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Abstract

At least seven studies have suggested that microRNA levels in whole blood can be diagnos-

tic for lung cancer. We conducted a large bi-institutional study to validate this. Qiagen® PAX-

gene™ Blood miRNA System was used to collect blood and extract RNA from it for 85

pathologic stage I-IV non-small cell lung cancer (NSCLC) cases and 76 clinically-relevant

controls who had a benign pulmonary mass, or a high risk of developing lung cancer

because of a history of cigarette smoking or age >60 years. Cases and controls were similar

for age, gender, race, and blood hemoglobin and leukocyte but not platelet levels (0.23 and

0.26 million/μl, respectively; t test P = 0.01). Exiqon® MiRCURY™ microarrays were used to

quantify microRNAs in RNA isolates. Quantification was also performed using Taqman™
microRNA reverse transcription (RT)-PCR assays for five microRNAs whose lung cancer-

diagnostic potential had been suggested in seven published studies. Of the 1,941 human

mature microRNAs detectable with the microarray platform, 598 (31%) were identified as

expressed and reliably quantified among the study’s subjects. However, none of the micro-

RNAs was differentially expressed between cases and controls (P >0.05 at false discovery

rate <5% in test using empirical Bayes-moderated t statistics). In classification analyses

with leave-one-out internal cross-validation, cases and controls could be identified by micro-

RNA expression with 47% and 50% accuracy with support vector machines and top-scoring

pair methods, respectively. Cases and controls did not differ for RT-PCR-based measure-

ments of any of the five microRNAs whose biomarker potential had been suggested by

seven previous studies. Additionally, no difference for microRNA expression was noticed in

microarray-based microRNA profiles of whole blood of 12 stage IA-IIIB NSCLC cases

before and three-four weeks after tumor resection. These findings show that whole blood

microRNA expression profiles lack diagnostic value for high-risk screening of NSCLC,

though such value may exist for selective sub-groups of NSCLC and control populations.
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Introduction

Primary cancer of the lung is the leading cause of cancer incidence and of cancer-associated

mortality worldwide, with about 224,000 new cases and 158,000 deaths because of the disease

projected to have occurred in year 2016 in United States of America alone [1]. Approximately

85% of primary lung cancer cases are of non-small cell variety, and 65%-70% of non-small cell

lung cancers (NSCLC) are of adenocarcinoma (AC; 40%) and squamous cell carcinoma (SCC;

25%-30%) histological sub-type (e.g., [2]). Although 76%-93% of patients with lung cancer

have a history of tobacco smoking (e.g., [3, 4]), with relative risks of 4–33 and 6–67 for AC or

SCC observed respectively for 20–30 and 50–60 pack-years of cigarette smoking [5], not all

smokers develop lung cancer. The risk of a cigarette smoker getting a diagnosis of lung cancer

after 10 years of follow-up is estimated at about 5% [6]. Because clinical outcome of lung can-

cer is significantly improved by early diagnosis, screening of populations such as those of

smokers and the elderly is important. Another population for which screening is important is

that of individuals in whom a lung mass is identified in routine radiological tests. Such a mass

has a 1%-70% chance of being cancer, depending on factors such as its size [7, 8].

A screening test for lung cancer that examines biomarkers in whole blood has the advan-

tages of being non-invasive and not requiring separation of a specific component of blood

such as serum or mononuclear cells. Findings of at least seven studies suggest that microRNAs

may have a diagnostic biomarker utility in such a test. An altered whole blood microRNA

expression profile in NSCLC was first noted in 2009 by Keller and colleagues, who examined

866 microRNAs in eight AC and seven SCC cases, and 19 healthy controls to identify 27 differ-

entially expressed microRNAs between the cases and controls [9]. In a subsequent study, the

same research group examined the expression of 863 microRNAs in blood of five each of AC

and SCC cases, and 10 healthy subjects and identified 39 differentially expressed microRNAs

