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Identification of novel candidate 
drivers connecting different 
dysfunctional levels for lung 
adenocarcinoma using protein-
protein interactions and a shortest 
path approach
Lei Chen1,2,*, Tao Huang3,*, Yu-Hang Zhang3,*, Yang Jiang4, Mingyue Zheng5 & Yu-Dong Cai1

Tumors are formed by the abnormal proliferation of somatic cells with disordered growth regulation 
under the influence of tumorigenic factors. Recently, the theory of “cancer drivers” connects tumor 
initiation with several specific mutations in the so-called cancer driver genes. According to the 
differentiation of four basic levels between tumor and adjacent normal tissues, the cancer drivers can be 
divided into the following: (1) Methylation level, (2) microRNA level, (3) mutation level, and (4) mRNA 
level. In this study, a computational method is proposed to identify novel lung adenocarcinoma drivers 
based on dysfunctional genes on the methylation, microRNA, mutation and mRNA levels. First, a large 
network was constructed using protein-protein interactions. Next, we searched all of the shortest paths 
connecting dysfunctional genes on different levels and extracted new candidate genes lying on these 
paths. Finally, the obtained candidate genes were filtered by a permutation test and an additional strict 
selection procedure involving a betweenness ratio and an interaction score. Several candidate genes 
remained, which are deemed to be related to two different levels of cancer. The analyses confirmed our 
assertions that some have the potential to contribute to the tumorigenesis process on multiple levels.

Tumors are defined as new creatures formed by the abnormal proliferation of somatic cells with disordered 
growth regulation under the influence of tumorigenic factors1. Around the world, tumors have been reported 
to be the second killer of human health, ranked only behind cardiovascular disease. However, it is still not clear 
how tumor tissues initiate and invade during the precancerous lesion stage2. Specific genetic alterations have been 
detected in tumor cells of different types. Some well-known genes, such as p53, K-Ras, etc., have been reported in 
various tumor types, which have been regarded as genomic markers for the given tumors and may be the original 
mutation related to tumor initiation and progression3,4.

In 2012, the theory of “cancer drivers” was first presented at the RAOF (Round Asia Oncology Forum), which 
connects tumor initiation with several specific mutations in the so-called cancer driver genes5. Such theory attrib-
utes tumor initiation to several original specific genomic alterations, which sequentially induce metabolic and 
functional disorders in somatic cells. As we know, based on the differentiation of four basic levels between the 
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tumor and adjacent normal tissues, we can divide cancer driver genes into four clusters: (1) Methylated CpG site 
genes, (2) microRNA target genes, (3) somatic mutation genes, and (4) mRNA genes.

First, the level of methylation of driver genes may change during tumor initiation. Generally, the methyla-
tion and demethylation of peculiar regions in chromosomes reflects the regulation of gene expression on the 
transcriptional level6. The demethylation of oncogenes and/or the methylation of tumor suppressors may induce 
the proliferation and genomic instability of tumor cells7. Such processes may be the driving procedures of tumor 
initiation and progression. In addition to methylation and demethylation, another level cancer driver genes con-
tribute to is associated with microRNA expression8. microRNA is a small non-coding RNA molecule that contrib-
utes to post-transcriptional regulation by RNA silencing9. During tumor initiation and progression, the specific 
microRNA expression level changes and may further regulate its functional target genes10. Such microRNA target 
genes are regulated differently in the tumor versus normal tissues. Thus, the level of functional microRNAs may 
also reveal several cancer driver genes. Genomic instability is another basic characteristic of tumor cells. As a 
result of that, mutations exist extensively in malignant cells. Therefore, the third level for cancer driver genes to 
initiate tumors is mutations. Some cancer driver genes, such as p53 and K-Ras, include specific mutations which 
contribute to the structural and functional changes of their protein products and may further induce tumor ini-
tiation and progression11. Mutations not only occur in the exons of driver genes but in their regulatory sequences 
as well, such as promoters, enhancers, etc.12,13. These mutations may not alter the structures or functions of target 
proteins which are encoded by driver genes but may strongly improve or reduce the quantity of mRNAs and 
proteins14. Apart from that, some unique abnormal regulatory factors with mutations may also contribute to the 
regulation of cancer genes at the transcription and/or translation levels15.

