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Abstract: Due to the praiseworthy maneuverability and actuation flexibility, the in-wheel-
motor-driven mobile robots (IWMD-MR) are widely employed in various industrial fields. However,
the active estimation and rejection of unknown disturbances/uncertainties remain a tough work for
formulating a stable lateral motion controller. To address the challenge, this paper proposes a robust
lateral stabilization control (RLSC) scheme for the developed IWMD-MR by designing an active
disturbance suppression mechanism. The distinctive features of the proposed RLSC method are
threefold: (i) With a fuzzy estimator, a modified super-twisting sliding mode method is designed
to eliminate the system perturbations and time-varying lumped disturbances in an active manner;
(ii) The resultant system trajectory is forced into a bounded switching region within finite time,
which can be maintained therein for subsequent periods; (iii) Employing the Lyapunov function,
new adaption rules for multivariable gains are derived to preserve the lateral motion stability and
robustness. Finally, under the direct yaw moment control framework, simulation experiments of
real-life IWMD-MR are offered to verify the effectiveness of the presented RLSC method.

Keywords: lateral stabilization control; mobile robots; active disturbance suppression; super-twisting
sliding mode

1. Introduction

Since robotic technologies continue to develop in the automotive industry, mobile robots are
being increasingly employed as a practical solution for mobile processing of large complex parts
or logistics transportation [1-4]. Up to now, various types of mobile robots have been designed,
such as two/three-wheeled mobile robots [5,6], differential mobile robots [7-9] and omnidirectional
mobile robots equipped with Omni or Mecanum wheels [10,11]. Among the existing prototype, each
wheel of two/three-wheeled or differential mobile robot usually has only one degree-of-freedom,
implying the difficulties to perform omnidirectional movement flexibly in narrow spaces or confined
environments [12]. As a typical differential-type mobile robot, the four-wheeled skid steering one can
change its orientation by utilizing the actuation difference of each wheel, which may lead to inherent
inefficiencies due to the skidding wheels [13]. Using Omni or Mecanum wheels, the omnidirectional
mobile robot can realize effective omnidirectional movement without changing the direction of the
mounted wheels. Such omnidirectional mobile robots allow for the lateral movement, but the rotation
of rollers will result in the slippage of the mobile robot and the loss of ground friction interaction [14].
Moreover, the slippage is difficult to be modeled and identified. It is worth noting that in rigorous
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environments, the independently driven and steering architecture of four-wheeled autonomous mobile
robots are beneficial for enhancing the maneuverability and applicability [15,16]. Specifically, the
car-like in-wheel-motor-driven mobile robots (IWMD-MR) can sustain the free orientation regulation
of the four-wheeled actuation system while providing better tolerance to surface irregularity and
higher durability of tires. Given this context, IWNMD-MR can achieve satisfying efficiency and actuation
flexibility thanks to the special structure of the drivetrain [17-19].

Recently, the vigorous development of IWMD-MR enables immense technological and scientific
advancements, particularly for lateral motion control [20,21]. With in-wheel or hub motors, the
driving and braking torques on each wheel of IWMD-MR can be regulated more precisely. This
actuation feature fosters lateral motion control superiority and can reach enhanced closed-loop stability
and tracking control performance [22]. However, the lateral motion stabilization of IWMD-MR
is more complicated due to the nonlinear dynamics, strong system coupling or interconnected
states. Till now, it is still challenging for the IWMD-MR to achieve better controllability and stability
under unknown disturbances/uncertainties such as modeling uncertainties, external disturbances
(including the time-varying inertia and torque ripple) and parameter variations [23]. According to the
different actuation characteristics, previous contributions mostly concentrate on the following two
control methods:

(1) Active front steering control (AFSC). Receiving considerable interest from the mobile robotic
fields, the potential benefits of the AFSC include improving handling the behavior during normal
driving and guaranteeing lateral motion stability by utilizing the front steering commands. For
example, in the presence of actuator faults including loss-of-effectiveness fault, additive fault
and stuck-at-fixed-level fault, the motion stabilization issue of electric vehicles via AFSC is
addressed in [24]; Based on the lateral tire force, Nam et al., present a robust AFSC method to
strengthen the vehicle stability and maneuverability [25]; To optimize the front steering angle
of autonomous vehicles, a model predictive control method is designed to trace the desired
reference trajectories [26]. In [27,28], to realize active front steering of steer-by-wire systems,
enhanced yaw stability controllers are designed with the verified effectiveness implemented on
hardware-in-the-loop platforms. Even though the existing AFSC scheme can handle some of
the lateral motion control issues, it is only applicable to control the considered INMD-MR at a
moderate cornering level.

(2) Direct yaw control (DYC). In addition to AFSC, the chassis DYC of the FAMR is able to achieve
accurate yaw moment adjustment, leading to enhanced tracking performance with respect to
dynamic tracking and asymptotical stability [29,30]. Different DYC related works have been
explored, focusing on direct yaw moment scheduling of INMD-MR. For seeking the optimal
yaw moment and active steering angle, a multiobjective model predictive control method is
provided to allocate the four-wheel torques and ensure the closed-loop stability of electrical
vehicles [18]. By utilizing a robust control framework, Hu et al., resolve the motion stabilization
issue of four-wheel electric vehicles to mitigate the modeling uncertainties, external disturbances
and parameter variations [31]. To achieve yaw moment distribution, a hierarchical strategy is
proposed by integrating an overlook controller and a servo-loop controller to effectively optimize
the required yaw moment inputs of the IWMD-MR [32].

