affect the diagnostic
performance of deep learning models [10]. In order to solve this problem, some data
augmentation methods have been proposed to increase the prevalence of the fault-related
data in the samples. For example, a weighted minority oversampling method that has
been proposed used resampling measures to generate the faulty data samples in order to
balance the data distribution [8]. Afterwards, a deep learning-based data augmentation
strategy was proposed to expand the limited fault samples [11], examples of this include
the generative adversarial network (GAN) and variants of this that are comprised of a
generator (G) network and a discriminator (D) network which were developed to gen-
erate data samples, with the same data distribution as the original data, from random
noise [12–20]. Nevertheless, the disadvantage of these data augmentation methods is that
some unnecessary or incorrect samples can be generated and the sample’s diversity cannot
be augmented, which reduces the quality of the generated samples and has a very limited
level of improvement for the performance of the diagnostic model [13,18].

Ensemble learning, which has been verified for its use in overcoming the limitations
of data sample imbalances, achieves high diagnostic accuracy and generalization because
of its complementary diagnostic behavior among different diagnostic models without
generating additional fault data samples. The greater the difference between versions of a
single diagnostic model is, the better the performance of the ensemble diagnosis models
is [21]. So, when multiple diagnostic models that are combined with the different signals
are applied in the field of fault diagnosis, the resulting ensemble diagnostic models can not
only reduce the effect of imbalanced data samples and noise, but also achieve a relatively
higher level of diagnostic accuracy and generalization [22].

Currently, CNN is widely applied to the field of pattern recognition and fault diag-
nosis because of its strong spatiotemporal feature extraction capability. Capsule network
(Capsnet) can be recognized as an improved version of CNN that can be used to classify
categories with small data samples, as it can not only extract the feature vector but also
depict the spatial relative-positional relationships of objects [17–20]. Due to these abilities,
it is theoretically possible to perform the diagnostic analysis of faults with a small number
of samples. Owing to these characteristics, Capsnet and its variants have been developed
for the application to the fault diagnosis of bearings [23–27]. For example, the Bi-LSTM and
Capsule network with CNN are used effectively to diagnose bearing faults with insufficient
fault data samples [24]. Furthermore, a novel capsule network with an inception block
and a regression branch has been proposed for the diagnosis of bearing faults with high
accuracy and good generalization [27]. Although Capsnet can effectively diagnose faults
to a certain extent, Capsnet is prone to perturbation by the data sample’s imbalance and
strong noises. At present, some ensemble Capsnet models have been proposed that may
be used to diagnose bearing faults. For example, a Capsnet model that is based on sensor
fusion can effectively diagnose bearing faults [28]. A novel Capsnet model that is based on
wide convolution and multi-scale convolution (WMSCCN) using AdaBN has been used to
diagnose bearing faults with varying sizes of training samples, having strong robustness
and high accuracy [29]. These ensemble Capsnet models mainly fuse multi-sensor signals
or different scale features that have been extracted by different convolution kernel sizes
in order to diagnose the faults, but Capsnet can only capture the global information from
the original vibration signal and it ignores noise effects and the fault information that is
concealed in the local signal, which can result in low diagnostic accuracy.

In order to capture more of the fault-related information that is concealed in the raw
vibration signal and to reduce the impact of noise, different kinds of time frequency analysis
methods, such as the short-time Fourier transform (STFT), empirical mode decomposition
(EMD) and wavelet packet transform (WPT), have been proposed to decompose the vibra-
tion signal into its different scale components so that a deep learning model can capture the
local fault information from the different scale components for fault diagnosis [30,31]. It is
well known that the intrinsic model function (IMF) signal of EMD can not only describe
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the physics mechanism of a dynamic signal to some extent, but it can also be identified
as creating a noise-reduced signal as the whole decomposition process of EMD reflects a
multi-scale filtering process. Considering the mode mixing of the different IMF signals of
traditional EMD and ensemble EMD (EEMD), a complete ensemble EMD with adaptive
noise (CEEMDAN) has been adopted in order to decompose the raw signal into different
IMF signals which depict the vibration characteristics from the high frequency to the low
frequency more accurately [32–36]. However, in the diagnostic process, the different IMF
signals that are fed into Capsnet have different contributions to the diagnostic results. The
allocations of these signals’ weights can affect the diagnostic accuracy.