Lung adenocarcinoma is a typical subtype of lung cancer that is highly related to specific genetic background16. 
As a crucial threat to human health, however, most studies on lung adenocarcinoma drivers are restricted to a 
single level (one of the four clusters as we have mentioned above) and the core driver factors that contribute 
to the initiation and progression of lung adenocarcinoma have not been fully revealed. In these studies, most 
progressions of lung adenocarcinoma associated drivers mainly concentrate to the mutations and copy number  
variations (CNVs) of particular oncogenes17,18. For example, it has been widely confirmed by in vitro and  
in vivo experiments that specific mutations of EGFR and KRAS may exactly drive the initiation and progression of 
lung adenocarcinoma, implying the key role of certain drivers for the tumorigenesis of lung adenocarcinoma19,20. 
Apart from that, on another level, a specific microRNA associated mutation (target site on KRT81) has also been 
reported to be associated with lung adenocarcinoma21. As stated above, the original specific genomic alterations 
may contribute to tumor initiation in multiple levels, implying the analysis of specific variant should be extended to 
multi-omics. However, few multi-level analysis (such as the combination of mutations and copy number variants)  
of lung adenocarcinoma drivers have been presented and reported. For the first time, based on TCGA database, 
our study concentrate on all the four levels of drivers as we have mentioned above and try to fill the gap of this 
research field.

In this study, we investigated the specific driver factors of lung adenocarcinoma on four functional levels based 
on the gene expression, microRNA expression, DNA methylation and somatic mutation data of lung adenocar-
cinoma tissues and normal control samples from TCGA (The Cancer Genome Atlas)22. We first sought to search 
all the shortest paths (SP) connecting dysfunctional genes on different levels in a large network constructed by 
protein-protein interactions (PPI) and to identify new candidate cancer driver genes on these paths. Then, these 
genes were filtered by a permutation test and a strict selection procedure. The final obtained candidate genes were 
deemed to be related to two different levels, i.e., they can drive tumorigenesis on two levels. Furthermore, some 
candidate genes may occur more than once, meaning that they can drive tumorigenesis on multiple levels. The 
more levels a gene can drive tumor initiation, the more significant the gene may be.

Materials and Methods
Dataset. We downloaded the gene expression, microRNA expression, DNA methylation and somatic muta-
tion data of lung adenocarcinoma tissues and normal control samples from TCGA (https://tcga-data.nci.nih.gov/
docs/publications/luad_2014/)22.

The expression level of 20,531 genes in 230 tumor samples and 43 normal samples was measured with 
RNA-Seq and transformed into the log2 scale. The expression level of 1,046 microRNAs in 181 tumor samples 
and 32 normal samples was measured with microRNA-Seq and also transformed onto the log2 scale. The DNA 
methylation level of 485,577 CpG sites in 181 tumor samples and 21 normal samples was measured using the 
Infinium HumanMethylation450 BeadChip array. The somatic mutation data of 14,989 genes in 230 tumor sam-
ples were called with MuTect23.

Identification of the differentially expressed mRNA genes, microRNAs, methylated CpG sites 
and somatic mutation genes. We used the SAM (Significance Analysis of Microarrays) method24 to 
detect differentially expressed genes, microRNAs, and the methylated CpG sites. There were 1,373 differen-
tially expressed mRNA genes, 42 microRNAs and 295 methylated CpG sites with a SAM FDR (False Discovery 
Rate) less than 0.01 and a fold change greater than 5. The 42 microRNAs regulated 825 target genes based on 
at least three out of six microRNA-target databases, including miRBase25 (http://microrna.sanger.ac.uk/targets/
v5/), TargetScan26 (http://www.targetscan.org/), miRanda27 (http://www.microrna.org/microrna/), TarBase28  
(http://diana.cslab.ece.ntua.gr/tarbase/), mirTarget229 (http://mirdb.org/miRDB/download.html), and PicTar30 
(http://pictar.mdc-berlin.de/). The 295 differentially expressed methylated CpG sites were annotated to 153 genes 
based on their chromosome locations from TCGA. The 197 somatic mutation genes with mutation frequencies 
greater than 10% were selected.

https://tcga-data.nci.nih.gov/docs/publications/luad_2014/
https://tcga-data.nci.nih.gov/docs/publications/luad_2014/
http://microrna.sanger.ac.uk/targets/v5/
http://microrna.sanger.ac.uk/targets/v5/
http://www.targetscan.org/
http://www.microrna.org/microrna/
http://diana.cslab.ece.ntua.gr/tarbase/
http://mirdb.org/miRDB/download.html
http://pictar.mdc-berlin.de/
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As a result, 153 methylated CpG site genes, 825 microRNA target genes, 197 somatic mutation genes, and 
1,373 differentially expressed mRNA genes were considered seed genes and comprised the gene sets G1, G2, G3 and 
G4, respectively. The symbols of these genes are provided in the Supplementary Material I.