It should be pointed out that AFSC reaches additional steering by regulating the sideslip angle
and producing lateral forces while DYC is capable of compensating the restrictions of the steering
input. By utilizing different braking forces to the left and right sides of the wheels, DYC realizes
the yaw motion using the steering angle information. However, the IWMD-MR system often suffers
from uncertainness and various disturbances in practice, which imposes difficulties to achieve a
dynamical lateral stabilization controller among the aforementioned studies. With superior advantages
of insensitivity to system uncertainties, quick tracking response and easy implementation, sliding mode
control (SMC) has been incorporated into the direct yaw moment control of mobile robotic systems
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over recent years. For instance, Ding et al., combine sliding mode mechanism and disturbance observer
technology to explore the optimal yaw moment adaption law [33]; With practical demonstrations,
an integral SMC solution is designed to enable a torque-vectoring regulation scheme for electric
vehicles [34]. Indeed, the promising SMC solutions are potential for enhancing the control capabilities
from both the disturbance alleviation and asymptotical stability [35]. By ensuring the finite-time or
asymptotical convergence, it is possible to drive the constructed sliding variable to the desired sliding
manifold under known bounded disturbance or its derivative. Nevertheless, the upper limitation
information may be generally unknown due to the complex uncertainties and disturbances of the
over-actuated INMD-MR system considered here. On the other hand, although the SMC gains can
quickly and exactly accommodate the time-varying operating conditions, the uncertainties cannot be
directly reflected in the control parameters. Given this context, the control gains of such a passive
mechanism should be relatively high to offer enough robustness for the resulting system while ensuring
the dynamic tracking performance [36]. This is referred to as the overestimation problem of the control
gains, and it may lead to serious chattering phenomena. To overcome the adverse influence, it is still of
great significance to explore a more robust lateral stabilization controller for the INMD-MR to ensure
the stability and dynamic performance under unknown disturbances and uncertainties.

Motivated by the above analysis, we will focus on the robust DYC of the developed INMD-MR
in this paper. An improved robust lateral stabilization control (RLSC) is explored here to handle the
active disturbance estimation and suppression issue of the IWMD-MR. The proposed RLSC scheme can
simultaneously optimize the yaw rate and sideslip angle during the lateral motion control framework
with guaranteed system robustness and dynamic tracking precision. This method treats the system
vibrations, dynamic perturbations and external disturbance as complex uncertainties. Then, an
enhanced super-twisting like sliding mode control algorithm is designed to estimate the uncertainties
with a fuzzy-based estimator and reject the effects using modified adaption law. Under the presented
RLSC method, the traditional passive adaption law of robust lateral stability control is modified to
achieve active disturbance suppression performance. Moreover, the designed sliding variables can
be quickly converged to the desired sliding manifold and maintained on it thereafter. Comparative
experiments are performed in real-world scenarios, validating the benefits and superior abilities of the
presented RLSC scheme.

The rest of this paper is constructed as follows: Section 2 provides the system modeling and
problem formulation. The proposed RLSC scheme is presented in Section 3, including the presented
active disturbance suppression structure and the related stability and finite-time convergence aspects.
Further, Sections 4 and 5 offer simulation experimental validations and concluding remarks, respectively.

2. System Modeling and Problem Formulation

2.1. System Modeling

For lateral motion control, the dynamic states of the considered IWMD-MR can be formulated as a
multiple-input multiple-output system with interconnected variables, i.e., sideslip angle and yaw rate.
For the two-degree-of-freedom planar model of the dynamical IWMD-MR system shown in Figure 1,
we define the following notations: m total mass, vy longitudinal speed at the center of gravity (CG), F}
and Fl.y longitudinal and lateral tire forces at ith tire, respectively, § and y sideslip angle and yaw rate,
separately, I, inertia moment, Lf and L, distances from the front and rear axles, respectively, 6f virtual
front wheel angle, 6, = kéy virtual rear wheel angle with k being the user-defined coefficient that can be
used for operating model configuration, M,, yaw moment generated by the traction moment of four
wheels, d track width. In this paper, k is set as 0 to make the considered IWMD-MR operated in the
widely adopted Ackerman mode.
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(@ (b)

Figure 1. System modeling and problem formulation. (a) Four-wheeled model; (b) Single-track model.

In the yaw plane, the four-wheel expression of the INMD-MR is determined by

. 2 4
mux(B+7y) = X (F;‘sinéf—i—Fl.ycoséf) + X (F?cosér—Ffsin(S,)
‘ i

i=1 =3
2 4
Ly = L Ly(Fsinds + F! cos b5) - Py Ly (F! cos 6, — F¥sin&,) + M, @
M, = 0.5d(F}, — F)) cos 6, + 0.5d(F;r - F;l) cos Of

In practice, we can directly measure or estimate the lateral forces Fy,, F, F;r and F%, by using
observer techniques [20]. As shown in Figure 1b, we will simplify the four-wheel model as a single-track
model for the dynamic RLSC design. In this regard, we rewrite the lateral and yaw dynamics as follows

Y X f Y (2)
Ly = LfF cos 6f —L,F; cos & + My,

{ muy(B+7y) = F cos O + F} cos 6,
f

where the lateral tire forces F; and F/ can be linearly calculated as follows

L
£y Ly
B = acpe ) B = 20 fp- T o) o

where C¢ and C;, denote the cornering stiffnesses of the front and rear tires, separately.