[10]. In the two studies, cases and controls could be distinguished by their microRNA expres-

sion with 93%-100% sensitivity and 98%-100% specificity. Leidinger and colleagues compared

whole blood expression of 863 microRNAs of 19 healthy individuals and of 24 individuals with

chronic pulmonary disease against those of 28 cases of lung cancer (nine AC, 13 SCC), and

noted differential expression of 70 and 250 microRNAs, respectively [11]. These researchers

again observed differential expression of microRNAs– 24 of 1,205 that were examined–

between groups of seven each of healthy individuals and NSCLC cases (five AC, one SCC)

[12]. All sensitivity and specificity values were between 86% and 100% in both of their studies.

We used Exiqon1 miRCURY™ microarrays to quantify levels of 1,282 microRNAs in whole

blood of 22 AC cases and 23 clinically relevant controls, who either had a bengin pulmonary

mass or were of age>50 years with a history of cigarette smoking of>20 pack-years [13]. The

cases and controls differed for 96 microRNAs, whose expression could distinguish the two

types of subjects with 91% sensitivity and 100% specificity. Unlike these five studies which uti-

lized microarrays or RNA sequencing for an unbiased exploration of microRNA levels, two

studies chose a few specific microRNAs to examine with reverse transcription (RT)-PCR

assays. Only one microRNA, let-7a-5p, was evaluated by Jeong et al., and expression in blood

of this microRNA was different between groups of 35 NSCLC cases (19 AC and 15 SCC) and

30 healthy individuals [14]. Ulivi et al. investigated 14 microRNAs and identified three to be

differentially expressed between 86 NSCLC cases (63 AC and 22 SCC) and 24 healthy individu-

als [15]. MicroRNA expression could be used to categorize cases and controls in these two

studies respectively with sensitivity of 90% and 70%, and specificity of 90% and 83%.

Discordance among these studies in identifying specific microRNAs as differentially

expressed has been noted [13]. For instance, expression level of let-7a-5p was identified as sign-

ficantly different between cases and controls in two studies [9, 14] but not three others [10, 11,
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13]. In five of the seven studies, total sample sizes were less than 60 and likely not adequate

enough to reduce chance of false discovery of microRNA biomarkers below an acceptable

limit. Also in five studies, the control group consisted of individuals in good health instead of

those in a clinically relevant condition. Case and control cohorts were significantly different

for age of their subjects in all but two studies [14, 15]. Thus, while these studies indicate a

detectable effect of presence of NSCLC in the body on its blood microRNAs, the strength of

this observation and its utilizable applicability to diagnosis of NSCLC remain questionable.

We conducted the large bi-institutional study that is described here to robustly address these

questions.

Materials and methods

Ethics statement

This study was approved by the Institutional Review Boards of Roswell Park Cancer institute

(study identification number I 161709) and University of Pennsylvania (study identification

number 806390). Study participants provided written informed consent.

Estimation of power of study

Power and group size analysis was performed using the method of Ferreira and Zwinderman

[16] with the SSPA [17] Bioconductor package (version 1.12.0) in R (version 2.14.1). Effect

sizes used for this analysis were based on microRNA expression measurements obtained previ-

ously by us using fifth generation miRCURY™ microarrays (Exiqon1) for whole blood RNA of

23 cases of lung AC and 22 clinically relevant controls in a study whose finding suggested a

diagnostic value of whole blood microRNAs for lung cancer [13]. The power analysis used the

Student t null distribution, moderated t statistics and effect sizes calculated in comparison of

cases and controls for differential microRNA expression with the limma Bioconductor pack-

age (version 3.10.3). The microRNA expression dataset that was examined had normalized

expression values for the 395 microRNAs that were considered as expressed in that study. R

code of the power and group size analysis is provided in S1 Text.