Network construction. The constructed network was built according to the PPI information retrieved from 
STRING (Search Tool for the Retrieval of Interacting Genes/Proteins, http://www.string-db.org/, Version 9.1)31,32.  
The obtained file, ‘protein.links.v9.1.txt.gz’, contained large numbers of PPIs involving 1,133 organisms. In total, 
2,425,314 human PPIs were extracted from this file by selecting lines starting with ‘9606.’. PPIs reported in STRING 
are obtained by the following sources: (1) genomic context, (2) high-throughput experiments, (3) (conserved)  
co-expression, and (4) previous knowledge. Thus, they can widely measure the associations between proteins and 
have been used to deal with several protein related problems33–40. For each of the 2,425,314 human PPIs, there are 
two proteins represented by Ensembl IDs and a score, indicating the strength of the interaction ranging between 
150 and 999. Proteins in an interaction with a high score have strong associations. The constructed network 
took all the proteins occurring in 2,425,314 human PPIs, totaling 20,770 proteins, as nodes, and two nodes were  
connected by an edge if and only if the corresponding proteins could comprise an interaction. Clearly, each 
edge represented a human PPI. To indicate the score of each interaction, each edge should be assigned a weight. 
Because the range of the interaction score is between 150 and 999, i.e., the maximum value of interaction score 
is 999, and a model using the shortest path algorithm as a basic algorithm requires edges assigned low weights 
indicate strong associations between corresponding nodes, the weight of each edge in the constructed network 
was defined as 1,000 minus the interaction score of the corresponding interaction.

SP method for searching new candidate cancer drivers. It has been reported in some studies that two 
proteins in a PPI may share similar functions33,35,38,41–43. By further considering the interaction score, two proteins 
in a PPI with a high score are more likely to share similar functions. This can be further induced by the fact that if 
p1, p2,… ,ps is a series of proteins such that pi and pi+1 can comprise a PPI with a high score (the corresponding 
edge in the network was assigned a low weight), and p1 and ps are two proteins encoded by dysfunctional genes, 
then p2,… ,ps−1 may also be encoded by dysfunctional genes. By mapping p1, p2,… ,ps to the network constructed 
in Section “Network construction”, the corresponding nodes can comprise the shortest path by the construction 
of the network. Because dysfunctional genes can be divided into four levels, comprising of four sets of seed genes 
denoted by G1, G2, G3 and G4, we searched candidate genes by pairing Gi and Gj (i  ≠  j) to identify new genes that 
can drive tumorigenesis on two levels. Thus, for any Gi and Gj (i  ≠  j), we searched all of the shortest paths con-
necting genes in Gi and Gj by Dijkstra’s algorithm44. Accordingly, we obtained six sets of the shortest paths. For 
each set, we extracted genes that occurred in at least one path as the candidate genes. Furthermore to distinguish 
them, a measurement, namely betweenness45, was conducted for each candidate gene, which is defined as the 
number of paths containing the gene. Betweenness is a measure of centrality of a vertex within a graph which 
counts the number of times a node acts as a bridge in the shortest path between two other nodes, which in this 
study can be used to judge whether the candidate genes can drive tumor initiation on two levels46. For conveni-
ence, the set consisting of candidate genes for Gi and Gj is denoted by Sij

1.

Permutation test. For Gi and Gj (i ≠  j), we can obtain a set of candidate genes, making up the gene set Sij
1, by 

the method described in Section “SP method for searching new candidate cancer drivers”. However, not all of 
them have the potential to become novel driver genes. False positives are inevitable. Among them, some are pro-
duced by the construction of the network. Taking this into consideration, we randomly produced two groups of 
gene sets; each group contained 1,000 gene sets, denoted by S S S, , ,i i i

1 2 1000 and S S S, , ,j j j
1 2 1000. S S S, , ,i i i

1 2 1000 
is the same size as Gi , while S S S, , ,j j j

1 2 1000 is the same size as Gj . For Sk
i and Sk

j (k =  1,2, … , 1000), all the shortest 
paths connecting one gene in Sk

i and one gene in Sk
j were searched in the constructed network. We counted the 

betweenness of the candidate genes in Sij
1 based on these paths. Thus, each candidate gene had one betweenness 

on Gi and Gj and 1,000 betweenness on Sk
i and Sk

j (k =  1,2, … ,1000). Another measurement, namely permutation 
FDR, was computed for each candidate gene, which is defined as the ratio of the 1,000 betweenness on Sk

iand Sk
j 

(k =  1,2, … ,1000) that are larger than the betweenness on Gi and Gj. It can be seen that a candidate gene with a 
high permutation FDR is more likely to be a false positive produced by the construction of the network and 
should be excluded. Thus, candidate genes with a permutation FDR larger than or equal to 0.05 were discarded. 
The remaining candidate genes, making up the gene set Sij

2, were further evaluated by the method in the following 
section.