In general, the tire concerning stiffness is affected by weight transfer. By employing small-angle
approximation (e.g., coséy ~ 1, cosd, ~ 1), we reconstruct the dynamic model in a general
continuous-time form

x(t) = Ax(t) + Bu(t) + f(x,t) 4)

where x(t) = [,7]" and u(t) = [6 Iz M,]" denote the state and control input vectors, separately, f(x,t)
denotes the external disturbance, A and B denote the parametric vectors expressed by

-2(C+Cr) Z(LrCr—szCf) -1 2C—2C/k 0
— MUy mvy B Mmuvy

“2(LfCp-L,C,)  —2ALICHLC) [ 2LsCy ;FZLrCrk 1

Z 4

I, Lvy

Then, considering the parametric perturbation, one can further obtain the IWMD-MR system
determined by (4) as below

x(t) = (A+ AA)x(t) + (B+ AB)u(t) + f(x,t) ()

where A and B denote the nominal parametric matrix derived by using C = C Ji and C, = C,,

respectively, C; and C, denote the related nominal parameters, AA and AB denote the uncertainties
caused by the vibrations of the tire concerning stiffness.
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Define the parametric perturbation D(x,t) as D(x,t) = AAx(t) + ABu(t). By constructing the
relationship between D(x,t) and d(x,t), we can always find a B to satisfy (6). However, the solution process

-1 . .
needs to calculate B, so we have formulated the following assumptions for the subsequent derivations:

Al. The pair (A,B) is controllable;
A2. The vector B has full column rank and it is invertible in this paper.

Therefore, the following matching condition is satisfied
D(x,t) = Bd(x,t) (6)

where d(x,t) denotes the parametric vector.

For a practical implementation, we will limit the system states and the optimized control input to
some known bounds due to the mechanical characteristics. Based on (6), the bounds of d(x,t) and d(x,f)
can be derived accordingly

d(x,t) = B (AAx(t) + ABu(t)), d(x,t) = B (AAx(t) + ABir(t)) @)

Denote the lumped disturbances as f’(x,t) = d(x,t) + f(x,t). With full consideration of (6) and
(7), itis concluded that f’(x,t) and the related derivative f’(x,t) are limited by respective known positive
constants d,, and d,,. That is to say,

If” (e, Dl < d, 1f (5, 1 < ®)
Hence, the considered system can be finally constructed by

x(t) = Ax(t) + Bu(t) + f'(x,t) )
Further, we offer the following assumption:

A3. The function f’(x,t) and the related gradient are bounded by unknown functions.

Remark 1. It is well known that the mentioned system uncertainties and disturbances are bounded, as
demonstrated in (8). On the other hand, due to the time-varying characteristics, we cannot directly obtain the
vibration information of the lumped disturbances. Given this context, an enhanced super-twisting like sliding
mode control algorithm is designed to estimate the lumped disturbances with a fuzzy-based estimator and then
mitigate the influences using the modified adaption law in this paper.

2.2. Problem Formulation

As shown in Equations (5) and (9), on has two system states to be controlled and two controllable
inputs, i.e., 6y and M,,. In practice, the yaw rate and sideslip angle can be regarded as the commonly
applied indicators of lateral stability and dynamic performance. Furthermore, the required yaw rate
4 is attained based on the desired trajectories. Specifically, we will use a reference mode to derive the
IWMD-MR based on the monitored information, such as the steering angle and longitudinal velocity
vy. In this paper, the concerning y; and f; of the vehicle are derived as follows

Vi = min{|77|, ymax|} . sign(éf) (10)

Bl

Ba = min{[B], |Bmax]} - sign(sy) (11)
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where Yyuax and Bmay denote the practical bounds of the desired signals, and y and Eis determined by

—_ v
V= akor (12)
S

—  L2dL.C; - LymLsv3

p= 2dL,C,dK, O (13)
m(L,C, — L¢Cy)v?

K.o=1+ (LCr - LGyt (14)

2d2C(C,

Therefore, the trajectory-tracking problem considered in this work is translated into the direct
yaw moment control issue of the IWMD-MR to stabilize the lateral motion activities relating to yaw
moment and sideslip angle. To this end, this paper will propose an RLSC control scheme with active
disturbance suppression capability for the disturbed INMD-MR system, realizing the lateral stability
control when following the desired profiles. We will explore an adaptive-gain-scheduled algorithm
to optimize the continuous control inputs in the presence of unknown additive and multiplicative
disturbances and perturbations.

3. Main Results

3.1. The Proposed Control Structure

Based on the above-referenced assumptions (A1-A3), using the linear state transformation

( P ) —gx, 7=| 2| BB=0, B=(8"B) A" (15)
P2 B
one can rewrite the system (9) as follows
@1 () = Ang1 () + Anga(t)
, A A (16)
Po(t) = Anp1(t) + Ao (t) + u(t) + (@1, @2, t)

where Ay € R(m=m)x(m=-m) = AL, ¢ Rm=m)xm A, e RMX(Mm=m) A, € R™X% with ny and n, being
the dimensional of the input vector and output vector, respectively, and g(¢1,¢»,t) denotes the complex
uncertainties that cannot be directly measured.