In addition, in order to further improve the capability of fault-sensitive feature min-
ing and the diagnostic accuracy of Capsnet, a convolutional block attention module
(CBAM) [37] has also been introduced into Capsnet, which can capture some sensitive fault-
related information from different channels and spatial locations. According to the above
analyses and discussion, a novel ensemble Capsnet model, which integrates a modified
EEMD and CBAM, has been suggested to diagnose rolling bearing faults. The innovation
and contribution of the proposed diagnostic method are summarized as follows:

(1) The ensemble Capsnet that is based on a weighted majority voting method has been
suggested to diagnose the imbalanced bearing fault data samples with high accuracy
and strong robustness, which can not only consider the different degrees of importance
of the IMF components to the diagnosis results but can also fuse all of the preliminary
diagnostic results that were obtained by all of the single Capsnet models combined
with the individual IMF.

(2) The single Capsnet model can extract hidden feature parameters from the differ-
ent IMF signals which were denoised and decomposed by CEEMDAN, so as to
capture more fault information from the different scales in order to improve the
diagnostic accuracy.

(3) The CBAM can select fault-sensitive features that are extracted by the Capsnet in
order to further improve the diagnostic accuracy.

The remainder of this paper is organized as follows. The proposed ensemble capsule
network model, which synthesizes the modified EMD method and CBAM, is described in
Section 2. Section 3 shows the fault diagnostic analysis of bearings. The conclusions are
drawn in Section 4.

2. The Proposed Ensemble Capsnet with CBAM

In order to make use of the merits of Capsnet and ensemble learning, an ensemble
capsule network with CBAM, based on the weighted majority voting method (WMAM),
is proposed for the diagnosis of bearing faults with imbalanced data samples. Figure 1
shows the schematic diagnosis flowchart. The raw vibration signal was gradually truncated
through a sliding time window and segmented into N data samples, then the modified
EMD was utilized in order to decompose these data samples into multiple denoised
IMF signals. Afterwards, the IMF signals were input into Capsnet with CBAM in order to
extract sensitive features and to diagnose the fault preliminarily. Finally, the final diagnostic
decision was made by the application of the weighted majority voting method.
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Figure 1. The diagnosis schematic of the ensemble capsule network.

2.1. CEEMDAN

The CEEMDAN is an improved version of EMD and ensemble EMD (EEMD), which
can decompose a vibration signal into multiple eigenmode functions in order to reduce its
fluctuation and to denoise the signal [26]. Presently, this method has been widely utilized to
process nonlinear and nonstationary signals due to its ability to overcome the mode aliasing
problem of EMD and the difficulty of determining the amplitude of Gaussian white noise in
the EEMD method. In order to capture and understand more fault-related information from
the different scales, CEEMDAN can be adopted in order to decompose the raw vibration
signal into different intrinsic mode functions (IMFs). The detailed algorithm of CEEMDAN
can be described as follows.

Step 1: Assuming x(n) is the raw input signal, A0 is an amplitude coefficient of
the white noise, vi (n) is the Gaussian white noise sequence, the i-th signal sequence is
xi(n) = x(n) + A0vi(n) (i = 1, 2, 3· · · , I, I is the counts of added white noise), EK(·) is the
modal component of the kth order produced by EMD method and the k-th modal compo-
nent that was decomposed by the use of the CEEMDAN method is denoted as CIMFk(·).

Step 2: White noise A0vi(n) is added to the original input signal x(n) and the first
modal component can be obtained by the use of EMD decomposition, as follows:

CIMF1(n) =
1
I ∑I

i=1 IMFi
1(n) (1)

the corresponding residual signal r1(n) = x(n) − CIMF1(n) of the first order (k = 1) is
also obtained.