Further selection using betweenness and PPI. For Gi and Gj (i ≠  j), some candidate genes remained 
after executing the permutation test. However, some of them may have strong associations with cancer, while oth-
ers have weak associations. To reflect this fact, we proposed some rules in this section and selected the important 
candidate genes based on these rules.

It has been elaborated that the betweenness of a candidate gene is the number of paths connecting genes in 
Gi and in Gj including the candidate gene. Clearly, a candidate gene with high betweenness suggests it has strong 
associations with genes in Gi and Gj, thereby having a high likelihood of being a novel cancer driver gene. To build 
a uniform rule, we must also consider the sizes of Gi and Gj because a candidate gene with a small betweenness for 
small Gi and Gj is not always less important than another candidate gene with a large betweenness for large Gi and 
Gj. Thus, we set a betweenness ratio R(g) to measure the importance of a candidate gene g based on its between-
ness and sizes of Gi and Gj, which is defined as

http://www.string-db.org/
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It can be seen that a high betweenness ratio of a candidate gene means that the majority of the shortest paths 
connecting genes in Gi and in Gj contains the candidate gene. We set a threshold of 0.01 for the betweenness ratio 
to select important candidate genes.

Another rule was built based on the PPIs and their interaction scores. It has been reported that two proteins 
in a PPI with a high score are more likely to share similar functions33,47,48. Thus, for a candidate gene g, if g and 
genes in Gi and Gj can comprise PPIs with high interaction scores, g has strong associations with genes in Gi and 
Gj. Thus, we computed the following value, namely the min-max interaction score:

= ∈ ∈M g Q g x x G Q g x x G( ) min{max{ ( , ): }, max{ ( , ): }} (2)i j

Similarly, a candidate gene with a high min-max interaction score implies that it has strong associations with 
at least one gene in Gi and at least one gene in Gj, indicating that it has a high linkage with cancer. Similar to the 
proportion mentioned in the paragraph above, we can also set a threshold of 400 for the min-max interaction 
score to select important candidate genes.

For the gene sets Gi and Gj, genes in Sij
2 were filtered by the above two rules. The remaining genes constituted 

the set Sij
3, which were deemed to be significant for two levels.

Results
In this study, we proposed a computational method to identify candidate cancer driver genes that can drive 
tumor initiation on multiple levels. The flowchart of our method is shown in Fig. 1. The results of our method are 
described in the following sections.

Results of the SP method. As mentioned in Section “Identification of the differentially expressed mRNA 
genes, microRNAs, methylated CpG sites and somatic mutation genes”, we employed four gene sets G1, G2, G3 and 
G4 with different expression levels for cancer. For each pair, e.g., Gi and Gj (i ≠  j), we searched all the shortest paths 
connecting any gene in Gi with any gene in Gj in a network constructed in Section “Network construction” and 
extracted genes on these paths. The obtained six sets of candidate genes, S S S S S S, , , , ,12

1
13
1

14
1

23
1

24
1

34
1 , are provided in 

Figure 1. Flowchart of our method. (A) Four gene sets consisting of dysfunctional genes on four levels; (B) 
SP method to search candidates in a network. Yellow nodes represent dysfunctional genes on different levels, 
and the dashed lines represent the shortest path connecting a and i, e and h are selected; (C) Six candidate gene 
sets obtained by the SP method; (D) Permutation test to filter some false positives. Two randomly produced 
sets {d, f} and {c, g} were shown in the network (highlighted in red and green), in detail, red nodes d and c 
replace yellow node a, while green nodes g and f replace yellow node i, dotted lines represent the shortest path 
connecting d and f, dashed-dotted lines represent the shortest path connecting c and g, and e (highlighted in 
pink) is removed by the permutation test; (E) Six candidate gene sets filtered by the permutation test; (F) Six 
candidate gene sets filtered by further selection using betweenness and PPI.
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the Supplementary Material II. The numbers of genes in these sets are listed in column 2 of Table 1. It can be seen 
that many candidate genes were included in each set, meaning that further filtering was necessary. Furthermore, 
the betweenness of each candidate gene in Sij

1 was calculated and also provided in the Supplementary Material II.

Results of the permutation test. To control for the false positives produced by the construction of the 
network in each candidate set Sij

1, a permutation test was adopted. A permutation FDR was calculated for each 
candidate gene in Sij

1, which is also listed in the Supplementary Material II. By setting a threshold of 0.05 for the 
permutation FDR, we extracted a candidate gene subset Sij

2 from Sij
1. The detailed genes in the six gene sets 

S S S S S S, , , , ,12
2

13
2

14
2

23
2

24
2

34
2  are provided in the Supplementary Material III, and the numbers of genes in these sets 

are listed in column 3 of Table 1, from which we can see that the number of candidate genes decreased signifi-
cantly and became close to the reality.