Using a designed matrix G € R"*("~) which can be derived utilizing linear control methods
(e.g., eigenvalue assignment), the desired sliding mode surface of this paper is constructed as

s = @2 — Gy (17)
Then, the control input takes the form of
u= —(Zﬂ + ApG - G(Ay + glzG))(Pl (t) - (gzz - Gglz)s +0 (18)

where v denotes the enforcement control law to be designed later.
Therefore, the system (16) takes the form

{ (pl = (le +ZuG)(P1 —FZQS (19)

s =v+g(p1,92,t)
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In addition, with ¢4 (s) = y1|s|asign(s) + uzs, where (1;=1 » > 0 denote predefined coefficients, the
sliding mode reaching conditions can be satisfied by applying the following enforcement law

v = —0101(s) — 0202(s) (20)

éz(s): 951 (s)1(s)

2 . , ) (21)
= y1a|s|2a_1szgn(s) +(1+ a)y1y2|s}a51gn(s) + u5s

where 01 and 0, denote the adaptive gains to be derived later, & € (0,1) is the specified fractional order.
Subsisting (20) into (19), we obtain

§=-01 (yl(s|asign(s) + u2s) + v+ g(@1, 92, t) (22)

V= —oz(y%a|s|2a_1sign(s) +(1+ a)y1y2|s|asign(s) + y%s) (23)

Since the complex uncertainty cannot be directly measured or calculated, an adaptive fuzzy-based
estimator is designed here to approximate the unknown disturbances/uncertainties, so as to achieve
active suppression ability and avoid the overestimation of the related control gains. We construct
a fuzzy-based approximation §(x|0,) = ég/\(x) where O, denotes the adaptive law based on the
Lyapunov stability theory and A(x) denotes the fuzzy basis vector. A series of fuzzy rules are used to
estimate the uncertainties g(x|9g) :

Rule (i): IF x; is A} and ... xy is Aly, THEN g is El-n
I; .
Where related fuzzy sets Ai’ , x; are input variables, i = 1,2, ... ,n.

Then, by employing the traditional center average defuzzifier, we can calculate the estimator’s
output as

I I e)
e Y L n A x;
L=1  I=1 Y \L [JA? l

§(x10,) = (24)

where b (x;) denotes the membership function.
i n
Suppose that a [] p;-dimensional fuzzy basis vector is defined as A(x) with input variable x. Thus,
=1

1=
we can rewrite (24) as

H H l/' (xl)
. AT =1 A
g(x|9g) = QgA(X)/ All,...,ln (x> Y Pn [ n @)
D) (‘H u zj(xi))
h=1 lL=1\i=1 4

The optimal parameter vector is noted as 9? and one can obtain
g (xl6%) = argmin{sup|§(x’9g) - eg|}/\(x) (26)
Qge .
where ¢, denotes the approximated error and ()g is the set of 0.

Defining 0, = 9; - éy, one can be derived that

§(x10g) = O A(x) + &g — O3 A(x) = O3 A(x) + &g 27)
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3.2. Adaption Law Design

Theorem 1. Under the proposed control law derived by (18), (22) and (23) and the fuzzy-based estimator
(25), there exist a range of adaptive values o1, such that s and s can be driven to the origin in finite time
and maintained on it thereafter in any initial condition. To be more specific, the resultant system can achieve
finite-time convergence as soon as the condition

1 204 (x|05)
0120+ =32p+3¢ + ———— (28)
29{ g 91
holds and if the following adaption laws are employed
_ 1 Va)1/2 Zf 01 >(77111 (29)
n if op < oY
1 g(x|6g)
0 = —q01E+p+e—e—; (30)
e{ 1erp P11

where p>0,e>0,0>0, a;” > 0 and n > 0 denote arbitrary constants.

Proof. The proof can be classified into three parts.

Part 1: the existence of the fuzzy-based estimation law and the adaption gain o;—1 (s, s, t).

With the help of (22) and (23), we choose a Lyapunov function V(s,0) for the subsystem of
¢l = (p1(s), v)t using a quadratic form

1
Vi(s,v) = ECTPC (31)

where P = PT > 0 denotes a symmetric matrix with elements to be determined later, i.e.,

P P3
P= 2
[ Py P, ] (32)
The consideration of (22) leads to
g 1 g(x|9g)
C—¢1[ o, O]C-i-[ 0 (33)

1% iy
where ¢’; = % denotes a positive scalar.

. . . . 0 .
Assuming that there exists a function J (¢) that results in g(;l,lg ) ﬁ = (1, we obtain that

-1+ J(t) 1 ]C (34)

¢= ¢/1[ —0p 0
—01 +j(t)

Substituting A £ [

(1) ] into (34) yields

¢=¢"1Ac (35)
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Besides, one can obtain that

T | o +I{t) —o2 || P1 Ps P P3|l —o1+T() 1
AP +PA_ [ 1 0 P3 P;}_ + P3 Pz —02 0 (36)
_ [ 2(-o1+J(1)P1-202P3  (-o1 +T(1))P3— 022 + P ]
(o1 +J(1))P3 —02P2 + P4 293
According to (36), design a symmetric matrix Q as
Q= -ATP-PA
_ [ 200P3 —2(—o1 + T (£))P1 02Po—P1— (T (t) —01)P3 ] (37)
0P —P1— (T (t) —01)P3 —2%P5
Then, choosing a positive definite P = pre —e|_| 71 P (p, € > 0) results in
- ¢ Ps P2
o 2006 =2(-01+J (1)) (p+¢e) —(p+e)+(T(t)—o1)e+oz¢
—(p+e)+(J(t) —o1)e + 02¢ 2¢ 38)
| 20026 +201p + 201 -2J ()p—2T (t)e ore—01e+ T (H)e—p—¢
N ope—o1e+J(He—p—e¢ 2¢

With the universal Approximation Theorem [37] and the fuzzy-based estimator, we can determine
the uncertainties in 7 (¢) with

j ¢ g(x‘ég)