Step 3: The first-order residual signal r1(n) is added to the IMF component A1E1
(
vi(n)

)
,

where E1
(
vi(n)

)
is the first-order modal component of the white noise E1

(
vi(n)

)
which

is decomposed by the use of the EMD method. Thus, the newly formed signal r1(n) +
A1E1

(
vi(n)

)
can be decomposed in order to obtain the second modal component as follows:

CIMF2(n) =
1
I ∑I

i=1 E1(r1(n) + A1E1

(
vi(n)

)
(2)
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Step 4: The k-th residual signal rk(n) = rk−1(n) − CIMFk(n) of the other orders
(k = 2, 3· · · , K) can be similarly obtained according to step (3). Thus, the (k + 1)-th modal
component is calculated as follows:

CIMFk+1(n) =
1
I ∑I

i=1 E1(rk(n) + AkEk

(
vi(n)

)
(3)

Step 5: Repeat step 4 until the decomposition conditions of the EMD method are not
met by the remaining components. Finally, the raw vibration signal can be decomposed
into different IMFs, as follows:

x(n) = ∑k
i=1 CIMFi(n) + R(n) (4)

where R(n) is the residual signal.

2.2. Capsnet with CBAM

Capsnet can not only extract the features from the IMF signal but it can also conserve
the spatiotemporal relationship between different features. CBAM can utilize the attention
mechanism in order to select the sensitive features so as to form a feature map wherein the
features are more representative. In order to enhance the accuracy of the fault diagnosis,
Capsnet combined with CBAM was used to extract the sensitive features so as to diagnose
a bearing fault.

2.2.1. Capsule Network

Capsnet is a modified version of CNN that was introduced by Sabour et al. [19]. In
order to reduce information loss and improve its feature extraction ability, the CNN’s scalar-
in and scalar-out mechanism was substituted with a vector-in and vector-out mechanism
from Capsule. The basic framework of the original Capsnet is mainly comprised of a
convolutional operation and dynamic routing agreement and it consists of three typical
layers: the convolutional layer, the primary capsule layer and the digital capsule layer, as
presented in Figure 2.

Figure 2. The basic architecture of Capsnet.

The convolutional operation uses convolution kernels to convert the raw input data
into the local feature maps that are utilized as the inputs for the primary capsule layer by
the nonlinear activation function, which can be written as follows:

Hq = f
(
∑p xp ∗Wpq + bq

)
(5)

where xp is the input feature maps, Hq is output flows, Wpq and bq are the weights and
biases, respectively, f (·) is a nonlinear activation function ReLU and the notation ∗ denotes
convolution calculation.
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After the convolutional operation, the relationship between the primary capsule layers
and digital capsule layers can be built by the utilization of a dynamic routing algorithm that
is more effective for learning discriminative representations than the pooling operation in
CNN due to its ability to identify the position of one feature relative to another. Therefore,
the length of the activity vector of each digital capsule depicts the presence probability of
an instance for each category, which is equivalent to the categories to be classified. The
calculation process of the dynamic routing algorithm is shown in the Figure 3. Assuming
Ul =

[
ul

1, ul
2, . . . , ul

H

]
are all neurons in the primary capsule layer and that the total input

to the digit capsule Sj is the weighted sum of all of the middle prediction vectors mj|i from
the capsules in the primary capsule layer, then mj|i can be calculated by multiplying the
neuron ul

i ∈ Ul in the primary capsule layer with a transformation matrix Wij, which is
described as:

mj|i = Wijul
i (6)

and the input vector Sj can be obtained by the application of the following formula:

sj = ∑i cijmj|i (7)

Figure 3. The dynamic routing algorithm in Capsnet.

The output vector vj, which is the output vector of the higher-level capsule j, can be
calculated by the nonlinear mapping of sj, as follows:

vj = Squashing
(
sj
)

(8)

Squashing(s) =
||S ||2

1 + ||S ||2 ×
S
||S || =

S ||S ||
1 + ||S ||2 (9)

where the subscript j represents the jth output neuron and cij is a coupling coefficient that
is amended by the iterative process of a dynamic routing agreement algorithm during
training and can be updated using the following function

cij = so f tmax
(
bij
)
= exp

(
bij
)
/ ∑ exp(bi.) (10)

where the deviation bij denotes the log prior probability of the coupling coefficient that
capsule i couples with capsule j, which can be updated by the following equation

bij = b′ij + uij (11)

where b′ij is the previous value and the “agreement” uij is defined as follows:

uij =
〈

vj, mj|i

〉
(12)
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Thus, with the iterations from (6) to (12), all of the relevant parameters and the
agreement-based dynamic routing algorithm of Capsnet are determined. The more detailed
algorithm of Capsnet can be seen in [19].