Results of further selection. To select the core genes in S S S S S S, , , , ,12
2

13
2

14
2

23
2

24
2

34
2 , we calculated the 

betweenness ratio (cf. Equation 1) and the min-max interaction score (cf. Equation 2) for each candidate gene 
using a threshold of 0.01 for the betweenness ratio and a threshold of 400 for the min-max interaction score. These 
two measurements of each candidate gene are provided in the Supplementary Material III, and the remaining 
genes are listed in the Supplementary Material IV. The number of genes in the gene sets S S S S S S, , , , ,12

3
13
3

14
3

23
3

24
3

34
3  

is listed in column 4 of Table 1. Compared to the number of candidate genes listed in column 3 of Table 1, the 
candidate genes were again decreased significantly. It is believed that these candidate genes have few false positives 
and have strong associations with cancer. Some of them are discussed in the following section.

Discussion
Analysis of candidate genes of two levels. Cancer driver genes as we have mentioned above have been 
widely reported to be the driving force for the tumorigenesis. According to our method, we obtained various 
genes that contribute to the initiation and progression of lung adenocarcinoma on at least two levels of the four 
basic driver levels (methylation, mutations, microRNA expression and expression/mRNA). The important candi-
dates involving any two driver levels are listed in Tables 2–7. Here, we only provide the brief analyses, the detailed 
analyses are provided in Supplementary Material V.

For the levels of methylation diversity and microRNA expression abundance, 27 genes were predicted to 
driver the lung adenocarcinoma in such two levels. Among them, six of them have the evidences to support the 
claim and are listed in Table 2. Interacting with specific microRNAs such as microRNA-142-3p, functional genes 
like TCF3, MEN1, MLL, EFNA4, PBX1, and SHH have all been confirmed to contribute to tumorigenesis via 
methylation alteration and microRNA regulation (The detailed analysis of the important candidates can be seen 
in Supplementary Material V). Take TCF3 as an example. The methylation alteration of TCF3 has been confirmed 
to contribute to the proliferation of A549 cells, a typical lung adenocarcinoma cell line in vitro experiments, 
implying that such gene may also contribute to the initiation and progression of lung adenocarcinoma on such 
level49. As for the microRNA level, the interactions between TCF3 and a group of microRNAs (miR-590, miR-17 
and miR-18) has been confirmed, validating that TCF3 may also contribute to the initiation and progression of 
lung adenocarcinoma on such level50. For the methylation diversity and mutation differentiation, there are still 
several genes (such as TCF3, MLL, MEN1, SHH, CTNNB1 and FZD1, listed in Table 3) that have been reported 
to participate in the tumor associated pathways (The detailed analysis of the important candidates can be seen in 
Supplementary Material V). The methylation and mutation status of such genes have been confirmed to be abnor-
mal during the progression of lung adenocarcinoma and similar solid tumors. Take FZD1 as an example, FZD1 
is a functional gene on our list, which has been widely reported to be related to various tumor subtypes51,52. The 
methylation status of this gene has been associated with prostate cancer and age-associated diseases53,54. There 
are only a few reports of FZD1-associated mutations. However, it has been proven that the mutations of FZD-1 
may be crucial for specific diseases including tumors, validating our prediction55,56. Considering that the gene 
expression is regulated by specific methylation process in the genome, this level, corresponding to the mRNA 
level diversity between the tumor tissue and the adjacent normal tissue, is associated with the first level (meth-
ylation diversity). Genes like MEN1, TCF3 and SHH, listed in Table 4, are all crucial genes that contribute to the 
initiation and progression of tumors on multiple levels (The detailed analysis of the important candidates can be 
seen in Supplementary Material V). TCF3 as we have mentioned above turns out to be confirmed to contribute to 

Pair of 
gene sets

Number of candidate genes 
obtained by SP method (Sij

1)
Number of candidate genes 

filtered by permutation test (Sij
2)

Number of candidate genes filtered by further 
selection using betweenness and PPI (Sij

3)