_ 84 (39)
1P
If the control gain o, is designed as
_ P
02—01_j(t)+g+1 (40)
we can reformulate Equation (38) with
201p-2p—-2¢-29(t)p O
S -l
0 2¢
Further, the derivative of V(s,v) is determined by
Vi(s,v)= ¢ Pc+cTPe
r T
=-¢'1c Q¢
AR @)
= =¢'1 (91197 + g2207)
= 2p3¢1 —2p8p1 — ¢’ 1 PHT — ¢ 142207
where Z(t) = (1) - g(¢)- | -
By constructing Vz(gy) = %Fzgg and 5g = Qg — ég = —ég, where @ denotes a positive constant,
it is concluded that Vz(ag) = —%égég and
’ > (N ~ ’ ’ 1 A
Vi(s,0) + Va(65)= 20391 ~ 2081 — ¢ 19T — ¢’ 142202 ~ —Bg6g )
43

1 A ’ ’
= 5§(29A(x)¢1 - 59g) —2pg1 — ' Pd; — ¢ g2 + €
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Therefore, the learning law of the fuzzy-based estimator is then derived, i.e.,
6y = 2pA(x) P10 (44)
The combination of (43) and (44) results in

V1<5/ v) + V2(5g): —2pgp1 — (P/lq)d)% - q)/ﬂzzvz + &g
= —¢'1 20T + @|¢; — ¢’ 1q200” + &4 (45)
=—¢'1c"Qc+ g

2pg(x|6g)

5o +201p-2p-2¢ 0

0 2¢ |
Since the approximation error ¢ is sufficiently small, it is easy to choose a positive ¢ that satisfies
€ 2 €g + C, where C is an arbitrarily small positive constant. Thus, we conclude that

where é =

— . 2pg(x|0g) P
Q—[é O]: oo~ H201p=2p =3¢ 0 (46)
0 ¢ 0 €
To ensure Q — dia g(¢,€) > 0, the consideration of Algebraic Riccati Inequality [38] leads to
2pg(x|0
L'g)walp—zp—%zo,ezo (47)
qblqbl

Therefore, based on (28), we conclude that (47) can be guaranteed. In this way, the matrix a is
positive definite and its minimal eigenvalue satisfies /\min(é) satisfies /\min(é) >e.

Part 2: we will focus on the analysis of finite-time convergence.

Defining V(c, 5g) = Vi(s,v) + Vz(ag), the magnitude of V(c, 5g) can be further minified as

V(c,09)< —¢'1c"Qc

R
= —g(% cTe<—e ap i

L = e )
2upls T 4

where ||g||§ = qb% + vy = y%lslz"‘ + 2;11;12|s|6”rl + lu%sz + 12 is the Euclidean norm of .

L — ~ 2
Since V(c, 0g) = %gTPg + %egeg and1—-a € (0,1), defining %Ilegll2 = O(t)|c|?, we can get the
following inequalities

2V1/2(¢, 0,) 2V172(¢, 0,)
sl < el < S, el > S (49)
[ min ®] [/\max{P} + ®]
Based on (49), it is possible to write (48) as
V(c,0g)< —¢| appa——— + pa |Icli3
2uols| (50)
1/2
aepi o [Amin{P} + O] 12, = o ~
<- 1% ,0¢) = ——=V(c, 0
Anax(P) + O] (& 0) = TP 70 (%)

which demonstrates that V(c, 5g) is negative definite and the closed-loop stability of the resultant
system can be guaranteed.
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. aeylyz[/\min{P}Jr@]l/z ellp . .
Denoting 1 (p1, t2) o e) y2(t2) = y1—prro, since the solution of the

differential equation

lis
|>

0 = —y1(m, 2)0"? = y2(12)0,0(0) = v > 0 (51)
can be provided with
12 v1(p, p2) yalp2) \J
o(t) = exp(—y2(p2)t )[ + W(l - eXP( > f))] (52)

it is derived that V(t) < v(t) when V(sy,vp) < vp.
Especially, the reaching time of Equation (52) can be computed by

__2 v2(b2) gz
= 0w (Vl(m,uz)v (S0, )“) (53)

Therefore, under the designed variable gains determined by Equation (40), s and s can be converged
to the origin in finite time, and the reaching time can be estimated by Equation (53).

Part 3: Analysis of the adaptive control gains.

Introduce the following Lyapunov function V(g, Gg, 01,02)

L(02 - 03)2 (54)

L(O’] - G;)z + 20,

V(C, Qg,G],O'Z) = V(g/ 68’) + 2(()1

where 0] > 0, 05 > 0 denote the optimal control gains, w; > 0 denotes a positive constant.