2.2.2. Convolutional Block Attention Module (CBAM)

In order to select the sensitive features from the feature maps that are extracted by the
convolutional operation, the attention mechanism was used to increase the representational
power of the important features and to suppresses that of the unnecessary ones. In order
to gain the benefit from extracting discriminative features, a CBAM was adopted to focus
on channel information and spatial information at the same time, as first proposed by
Woo et al. [37]. The structure is shown in Figure 4, it consists of a channel attention process
and a spatial attention process. The channel attention map Mc was obtained in the channel
attention mechanism through the selection of the channel and the spatial attention map Ms
was obtained in the spatial attention mechanism by the selection of the sensitive features of
the channel. When the input feature F passes through these two attention modules in order
to obtain the refined feature F”, the selection process of the features can be represented by
the following two equations.

F′ = Mc(F)⊗ F (13)

F” = Ms
(
F′
)
⊗ F′ (14)

where F ∈ RC×H×B is the input features map of the CBAM module with the channel
number C, the height H and the width W. F′ denotes the feature map multiplying the
channel attention map and F′′ is the result of the spatial attention map multiplying F′,
which denotes the output of CBAM module. Mc ∈ RC×1×1 denotes the attention weight in
the channel dimension. Ms ∈ R1×H×B denotes the attention weight in the spatial dimension.
The symbol ⊗ represents element-wise multiplication. The detailed algorithm can be seen
in reference [10].

Figure 4. The structure of the CBAM attention mechanism.

2.2.3. Diagnosis Based on the Capsule Network with CBAM

Based on the characteristics of Capsnet and CBAM, the convolutional operation in
Capsnet was used to extract the feature parameters and the CBAM was utilized to select
the sensitive feature parameters that were input into the capsule network so as to improve
the diagnostic performance of Capsnet. The overall structure of the Capsnet with CBAM
model is shown in Figure 5. The raw data segment, which contains 1024 data points, was
decomposed into different scale IMF signals. The 1-D IMF signal was reshaped into the
2-D grey maps of 32× 32 size [29], then the Conv layers (of 3× 3 kernel size) and the
average pooling layers (of 2 × 2 size) were used to extract the feature parameters and the
CBAM was used to encode where to emphasize or suppress the feature parameters. In
addition, in order to avoid gradient vanishing and improve the nonlinear ability of model,
the Relu function was selected as the activation function in all of the convolution layers.
After that, these selective feature parameters were reshaped and input into Capsnet in
order to diagnose the bearing fault category preliminarily.
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Figure 5. The architecture of Capsnet with CBAM.

In the training process of Capsnet, so as to obtain the optimal weight parameters, the
margin loss function was defined as follows:

Lk = Tkmax
(

0, m+ − ||ak ||
)2

+ λ(1− Tk)max
(

0, ak −m−
)2

(15)

where k denotes the fault class, Tk denotes the indicator function and, if class k is present,
Tk = 1, otherwise 0. The value m+ denotes the upper bound that is be used to punish false
positives, m− denotes the lower bound that is used to punish false negatives and λ denotes
the coefficient. The values of these corresponding parameters m+, m− and λ were set as
0.9, 0.1 and 0.5, respectively. The value ak is the probability value of the fault class k, which
cannot be less than 0.9 if the fault class k is present. Conversely, if the fault class k is not
present, then ||ak || cannot be greater than 0.1.

2.3. The Weighted Majority Voting Method (WMVM)

In order to improve the diagnostic accuracy and robustness of Capsnet with ensemble
learning using the different IMF signals, CBAM was integrated with multiple classifiers so
as to develop an ensemble Capsnet for use in diagnosing the faults in parallel. Considering
that these IMF signals have different contributions to the diagnostic results, all of the
preliminary diagnosis results of the differently scaled signals were fused in order to obtain
the final class label by the weighted majority voting method (WMVM) in the decision
making level, so as to have high accuracy in the final diagnostic result [30]. Equation (16)
formulates the final diagnosis operations, as follows.