G1 and G2 1355 310 27

G1 and G3 723 242 42

G1 and G4 1606 455 39

G2 and G3 1402 357 45

G2 and G4 2515 485 33

G3 and G4 1705 431 56

Table 1.  Number of candidate genes obtained by the SP method and filtered by the permutation test and 
further selection. G1: A set containing 153 methylated CpG site genes; G2: A set containing 825 microRNA 
target genes; G3: A set containing 197 somatic mutation genes; G4: A set containing 1,373 mRNA genes.
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lung adenocarcinoma on methylation alteration49. What’s more, considering the expression regulation function of 
microRNAs, such identified microRNA-associated cancer driver may also contribute to tumor genesis on mRNA 
level. Some of the candidate genes have also been predicted to be related to both microRNA expression differenti-
ation and mutation diversity of malignant and somatic cells. Interacting with microRNA-365 and microRNA-27b, 
the most important candidates for these two levels are listed in Table 5. COL1A2, SHC1, FKBP1A, TTN and NGF 
are all crucial cancer driver genes that contribute to lung adenocarcinoma in their respective ways (The detailed 
analysis of the important candidates can be seen in Supplementary Material V). The fifth group of genes (includ-
ing PTCH1, SHH, ITGA2, ITGA5, GRB2, EP300 and SMC3, listed in Table 6) contribute to the progression of 
lung adenocarcinoma on at least the microRNA regulation and mRNA expression level (The detailed analysis 
of the important candidates can be seen in Supplementary Material V). As for the last set of genes, such genes 
ITGA2, ITGA5, NOTCH1, PXN and DYNLL1, listed in Table 7, contributes to tumors on both the mutation and 
mRNA levels (The detailed analysis of the important candidates can be seen in Supplementary Material V). All 
of our predicted genes that contribute to at least two levels have been confirmed to be real driver genes by recent 
publications

Analysis of candidate genes of high frequencies. In Section “Results”, six sets of candidate genes were 
obtained that were deemed to induce tumor initiation and progression on two levels. We took the union opera-
tion of these six sets and obtained 110 candidate genes. Among them, some genes occurred many times, meaning 

Ensembl ID
Gene 

symbol Description Betweenness
Permutation 

FDR
Betweenness 

ratio
Min-Max 

interaction score

ENSP00000403005 EFNA4 Ephrin-A4 1597 < 0.001 0.014897 679

ENSP00000337088 MEN1 Multiple Endocrine 
Neoplasia I 7269 < 0.001 0.067808 719

ENSP00000352262 MLL
Myeloid/lymphoid or 

mixed-lineage leukemia 
(trithorax homolog, 

Drosophila)
7342 < 0.001 0.068489 988

ENSP00000405890 PBX1 Pre-B-Cell Leukemia 
Homeobox 1 2529 < 0.001 0.023591 822

ENSP00000297261 SHH Sonic Hedgehog 2800 0.001 0.026119 986

ENSP00000262965 TCF3 Transcription Factor 3 2651 < 0.001 0.024729 985

Table 2.  Important candidate genes in S12
3  (based on methylated CpG site genes and microRNA target 

genes) identified by our method.

Ensembl ID
Gene 

symbol Description Betweenness
Permutation 

FDR
Betweenness 

ratio
Min-Max 

interaction score

ENSP00000344456 CTNNB1
Catenin (Cadherin-

Associated Protein), Beta 
1, 88kDa

3240 < 0.001 0.126592 996

ENSP00000287934 FZD1 Frizzled Class Receptor 1 382 0.002 0.014925 813

ENSP00000337088 MEN1 Multiple Endocrine 
Neoplasia I 1567 < 0.001 0.061225 719

ENSP00000352262 MLL
Myeloid/lymphoid or 

mixed-lineage leukemia 
(trithorax homolog, 

Drosophila)
1581 < 0.001 0.061772 571

ENSP00000297261 SHH Sonic Hedgehog 706 < 0.001 0.027585 985

ENSP00000262965 TCF3 Transcription Factor 3 571 0.002 0.02231 420

Table 3.  Important candidate genes in S13
3  (based on methylated CpG site genes and somatic mutation 

genes) identified by our method.

Ensembl ID
Gene 

symbol Description Betweenness
Permutation 

FDR
Betweenness 

ratio
Min-Max 

interaction score

ENSP00000337088 MEN1 Multiple Endocrine 
Neoplasia I 9748 < 0.001 0.059972 719

ENSP00000297261 SHH Sonic Hedgehog 4782 < 0.001 0.02942 995

ENSP00000262965 TCF3 Transcription Factor 3 4274 < 0.001 0.026295 987

Table 4.  Important candidate genes in S14
3  (based on methylated CpG site genes and mRNA genes) 

identified by our method.
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that they may drive tumor initiation and progression on multiple levels. Thus, the frequencies of 110 candidate 
genes were counted and listed in the Supplementary Material VI. Because there were totally six sets of candidate 
genes, six is the maximum value of frequencies for each candidate gene. This section gives a detailed discussion of 
the genes with frequencies greater than three (half of the maximum frequency), which are listed in Table 8. These 
candidate genes occurred in more than half of the candidate gene sets and have been reported and confirmed to 
participate in and contribute to the process of tumorigenesis. Here, their brief discussion is provided. Readers can 
found the detailed analyses in Supplementary Material VII.