With &, £ 01 — 07 and &g, 20y — 05, the derivative of V(g, 5g, 01,02) is given by

V(Cr 5g/ 01, 02)
= V(g, Gg) eglall—i- 8(7202 (55)
< -1Viple, Gg) €001+ 3 50202
_ 1, - 1., - @ ®
= -1Vl Gg \/27| gl| 2w2|e(72| + 27€0201 + 55 €0,02 + ﬁkgll + ﬁk@)
where @, > 0 denotes a positive constant.
1/2
The integration of (x2 + 7+ ZZ) / < x|+ |y| + |z| and (55) yields
-11V1/2(c,0g) = \/271’861| - m|502| < —min(yy, @1, @2) \/V(¢, 0y,01,02) (56)
Using 19 = min(y1, @1, @2), we can rewrite (55) as
?(g500)<— V(g500)+lsa+1ea+&|s )4—&(6 | (57)
/3’/1/2—1]0 1 Yg,01,02 (1)1011 2022 \/271(71 \/27202

Since there exist a positive constant 0] > 0, 07, > 0 satisfying 01 — 0} <0 and 02 — 03 <0, we can
reduce (57) as

=, = ~ 1. @ 1. @
V(c,0g,01,02) < —o/V(c,04,01,02) {|801|(a)101_\/2—17)+‘662|(a)_202_ \/227)} (58)
1 2

For the case 01 > o for all the t > 0, by choosing the adaption of the gains

61:601\/%, ('72:@2\/% (59)
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we can guarantee that
V(c,04,01,02) <~ V(c,04,01,02) (60)

Based on the Lyapunov theory, we can conclude that the resultant closed-loop system can achieve
strict finite-time convergence.

For the case 01 < 0”", we known 07 will increase immediately as 01 = 01 + nt. Then, as soon as 01
becomes greater or equal to o7’, the condition that defines the case 01 > 07" holds in finite time.

Further, one can select suitable parameters to guarantee that (59) and (30) coincide. Therefore,
under the proposed adaption control gains, s and s can be forced to the origin in finite time, and the
system states will be converged on the desired sliding manifold. This completes the proof. O

Remark 2. It should be noted that for the motion control of a system subject to uncertainties or disturbances,
the control gain should be configurated to offer enough robustness for the controlled system. This may cause
the overestimation issue of the control gains and the undesired chattering phenomenon. In this paper, by using
the additional fuzzy-based estimator to approximate and compensate the disturbances in a feedforward way, the
overestimation of the control gains can be well addressed intuitively. In this regard, the dynamic tracking and
system robustness can be enhanced simultaneously.

4. Simulation Experimental Validations

4.1. Experimental Implementation

To verify the proposed RLSC scheme, the developed INMD-MR is considered for simulation
validation, as shown in Figure 2. For onboard equipment, the developed INMD-MR is equipped
with an electric cabinet, industrial computer, lidar (HOKUYO UTM-30LX, Hokuyo Automatic CO.,
LTD, Osaka, Japan), ultrasonic transducer, crash sensor, industrial camera and robot arm. It has
been applied to industrial manufacturing applications to synchronously perform locomotion and
manipulation. This INMD-MR has several outstanding characteristics, including automatic charging,
trackless autonomous navigation, obstacle avoidance detection and vision-based workpiece operation.
Owing to the independently driving independently steering property, each wheel can achieve active
arbitrary movements and rotation, realizing a lateral stabilization control scheme. As can be seen
from Figure 3, the hardware architecture contains the modules of: (1) perception, used to obtain the
sensory date for perceiving the real-world surrounding and guaranteeing the safety of the robot in
unmapped or dynamic environments; (2) decision making, used for global and local path planning and
formulating strategies for next actions; (3) movement control, implementing the actuation functions to
realize yaw moment control. Specifically, the sideslip angle can be estimated using lateral tire force
sensors [20]. Then, according to the point cloud data of the lidar, the IMU measurement including
magnetic field strength from the magnetometer, acceleration from the accelerometer and angular
velocity from the gyroscope, and the displacement feedback obtained by the encoder, the robot real-time
pose and accurate yaw rate can be obtained using multi-sensor fusion [39,40]. At this point, the external
observation data yaw rate and sideslip angle can be acquired. In addition, as shown in Figure 4, the
IWMD-MR adds a multi-sensor safety module to ensure the safety of the navigation system.
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Figure 2. The prototype of the developed IWMD-MR.
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Figure 3. The construction of hardware architecture.
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Figure 4. Multi-sensor safety module.

For comparison simulation experiments, according to the features of the developed IWMD-MR
platform, the related controller gains and parameters are determined by: [=1, =0.48 m, d = 0.53 m,
m=700kg, 111 =02,1,=07, 01 =1, w1 =2,6=0.002,p=1,56=0.01 and & =0.7. For a fair comparison,
we use the following control schemes for comparison: (1) traditional proportional-integral-derivative
(PID) controller tuned by trial and error with k, = 0.3, k; = k; = 1.2; (2) the proposed super-twisting SMC
method without fuzzy-based estimator; (3) the proposed RLSC method with the presented fuzzy-based
estimator for active disturbance suppression. The sampling time is specified as 0.001 s. Moreover, for
the fuzzy-based estimator, the following memberships are applied:

eafrsgote o) o5 -5

3

(61)
el 528 ] xp{ 58] 1/ gl sinio -]
4
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where for the yaw rate aspect, we select

a =|\|ay dp d4dz da as dg ]
=|( 0.0325 0.0450 0.0825 0.12 0.1575 0.175] ©2)
b =|b by by by bs b |
0.025 0.025 0.025 0.025 0.025 0.025]
while for the estimation of the uncertainties in the sideslip angle aspect, we choose
a=| 0.0065 0.0113 0.0206 0.03 0.0394 0.044] (63)
b= 0.0125 0.0056 0.0056 0.0056 0.00565 0.0125]

4.2. Experimental Results and Discussions

For real-world experimental validation, we will consider the single lane-changing maneuvers for
the developed IWMD-MR system under the traditional widely used Ackerman mode. The maneuvering
responses concerning the yaw rate and sideslip angle can be generally applied to evaluate the lateral
motion control performance in nonidealized working conditions. Given this context, we provide the
following cases for experimental validation.