H(x) = Carmaxj

N

∑
n=1

wnhj
n(x) (16)

where, for each data sample x, the final prediction class label H(x) can be calculated by
the application of the function Carmaxj(·) in order to find out which prediction probability

has the maximum vote value. The value hj
n(x) is the prediction probability of the N sub-

classifier, the weight for majority voting of each hj
n(x) is wn (which directly affect the final

diagnostic results) and wn can be calculated by the use of the equation wn = cn/ ∑N
n=1 cn in

which cn is the validation accuracy of the nth sub-classifier that diagnoses the validation
dataset. In addition, N is set as 7, representing 7 sub-classifiers, and j = 1, 2, 3 is the fault
class label in this paper.

2.4. Fault Diagnosis Flowchart Based on the Ensemble Capsnet

Figure 6 presents the fault diagnosis flowchart that is based on the proposed ensemble
Capsnet model. After obtaining the bearing vibration signal, the raw vibration signal was
segmented into different data samples by the use of a sliding time window and then these
data segments were divided into three datasets which were the training dataset, validation
dataset and test dataset. All of these were decomposed into different IMF signals by the
CEEMDAN method. The IMF signals in the training dataset were used to train the Capsnet
models and the validation dataset was input into the trained Capsnet models in order to
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build the ensemble Capsnet which was able to obtain the final diagnostic result by using
the weighted majority voting method to fuse the preliminary diagnosis result from each
Capsnet. Subsequently, the number of Capsnet models was determined by the number
of the IMF signals; the parameters of each Capsnet model were trained by its respective
IMF signal.

Figure 6. The diagnosis flowchart based on ensemble Capsnet.

3. Fault Diagnosis of Bearings

In order to verify the validity and reliability of the proposed ensemble Capsnet di-
agnosis method, the vibration signals were obtained from a dataset of rolling element
bearings [38]. The experimental test rig, which basically consisted of a high-speed spindle.
The body of the spindle was fixed to the single and extremely rigid support which rested on
a massive steel base plate. The same plate carried a couple of supports for the outer rings
of two identical roller bearings. The inner rings of these bearings were connected to a very
short and thick hollow shaft. The outer ring of bearing B2 was linked to a precision sledge,
the motion of which was orthogonal to the shaft. When the sledge was pulled through the
rotation of a nut, two parallel springs were compressed and produced the required load,
which was measured by the load cell. In the laboratory test bed, the same radial force that
is generally exerted by the spur gear was replaced by a load that was applied by a third
and larger roller bearing. Two tri-axial accelerometers were mounted at position A1. The
vibration data were acquired with a 51.2 K/s sample rate.

3.1. Acquisition of Vibration Data

With the use of the experimental setup that is shown in Figure 7, the vibration signals
were collected for diagnosis analysis. A single point defect was introduced into the inner
race and roller in order to simulate the different fault categories of bearings. The defect’s
diameter was 0.45 mm. Each bearing was tested under variable loads (0, 1012, 1006, 1407
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and 992 N) and speeds (6000 and 12,000 rpm). The y-axial vibration signal was utilized for
the diagnostic analysis of the bearings’ faults. The data statistics are described in detail in
Table 1. Five different datasets with different degrees of imbalance and different sizes of
training and validation samples are listed and are referred to as datasets A, B, C, D and E.
The total number of training samples and validation samples in those 5 datasets were all
the same; they were 220, 320, 420, 280 and 480, respectively. The total number of testing
samples in these datasets was 1200. Additionally, the raw vibration signal was segmented
into different data samples by the application of a sliding time window and the adjacent
data samples had no overlapping region. Each data sample had 1024 sample points.

Figure 7. The original bearing vibration signals of different fault classes.

Table 1. The training/validation/testing data statistics of rolling bearings.

Dataset

Fault Category

Imbalance Ratio
Normal:Fault

Normal Inner Race Roller

Label:0
Speed:6000/12,000

Load:0/1012 N

Label:1
Speed:6000/12,000
Load:1006/1407 N

Label:2
Speed:6000/12,000
Load:992/1407 N

Training/
validation samples

Dataset A 180/180 20/20 20/20 9:1
Dataset B 280/280 20/20 20/20 14:1
Dataset C 380/380 20/20 20/20 19:1
Dataset D 200/200 40/40 40/40 5:1
Dataset E 400/400 40/40 40/40 10:1

Testing samples Dataset A, B,
C, D and E 400 400 400 1:1

3.2. Diagnostic Analysis

Figure 7 shows the original vibration signals of three bearing fault classes. From the
figure, it can be seen that it is very difficult to diagnose the fault classes of bearing because
of the small amount of difference from the original waveform. In order to obtain these
different scale IMF signals, so as to depict the more fault-related information of the bearing
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from different viewpoints, all of the raw data samples were decomposed into different
IMF signals that were input into Capsnet with CBAM by the CEEMDAN method. The
decomposition result of the inner race fault signal of the bearing is shown in Figure 8,
which consists of eight IMF signals and one residual signal that can describe the various
dynamic characteristics from the different scales. From the figure it can also be observed
that the first seven orders of the IMF signal contain multiple frequency components and
more fault information.