Genes occurred in more than three gene sets have been analyzed. Three genes, PTCH1, CTNNB1, and FYN, 
have been predicted to contribute to the initiation and progression of lung adenocarcinoma in all the six gene 
sets. Such three genes have all been regarded as core functional cancer driver genes. Associated with proliferation 
and adhesion associated pathways such a PI-3K cascade, such three genes not only participate in the initiation 
and proliferation of the tumor , but regulate the metastasis processes as well57 (The detailed analysis of such genes 

Ensembl ID
Gene 

symbol Description Betweenness
Permutation 

FDR
Betweenness 

ratio
Min-Max 

interaction score

ENSP00000297268 COL1A2 Collagen, Type I, 
Alpha 2 2577 < 0.001 0.016865 985

ENSP00000371138 FKBP1A FK506 Binding Protein 
1A, 12kDa 3140 < 0.001 0.02055 998

ENSP00000358525 NGF Nerve Growth Factor 
(Beta Polypeptide) 4923 < 0.001 0.032219 943

ENSP00000401303 SHC1
SHC (Src Homology 2 
Domain Containing) 

Transforming Protein 1
6291 < 0.001 0.041171 999

ENSP00000348444 TTN Titin 3248 < 0.001 0.021257 504

Table 5.  Important candidate genes in S23
3  (based on microRNA target genes and somatic mutation genes) 

identified by our method.

Ensembl ID
Gene 

symbol Description Betweenness
Permutation 

FDR
Betweenness 

ratio
Min-Max 

interaction score

ENSP00000263253 EP300 E1A Binding Protein P300 60273 < 0.001 0.062112 995

ENSP00000339007 GRB2 Growth Factor Receptor-
Bound Protein 2 48282 < 0.001 0.049755 939

ENSP00000296585 ITGA2
Integrin, Alpha 2 (CD49B, 
Alpha 2 Subunit Of VLA-2 

Receptor)
12251 0.002 0.012625 987

ENSP00000293379 ITGA5
Integrin, Alpha 5 

(Fibronectin Receptor, 
Alpha Polypeptide)

25513 0.004 0.026291 964

ENSP00000332353 PTCH1 Patched 1 17300 < 0.001 0.017828 939

ENSP00000297261 SHH Sonic Hedgehog 10778 < 0.001 0.011107 986

ENSP00000354720 SMC3 Structural Maintenance Of 
Chromosomes 3 10413 0.001 0.010731 986

Table 6.  Important candidate genes in S24
3 (based on microRNA target genes and mRNA genes) identified 

by our method.

Ensembl ID
Gene 

symbol Description Betweenness
Permutation 

FDR
Betweenness 

ratio
Min-Max 

interaction score

ENSP00000242577 DYNLL1 Dynein, Light Chain, 
LC8-Type 1 6746 < 0.001 0.029117 803

ENSP00000296585 ITGA2
Integrin, Alpha 2 
(CD49B, Alpha 2 

Subunit Of VLA-2 
Receptor)

9109 < 0.001 0.039317 959

ENSP00000293379 ITGA5
Integrin, Alpha 5 

(Fibronectin Receptor, 
Alpha Polypeptide)

10741 < 0.001 0.046361 835

ENSP00000277541 NOTCH1 Notch 1 11069 < 0.001 0.047776 948

ENSP00000228307 PXN Paxillin 3913 < 0.001 0.016889 702

Table 7.  Important candidate genes in S34
3  (based on somatic mutation genes and mRNA genes) identified 

by our method.
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can be seen in the Supplementary Material VII). As for the five genes (BCAR1, SHH, NGF, VEGFA, and GCG) 
that can be identified to be shared in five gene sets, they are also confirmed to be significant driver genes. Take 
BCAR1 as an example, such gene involves in crucial regulatory pathways like tyrosine kinase signaling pathways 
and further contribute to the survival, proliferation and invasion processes during tumorigenesis58 (The detailed 
analysis of such genes can be seen in the Supplementary Material VII). Quite more genes have been clustered in 
the group with the regulatory level frequency of four. Such genes regulate the abnormal pathways during the tum-
origenesis processes such as the cell-cell adhesion regulation (CDH1), proliferation (STAT3, SRC), and chronic 
inflammatory reaction (LEP). All of such genes can be confirmed to be cancer driver genes by recent publications 
(The detailed analysis of such genes can be seen in the Supplementary Material VII).