(Case 1): In this case, the IWNMD-MR is operated under a low ground interaction friction coefficient.
A sinusoidal-like trajectory is considered here. The lateral motion tracking response of yaw rate
and related errors are demonstrated in Figures 5 and 6, separately. From these two figures, one can
conclude that both the comparative approaches are able to stabilize the dynamic tracking errors. For
the traditional PID controller, it may lead to huge overshoots when tracking the time-varying profiles.
In comparison, with the sliding mode rules of the traditional SMC and our RLSC methods, the transient
performances of the yaw rate tracking responses are apparently improved. To be more specific, the
concerned responses with our RLSC has lower overshoots and steady-state errors than those with the
standard PID or SMC method.

0.06

Yaw Rate (rad/s)

- - reference
-0.04 PID

-0.06

Time(s)

Figure 5. Yaw rate tracking response of Case 1.
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-0.005 |

-0.01

Time(s)

Figure 6. Yaw rate tracking errors of Case 1.

Furthermore, the achieved results of the investigated sideslip angle and corresponding tracking
errors are demonstrated in Figures 7 and 8, respectively. By observing these results, both of the RLSC
and SMC can maintain the tracking errors within smaller limits, but the proposed RLSC is able to
enhance the transient performance relating to overshoot mitigation and error reduction. The vibration
tendency of the system trajectory coincides with that of the desired curvature of the reference profiles.
As can be seen from the yaw rate and sideslip angle tracking responses, due to the system disturbances
and uncertainties, some fluctuations can be observed in the system states under both the traditional
PID and SMC methods. By using the presented fuzzy-based estimator, the system perturbations and
time-varying lumped disturbances can be accommodated in an active way. Therefore, the achieved
lateral motion trajectories are smoother and steadier.

0.3

0.2r

0.1r

Sideslip Angle (rad)
o

= = - - reference
0.2f \,l‘ ----PD ]
-------- smMc

-0.3

Time(s)

Figure 7. Sideslip angle tracking response of Case 1.

0.04
0.03 [
~ 0.02

0.01F,

-0.01

-0.02

Sideslip Angle Error (rad

-0.03

-0.04

-0.05

Time(s)
Figure 8. Sideslip angle tracking errors of Case 1.
Then, the concerning external yaw moment and front steering angle are exhibited in Figures 9

and 10, separately. As shown in Figures 9 and 10, the control inputs using the comparison methods are
steadily optimized with reasonable magnitude. Similarly, the proposed RLSC is capable of reducing
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the input overshoots, leading to a smoother dynamic tracking response. Meanwhile, we have listed
the vibrations of the control gain o, and the estimated uncertainties in Figures 11 and 12, separately.
As mentioned before, the method of using a fixed control gain is prone to overestimation problems
in order to increase robustness. In contrast, thanks to the adaption laws, the control gain o, will
dynamically be adjusted as the disturbance changes, and the lateral motion control performance
has been improved significantly. At the same time, by taking the estimated uncertainties into the
formulation of the control law, we can directly estimate and mitigate the undesired influence to achieve
an active disturbance suppression framework, therefore enhancing the lateral stabilization motion
control performance. Furthermore, we have presented the related sliding mode surfaces in Figures 13
and 14. These results demonstrate that by using the SMC method, the sliding mode variables are
within small regions around zero, and the proposed RLSC scheme can attain a smoother response as
compared to the traditional SMC method.

400

Moment (Nm)

Time(s)
Figure 9. Direct yaw moment input of Case 1.

0.2

0.15 |

0.1

0.05 [

0

-0.05 -

Steering Angle (rad)

011

-0.15

-0.2

0 2 4 6 8 10
Time(s)

Figure 10. Front steering wheel angle of Case 1.

0.8
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06+
0.5 il g
0.4

03F

02r
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0
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Time(s)

Figure 11. The related control gain o, of Case 1.
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Figure 12. The estimated uncertainties of Case 1.
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Figure 13. Sliding mode surface (yaw rate) of Case 1.
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Figure 14. Sliding mode surface (sideslip angle) of Case 1.

From the above-mentioned analyses, the proposed RLSC method is capable of reducing the
tracking overshoots, thus mitigating the tracking errors and increasing the path-following accuracy. It
can be also concluded that the RLSC method maintains the control advantages of the sliding mode
mechanism, and is much faster and more precise than the standard SMC method. This validates the
practicability of the proposed RLSC for the controlled system subjects to perturbations and time-varying
lumped disturbances.

(Case 2): To test the robustness of the resulting IWNMD-MR system under the widely applied
Ackerman mode, the trap cut steering profile is considered here. It should be mentioned that the
IWMD-MR is operated with high ground interaction friction in this case.

The experimental results of the yaw rate response exhibited in Figures 15 and 16 show the
corresponding tracking errors. From Figures 15 and 16, one can conclude that the trajectory tracking
errors of the yaw rate can be stabilized by the three comparison approaches. By applying the proposed
RLSC, the lateral offset can be driven to steady states quickly, which is very critical for the autonomous
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mobile robots (including IWMD-MR) in emergency situations. Compared with the traditional methods
(i.e., PID controller and SMC technique), RLSC can practically mitigate the response overshoot and
increase the dynamic response. It should be pointed out that the tracking errors obtained here are
relatively smaller than in Case 1. The reason lies in that the reference path curvature employed in
Case 2 is much smaller than that in Case 1, and the steady-state errors of the yaw rate tracking can be
reduced by our RLSC method during dynamic tracking.