Figure 8. The decomposition results of inner race fault signal based on CEEMDAN.

In order to validate the effectiveness of the proposed ensemble of Capsnet with CBAM,
based on WMVM, the first seven orders of the IMF signal were used to diagnose the
faults in the imbalanced dataset under different working conditions. The seventh order
IMF signal and the residual signal were not selected due to their containing less fault
information. The corresponding grey maps of the first seven orders of the IMF signal are
shown in Figure 9. From these images, it can be observed that the images of different IMF
signals look totally different from each other, this provides an intuitive way to depict the
fault information from different viewpoints, which can be prone to diagnosis faults by the
ensemble Capsnets with high accuracy and generalization, because these seven diagnostic
models (which are formed by feeding seven orders of the IMF signal into seven single
Capsnets) have big differences.

Figure 9. The corresponding grey images of the first seven orders of the IMF signal.

Table 2 shows the diagnostic accuracy for five different datasets when using the single
Capsnet with IMF signal and ensemble Capsnet. The table shows that the diagnostic
accuracy for the different IMF signals is different; the first five orders of the IMF signal can
be diagnosed effectively and the diagnosis accuracy of the IMF0 signal is 1, but the diagnosis
accuracy for the last two orders of the IMF signal is low. The proposed ensemble Capsnet
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with CBAM (which was trained on five different training datasets with different imbalance
degrees) can diagnose the same testing samples accurately, with all achieving a value of 1.
This is mainly because the different IMF signals have different degrees of importance to
the diagnostic results and the decomposed IMF0 signal, which is equivalently separated
from other interference signals, contains the most fault-related information regarding the
bearing. The other first four orders of the IMF signal, which can depict the dynamic
characteristics of different scales, contain more fault-related information such that their
corresponding diagnostic accuracy is high. When all of the differently scaled IMF signals
are used to diagnose the faults, the seven different single Capsnet diagnostic models, the
hyper-parameters of which are different as each Capsnet model is trained by different
orders of the IMF signal, can be obtained. The ensemble learning process that is based
on the WMVM can fuse all of the diagnostic results that have been produced by single
Capsnets with CBAM on each of the IMF signals in order to further improve the diagnostic
accuracy by making use of the complementary information that is provided by each single
Capsnet diagnosis model.

Table 2. The diagnostic accuracy of testing samples.

Dataset
Diagnostic Accuracy

IMF0 IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 Ensemble Capsnet
with CBAM

A 1 0.833 0.832 0.998 0.578 0.333 0.333 1
B 1 0.833 0.736 0.999 0.593 0.333 0.333 1
C 1 0.833 0.833 0.999 0.667 0.333 0.333 1
D 1 1 0.928 0.999 0.668 0.333 0.333 1
E 1 0.833 0.889 0.999 0.743 0.334 0.333 1

3.3. Diagnostic Analysis of a Noisy Dataset

This present research had studied the anti-noise ability of the proposed ensemble
Capsnet with CBAM on the dataset A, which had been contaminated by white noise of
different intensities. Table 3 and Figure 10 show the diagnostic accuracy of the ensemble
Capsnet with CBAM and the ensemble Capsnet without CBAM on different SNR data
samples. From the figure and table, it can be seen that the ensemble Capsnet with CBAM
and ensemble Capsnet without CBAM can both diagnose the different SNR data samples
effectively. When the SNR was −10 db, −1 db, 10 db and 20 db, the accuracy of the
ensemble Capsnet with CBAM and ensemble Capsnet without CBAM was 1; however,
when SNR was −20 db, the accuracy of the ensemble Capsnet without CBAM was 0.817,
which is lower than that of the ensemble Capsnet with CBAM (which was 1). These results
show that the ensemble Capsnet with CBAM and the ensemble Capsnet without CBAM
can diagnose noisy, imbalanced samples with high accuracy and immunity to noise. The
results demonstrate that ensemble learning can not only improve the diagnostic accuracy
of Capsnet but also enhance its anti-noise ability. However, when the SNR is smaller than
−10 db, the diagnostic accuracy of the ensemble Capsnet without CBAM was less than 1. It
was therefore shown that CBAM not only effectively selects sensitive features, but that it
also further improves the anti-noise ability and diagnostic accuracy of Capsnet.