As we have mentioned above, we identified a group of candidate cancer drivers that contribute to lung adeno-
carcinoma in multiple levels, which are all proved by recent literatures. Here, we may propose a new hypothesis 
for the initiation and progression of lung adenocarcinoma: the real core driver of lung adenocarcinoma (and 
maybe other cancers) may contribute to tumor genesis simultaneously on multiple levels. Considering the com-
plicated regulatory system of human bodies, a single abnormal variation that contribute to the genomic altera-
tions of a single level (e.g. mutations) may not be functional and significant enough to initiate the tumor genesis. 
The real core driver of cancer (lung adenocarcinoma) may contribute to tumor genesis on at least two levels to 
insure the initiation of malignant changes of normal cells. For example, the well-known typical core drivers for 
lung adenocarcinoma like EGFR all contribute to lung adenocarcinoma on multiple levels, though haven’t been 
identified and analyzed in the same publications19,59. All in all, based on our newly presented computational 
methods, we not only identified a group of novel cancer drivers for lung adenocarcinoma, but presented a new 
perspective for the underlying mechanisms of tumor genesis, providing a new sight into the initiation and pro-
gression of lung adenocarcinoma.

Conclusions
This contribution investigated the so-called cancer driver genes. A computational method was built to identify 
new potential candidate cancer driver genes. The analyses indicate that some of the obtained genes have the 
potential to drive tumorigenesis on multiple differentiation levels. It is hopeful that the findings presented in 
this study will promote the study of cancer driver genes and provide new insights into the investigation of tumor 

Ensembl ID
Gene 

symbol Description Frequency
Pair of gene sets producing 
the candidate gene

ENSP00000332353 PTCH1 Patched 1 6
G1 and G2, G1 and G3, G1 and 
G4, G2 and G3, G2 and G4, 
G3 and G4

ENSP00000344456 CTNNB1
Catenin (Cadherin-

Associated Protein), Beta 
1, 88 kDa

6
G1 and G2, G1 and G3, G1 and 
G4, G2 and G3, G2 and G4, 
G3 and G4

ENSP00000357656 FYN
FYN Proto-Oncogene, 

Src Family Tyrosine 
Kinase

6
G1 and G2, G1 and G3, G1 and 
G4, G2 and G3, G2 and G4, 
G3 and G4

ENSP00000162330 BCAR1 Breast Cancer Anti-
Estrogen Resistance 1 5 G1 and G3, G1 and G4, G2 and 

G3, G2 and G4, G3 and G4

ENSP00000297261 SHH Sonic Hedgehog 5 G1 and G2, G1 and G3, G1 and 
G4, G2 and G4, G3 and G4

ENSP00000358525 NGF Nerve Growth Factor 
(Beta Polypeptide) 5 G1 and G2, G1 and G3, G2 and 

G3, G2 and G4, G3 and G4

ENSP00000361125 VEGFA Vascular Endothelial 
Growth Factor A 5 G1 and G3, G1 and G4, G2 and 

G3, G2 and G4, G3 and G4

ENSP00000387662 GCG Glucagon 5 G1 and G2, G1 and G3, G1 and 
G4, G2 and G4, G3 and G4

ENSP00000261769 CDH1 Cadherin 1, Type 1, 
E-Cadherin (Epithelial) 4 G1 and G3, G1 and G4, G2 and 

G3, G3 and G4

ENSP00000264657 STAT3
Signal Transducer 
And Activator Of 

Transcription 3 (Acute-
Phase Response Factor)

4 G1 and G2, G1 and G3, G1 and 
G4, G2 and G4

ENSP00000277541 NOTCH1 Notch 1 4 G1 and G3, G2 and G3, G2 and 
G4, G3 and G4

ENSP00000296585 ITGA2
Integrin, Alpha 2 

(CD49B, Alpha 2 Subunit 
Of VLA-2 Receptor)

4 G1 and G3, G2 and G3, G2 and 
G4, G3 and G4

ENSP00000312652 LEP Leptin 4 G1 and G2, G1 and G3, G1 and 
G4, G2 and G4

ENSP00000350941 SRC
SRC Proto-Oncogene, 

Non-Receptor Tyrosine 
Kinase

4 G1 and G3, G2 and G3, G2 and 
G4, G3 and G4

Table 8.  Frequencies of some core candidate genes. G1: A set containing 153 methylated CpG site genes; 
G2: A set containing 825 microRNA target genes; G3: A set containing 197 somatic mutation genes; G4: A set 
containing 1,373 mRNA genes.
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initiation. In this study, we used the protein information (protein-protein interaction) to investigate cancer driver 
genes. In future, we will consider adding some other information, such as microRNA related to cancer60, into our 
method, which may yield more useful information for the study of cancer driver gene.
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