Study population and blood collection

Study participants were 86 subjects with primary NSCLC (cases) and 75 subjects without any

cancer (controls) who were evaluated at Hospital of University of Pennsylvania or Roswell

Park Cancer Institute during 2010–2012. Peripheral venous blood (2.5 ml) was collected from

the participants during hospital visits in a PAXgene™ Blood RNA tube (Qiagen1, Valencia,

CA), which was then frozen at -20˚C within two hours and then transferred to -80˚C within a

day for long-term storage. None of the cases received any treatment for cancer prior to blood

collection, which was done within a month before lung cancer resection. For 12 cases, blood

was also collected three to four weeks after the resection. Eighteen controls underwent surgery

for a suspicious lung mass that on later pathological evaluation was found to be benign. Blood

samples of these subjects were obtained within a month before surgery. The remaining 58 con-

trols were chosen because of age>60 years or a history of cigarette smoking. Blood white

blood cell (WBC) and platelet counts, and blood hemoglobin values at time-points closest to

the time of blood collection for RNA isolation were collated from medical records. The time-

points were before surgery for all but one case for whom it was immediately after surgery. For

controls, blood counts and hemoglobin values could be obtained for 17 (74%); for six of them,

the values were determined >90 days before blood collection for RNA isolation.
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Isolation of RNA from blood

PAXgene™ Blood miRNA kit (Qiagen1) and the protocol supplied by its manufacturer were

used to extract total RNA from blood collected in PAXgene™ Blood RNA tubes. The tubes

were thawed for 18–24 hours at 4˚C before RNA extraction, which was done by one individual

in nine batches during a six-week period. Cases and controls were equally represented in all

batches. RNA extracted from 2.5 ml blood was collected in 80 μl of the BR5 buffer provided

with the kit. Concentration and quality of RNA was assessed by absorbance spectrometry on

NanoDrop™ 2000 (Thermo1, Waltham, MA) and by electrophoresis in a Bioanalyzer™ 2100

Eukaryote Total RNA Nano assay (Agilent1, Santa Clara, CA). RNA preparations were stored

frozen at temperatures below -70˚C and were used for microarray experiments within nine

weeks.

Microarray hybridization for microRNA quantification

Experiments were performed by Exiqon1 (Vedbaek, Denmark) as a commercial service using

their seventh generation miRCURY™ microarray platform [18], which has 1,937 locked nucleic

acid-containing DNA oligonucleotide probes that target 20 human non-microRNA small

RNAs (20 probes), 25 human miRPlus™ (Exiqon1) mature microRNAs (25 probes), and 1,916

human mature microRNAs that are recorded in the miRBase database (1,892 probes). Thirty

of the mature microRNA probes recognize multiple microRNAs (72 total; 2–6 per probe),

some of which are also recognized by a second probe. Sample RNA (500 ng), spiked with 62

artificial small RNAs and then end-labeled with the Cy3-like Hy3™ dye using the miRCURY™
microRNA Power Labeling kit (Exiqon1), was hybridized to probes on a microarray along

with 500 ng of reference RNA that had been similarly spiked with the artificial RNAs but

labeled with the Cy5-like Hy5™ dye. The reference RNA was generated by combining the total

RNA samples isolated from different human tissues that are provided with the FirstChoice™
Human Total RNA Survey Panel (product number AM6000, Ambion™, Austin, TX). After

overnight hybridization, microarrays were washed, and then scanned and analyzed using Ima-

Gene1 software (version 9; BioDiscovery1, Los Angeles, CA) to generate raw data files with

Hy3™ and Hy5™ signal intensities. All labeled RNA samples were prepared in one batch.

Hybridizations to microarrays of all labeled RNAs were performed in eight batches over four

days, with RNA samples processed in the order in which they were prepared from blood.