Table 3. The diagnostic accuracy of two diagnostic models on different SNR datasets.

Testing Samples with Different SNR

SNR(db) −20 −10 −1 10 20

Diagnostic
accuracy

Ensemble Capsnet with CBAM 1 1 1 1 1
Ensemble Capsnet w/o CBAM 0.817 1 1 1 1
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Figure 10. Diagnostic accuracy of ensemble Capsnet with CBAM/without CBAM on different
SNR samples.

3.4. Comparison with Others Methods

In order to verify the superiority of the ensemble Capsnet with CBAM method, com-
parisons were carried out between this method’s diagnostic performance and that of five
other diagnostic methods: single CNN, single Capsnet with or without CBAM, ensemble
CNN and ensemble Capsnet without CBAM, all of which were conducted on different
datasets. Raw data samples and their corresponding IMF signals were used as the input for
the single CNN, Capsnet and ensemble CNN and the Capsnet model and the structural
parameters of CNN are shown in Table 4. Table 5 and Figure 11 show the corresponding
diagnostic results of the six different diagnostic models from five different datasets. From
the table and figure, it can be seen that the diagnostic accuracy of the single Capsnet with
CBAM is higher than that of a single Capsnet without CBAM and CNN. This demonstrates
that the CBAM module can effectively select the sensitive features and improve the di-
agnostic performance of Capsnet. At the same time, Table 5 and Figure 11 demonstrate
that the accuracy of a single Capsnet with CBAM is lower than that of an ensemble CNN
and ensemble Capsnet without CBAM and ensemble Capsnet with CBAM and that the
diagnostic accuracy of an ensemble Capsnet without CBAM and ensemble Capsnet with
CBAM on five different imbalanced datasets are the highest, at 1. These results demon-
strate that ensemble learning can improve the diagnostic accuracy of Capsnet and CNN
effectively and that the proposed ensemble Capsnet with CBAM has superior performance
in the diagnosing of an imbalanced dataset.

Table 4. The structural parameters of CNN.

No. Layer Activation Shape

1 Input layer (None, 32, 32, 1)
2 Conv2D (None, 32, 32, 128)
3 Average Pooling (None, 16, 16, 128)
4 Conv2D (None, 16, 16, 512)
5 Global average Pooling (None, 512)
6 Dense (None, 100)
7 Dense (None, 3)

Table 5. The diagnostic accuracy of six diagnostic models for different datasets.

Testing
Samples

Diagnostic Accuracy

CNN Capsnet with
CBAM

Capsnet w/o
CBAM Ensemble CNN

Ensemble
Capsnet w/o

CBAM

Ensemble
Capsnet with

CBAM

A 0.595 0.673 0.658 0.658 1 1
B 0.653 0.73 0.658 0.724 1 1
C 0.628 0.649 0.548 0.657 1 1
D 0.689 0.82 0.703 0.999 1 1
E 0.695 0.794 0.719 0.996 1 1



Sensors 2022, 22, 5543 14 of 17

Figure 11. The diagnostic accuracy of six different diagnostic models.

From Tables 2 and 5, it can be seen that the diagnostic accuracy of the single Capsnet
with CBAM on the raw vibration signal of the 5 datasets is 0.673, 0.73, 0.649, 0.82 and
0.794. These accuracies are all lower than the diagnostic accuracy that is produced by the
single Capsnet model with CBAM on the first IMF signal, which is 1 for all of the datasets.
This is because the raw vibration signal is contaminated by noise or other low-frequency
signals and the fault information that is concealed in the raw vibration signal cannot be
revealed thoroughly by Capsnet, but CEEMDAN can decompose the raw vibration signal
into differently scaled signals from which more fault information and the non-stationary
dynamic characteristics of the bearing can be derived by the Capsnet. Thus, the single
Capsnet can capture more fault-related bearing information from the first IMF signal, which
can diagnose the fault more accurately.