0.08

o o
o o
S (]

=)
Q
[N}

Yaw Rate (rad/s)
)
o
N o

<}
o
=

= = - - reference
PID
e smc

<}
o
&

RLSC

&
o
=3

. . n
0 2 4 6 8 10
Time(s)

Figure 15. Yaw rate tracking response of Case 2.
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-0.005 |

Yaw Rate Error(rad/s)

0.01 D 1
e smc
RLSC

-0.015 - : : :
0 2 4 6 8 10
Time(s)

Figure 16. Yaw rate tracking errors of Case 2.

Likewise, the sideslip angle tracking response and related errors are presented in Figures 17
and 18, separately. From these results, it is demonstrated that the system states are forced to be
bounded closely to the desired trajectories. The tracking errors of the RLSC system can be bounded
within a relatively smaller region around zero since the proposed RLSC can alleviate the fluctuations.
Figures 19 and 20 depict the front steering wheel angle and the yaw moment control input of this
case, separately. As can be seen from these figures, the concerned two inputs can be bounded in
reasonable regions. Similar to the results of Case 1, it is observed that the optimized control inputs
determined by RLSC can mitigate the overshoots to a smaller region of zero compared to the traditional
methods. In order to handle the unknown disturbance and improve system robustness, the traditional
SMC may require overestimated control gains, which may result in a relatively large chattering of
the tracking errors. Moreover, Figures 21 and 22 demonstrate the scheduling tendency of the control
gain o7 and the estimated uncertainties in this case. Since the control gains can be adaptively tuned to
accommodate the time-varying operating conditions, the proposed RLSC has potential for reducing the
errors with respect to yaw rate and sideslip angle tracking. Figures 23 and 24 show the corresponding
sliding mode surfaces of yaw rate and sideslip angle, respectively. As can be seen from these figures,
without the adaption of the control gains, the resulting sliding surfaces have a large range of variation,
which may be caused by the system uncertainties and disturbances. Utilizing the proposed RLSC
method with a fuzzy-based estimator to handle the unknown disturbances adaptively, one can obtain
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smaller and smoother sliding variables, achieving enhanced tracking response in terms of convergence
and stability.

0.3 T T T

0.2

0.1

Sideslip Angle (rad)
o

0.1

= = - - reference
02+ v PID.
———————— sMC
RLSC
-0.3 : : :
0 2 4 6 8 10

Time(s)
Figure 17. Sideslip angle tracking response of Case 2.
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Figure 18. Sideslip angle tracking errors of Case 2.
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Figure 19. Direct yaw moment input of Case 2.
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Figure 20. Front steering angle of Case 2.
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Figure 21. The related control gain o, of Case 2.
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Figure 22. The estimated uncertainties of Case 2.
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Figure 23. Sliding mode surface (yaw rate) of Case 2.
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Figure 24. Sliding mode surface (sideslip angle) of Case 2.

In this case, with our newly developed RLSC method, it is concluded that the overshoot
and oscillation of the achieved trajectory are significantly mitigated for global dynamical tracing.
Therefore, the active disturbance suppression and lateral stabilization control goal is reached more
satisfactorily applying our presented RLSC scheme. This verifies the effectiveness and practicability of
the super-twisting sliding mode mechanism and fuzzy-based estimator.

5. Conclusions

This paper proposes an improved RLSC method to achieve the anti-disturbance lateral motion
control of a developed INMD-MR. This method can be used to precisely regulate the yaw rate and
sideslip angle without system information relating to the lumped disturbances/uncertainties and the
corresponding derivatives. To this end, a fuzzy-based estimator is incorporated into the construction of
the adaptive super-twisting sliding mode mechanism, which can eliminate the dynamic perturbations
and time-varying lumped disturbances in an active way. This new scheme ensures that the output
states can asymptotically arrive at the finite-time sliding region to achieve enhanced control precision
and system robustness. With the aid of the Lyapunov theory, the stability and finite-time convergence
are ensured for the resulting lateral motion control system. Real-time simulation experimental results
verify that the lateral stabilization control performance of the developed IWNMD-MR is improved as
compared to the comparative traditional methods.

While the presented method can significantly enhance lateral motion control performance, the
maneuvering mode considered in this work is limited to traditional car-like Ackerman mode. For
further enhancement of RLSC performance in terms of yaw rate and sideslip angle tracking, future
work may include studying the switched control scheme under various operating modes, such as
double-Ackerman mode and zero-radius steering mode. How to adjust these available modes online
will be our future research directions to further improve the lateral stabilization control performances
of the developed INMD-MR system.
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The following key notations and abbreviations are used in this paper.

Notations/Abbreviations Descriptions
IWMD-MR in-wheel-motor-driven mobile robots
RLSC robust lateral stabilization control
AFSC active front steering control
DYC direct yaw control
SMC sliding mode control
PID proportional integral derivative
m total mass
Uy longitudinal speed at the left of gravity
F;.‘, Fiy longitudinal and lateral tire forces at ith tire
B sideslip angle
vy yaw rate
I, inertia moment
L¢ Ly distances from the front and rear axles
o fr Or front and rear steering angles
M, yaw moment generated by the traction moment of four wheels
d track width
FL.F5, F}r, Fj(‘l lateral forces of the rear-right, rear-left, front-right, and front-left tires
Cr, G cornering stiffnesses of the front and rear tires
01,02 adaptive control gains
a fractional order
Ui=12 predefined coefficients
8(x ég) estimated uncertainties
p, €0, (7’1”, n arbitrary constants
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