Microarray data processing

Raw microarray data was processed using well-established and commonly used methods that

are also recommended by the microarray manufacturer. The same methods were also used by

us in a study that utilized microarrays of the same manufacturer to suggest a diagnostic value

of whole blood microRNAs for lung cancer [13]. Raw data files from all 181 microarray

hybridizations that were performed were analyzed together. The 181 included three duplicate

RNA samples and seven RNA samples that were later excluded from the study. Examination of

signals, after within-array normalization and probe-level summarization as described later, for

the 62 spiked-in RNAs indicated poor quality of data for one microarray (log2 ratio of medians

of Hy3™ and Hy5™ signals below -0.8). Data from three other microarrays also had a poor qual-

ity as indicated by signals from empty spots on the microarrays (both Hy3™ and Hy5™ signal

values above 32). Data from the remaining 177 microarrays was processed with the limma Bio-

conductor package. Background noise was subtracted from array signals using the convolution

model-based normexp method with 10 as the offset value [19]. Signals were then normalized

within a microarray using the global loess method with 1/3 as the span value [20], and then

between microarrays using the quantile method [21]. Signals from multiple spots of a probe
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were summarized to a single value that was the mean when the maximum value was<1.5-fold

of the minimum, and the median if otherwise. Signals were then filtered to exclude probes that

did not have a manufacturer-provided annotation, or had a Hy3™ signal value <3-fold of the

summarized signal value from empty spots of the same microarray in�25% of the 177 micro-

arrays. The range, mean and standard deviation of the summarized signals for empty spots

among the microarrays were 15.2–17.1, 15.4 and 0.23, respectively. The Hy3™ signal data-set

was finally filtered to exclude data from probes that did not target human RNAs. Raw and pro-

cessed microarray data is available in the Gene Expression Omnibus [22] repository with

accession number GSE40738. R code used for microarray data processing is provided in

S2 Text.

Reverse transcription (RT)-PCR for small RNA quantification

TaqMan™ microRNA RT-PCR assays [23] that utilize stem-loop RT primers and real-time

PCR were used. Assays were purchased from Applied Biosystems1 (Foster City, CA) for

human let-7a-5p, let-7g-5p, miR-93-3p, miR-126-3p, miR-630, miR-675, miR-942-5p, miR-1248,

and miR-1284. The identity numbers of the assays provided by the manufacturer were 0377,

2282, 2139, 2228, 1563, 2005, 2187, 2870 and 2903, respectively. A custom assay that has been

described elsewhere [24] was used for the RNU6-2 (U6B) small nucleolar house-heeping RNA.

TaqMan1 microRNA reverse transcription kit (Applied Biosystems1) was used to reverse

transcribe 200 ng RNA in a reaction of 15 ul as recommended by the manufacturer. Primers

for all six analyte RNAs were included in an RT reaction; this multiplexing did not affect mea-

surement of any analyte compared to RT that had only one, analyte-specific primer. Triplicate

PCR reactions of 15 or 20 ul using RT reactions as template and FastStart™ Universal Probe

Master (Rox) PCR master-mix (Roche1, Indianapolis, IN) were performed with real-time

fluorometry on a 7900HT thermocycler (Applied Biosystems1). SDS software (version 2.4;

Applied Biosystems1) was used with automatic baseline detection and a manually set cycle

threshold of 0.05 to identify quantification cycle (Cq) values, approximately inversely propor-

tional to the log2 value of analyte RNA concentrations. The means of Cq values of the triplicate

PCRs were used for further analysis. S2 Table lists these values. Cq values >36 were considered

non-specific. RT-PCR assays of this study were performed by one individual during a ten-day

period in batches of 16–17 RNA samples, with all PCR reactions for the batch performed on

the same 384-well microplate. Every batch included water as negative control, which did not

give any specific RT-PCR signal, and 200 ng of the reference human RNA of this study’s

microarray experiments for inter-batch calibration. Linear transformation was used for this

calibration: for each analyte, all Cq values of a batch were adjusted by a value equal to the devia-

tion of the intra-batch Cq value for the reference RNA from its inter-batch average. For nor-

malization, microRNA Cq values were adjusted with intra-sample RNU6-2 Cq values.