In order to illustrate the fact that the different IMF signals have different degrees of
importance to the diagnostic results, the ensemble CNN, ensemble Capsnet with CBAM
and ensemble Capsnet without CBAM all adopt the voting method (VM) to fuse all of
the preliminary diagnostic results in their respective IMF signals and the final diagnostic
results are shown in Figure 12 and Table 6. From the figure and table, it can be seen that the
accuracy of the ensemble CNN, Capsnet without CBAM and Capsnet with CBAM based on
WMVM were higher than that of the ensemble CNN, Capsnet without CBAM and Capsnet
with CBAM based on WMVM or VM. Therefore, it can be demonstrated that the different
IMF signals have different contributions to the diagnostic results and the weighted fusion
method that is based on WMVM can further improve the diagnostic accuracy.

Table 6. The diagnostic accuracy of six different ensemble models for different datasets.

Testing Samples

Diagnostic Accuracy

Ensemble
CNN Based on

VM

Ensemble
Capsnet with

CBAM Based on
VM

Ensemble
Capsnet w/o

CBAM Based on
VM

Ensemble
CNN Based on

WMVM

Ensemble
Capsnet with
CBAM Based
on WMVM

Ensemble
Capsnet w/o

CBAM Based on
WMVM

A 0.642 0.998 0.986 0.658 1 1
B 0.720 0.998 0.992 0.724 1 1
C 0.633 0.994 0.978 0.657 1 1
D 0.976 1 1 0.999 1 1
E 0.954 1 1 0.996 1 1
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Figure 12. Diagnostic accuracy for different datasets based on different fusing methods.

Furthermore, in order to verify the diagnostic generalization of the proposed ensemble
Capsnet with CBAM, the ensemble CNN and the ensemble Capsnet without CBAM, five-
fold cross validations were implemented in the analysis of dataset E. Figure 13 shows the
diagnostic accuracy, in terms of the mean and variance, of these three ensemble diagnostic
models. From Figure 12 it can be seen that the diagnostic accuracy mean of the proposed
ensemble Capsnet with CBAM is the highest and the variance is the smallest among these
three methods, but the diagnostic accuracy mean of the ensemble CNN is the lowest and
the accuracy variance of the ensemble Capsnet without CBAM is the biggest. All of these
results can be seen to demonstrate that the proposed ensemble Capsnet with CBAM has
strong diagnostic robustness and high diagnostic accuracy and that CBAM can further
improve the diagnostic performance of an ensemble Capsnet.

Figure 13. The diagnostic accuracy, mean and variance, of three different diagnostic models.

4. Conclusions

A novel ensemble Capsnet with CBAM that is based on the weighted majority voting
method has been suggested in this paper to diagnose bearing faults using imbalanced data
samples and noisy data samples. In order to improve the diagnostic accuracy and anti-noise
ability of the Capsnet model, multiple IMF signals that were obtained by the decomposition
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of a raw vibration signal that was based on CEEMDAN so as to capture more bearing
fault information, were input into the Capsnet with CBAM in order to diagnose the fault.
These preliminary diagnostic results were then fused through the weighted majority voting
method, thus the final diagnostic decision was able to be obtained.

In order to validate the diagnostic effectiveness and anti-noise ability of the proposed
ensemble Capsnet with CBAM, a multifaceted comparison with single CNN, single Cap-
snet, ensemble CNN and ensemble Capsnet without CBAM on five datasets with different
imbalance degrees and on the same imbalanced dataset with different SNRs was imple-
mented. The diagnostic results demonstrated that the proposed ensemble Capsnet with
CBAM that is based on the weighted majority voting method can achieve outstanding
diagnostic accuracy on these different imbalanced and SNR datasets and it is obviously
superior to the other ensemble learning models for the diagnosis of bearing faults that are
based on VM, single Capsnet without CBAM and single Capsnet with CBAM. Nevertheless,
in the diagnostic process, it was found that the number of Capsnet models that were used
in the ensemble affected the diagnostic performance, so the manner in which to select the
number of Capsnet models for application to different IMF signals will be studied further
in the future.
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