Analysis of processed microarray data

Classification, correlation, differential expression, hierarchical clustering, and principal com-

ponent analyses were performed on log2-transformed normalized Hy3™ microarray signal

values for the 598 microRNAs identified as expressed in the study’s cohorts. The prcomp func-

tion in R and TM4 [25] MeV software (version 4.8) were respectively used for the principal

component and unsupervised hierarchical clustering analyses. Uncentered Pearson correla-

tions, average linkages, and leaf order optimization were used for the clustering analyses. Dif-

ferential expression analyses were performed using the limma package. In these analyses, a test

like the t test but based on empirical Bayes-moderated t statistics was used. Classification anal-

yses to examine the value of microRNA expression measurements in distinguishing cases and
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controls used classifiers that were identified by linear kernel support vector machines (SVM)

and top-scoring pair (TSP) methods. In case of SVM, classifiers were tuned with a value set of

0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50 for cost [26], and consisted of 15 most differentially expressed

microRNAs (genes) identified by the limma method. The CMA [27] (version 1.12.0) and tspair

[28] (version 1.12.0) Bioconductor packages for R were used for the classification analyses.

Cross-validations in these analyses used the leave-one-out (LOOCV) and Monte Carlo

(MCCV) methods. MCCVs had 1,000 iterations and validation group sizes of 20 or 30.

Other. All statistical tests were two-tailed, and a P value below 0.05 was used to judge sig-

nificance. To keep false discovery rate below 5% in multi-testing scenarios, P values were

adjusted with the Benjamini-Hochberg method. Equal group variance was assumed in stan-

dard t tests. Correlation and receiver operating characteristic analyses, and Fisher and standard

t tests were performed with Prism™ software (version 6.0 for Mac OS X; GraphPad1, La Jolla,

CA).

Results

Statistical power of study

We based the estimation of this study’s power on whole blood microRNA expression data that

we had previously obtained for 23 lung AC cases of pathologic stage IA-IIIB and 22 clinically

relevant controls [13]. The current study is nearly identical to the previous study for nature of

the control cohort, collection and storage of blood, extraction of RNA from blood, and mea-

surement of microRNAs in extracted RNA. As expected, density estimates of the effect sizes in

the previous study’s microRNA expression data had a bimodal distribution, indicating that

levels of many microRNAs were higher among cases compared to controls while levels of

many other microRNAs were lower (inset in Fig 1). The effect sizes were used to estimate and

plot study power at different group sizes and false positivity rates (Fig 1). For case and control

groups of 75 samples each, power values were calculated as 0.94 and 0.97 at false positivity

Fig 1. Power and group size analysis. Microarray-based microRNA quantifications of whole blood of 23

lung adenocarcinoma cases and 22 controls that had been obtained previously were analyzed. Effect sizes in

case-control comparison were used to estimate study power at different group sizes and false positivity rates

(α) of 0.05, 0.10 and 0.20. Inset shows density distribution of effect sizes in the microRNA data.

https://doi.org/10.1371/journal.pone.0181926.g001
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rates of 5% and 10%, respectively, indicating that the current study is adequately powered to

identify a difference in whole blood microRNA expression between cases and controls.

Characteristics of case and control cohorts

This was a retrospective study in which subject selection was governed by availability of appro-

priate clinical information and blood specimens. All 85 cases and 76 controls who are exam-

ined in this study had health care or evaluation during years 2010–12 at Hospital of University

of Pennsylvania (n = 87) or Roswell Park Cancer Institute (n = 74), two urban tertiary health-

care centers. Clinical and demographic features of the case and control cohorts are provided in

Table 1; detailed information for individual subjects are in S1 Table. The cases had a diagnosis

of primary NSCLC, 45 (53%) and 33 (39%) of which respectively were of AC and SCC histol-

ogy. The cancer was of pathologic stage I in 44% of the cases and III or IV in 30%. Most of the

patients were of Caucasian ethnicity (84%) with a history of cigarette smoking (99%). The 76

controls were chosen for clinical relevance. Eighteen (24%) had surgical resection of a pulmo-

nary mass that was later judged as benign after histopathological evaluation, with 13 (72%)

of the resected masses diagnosed as granuloma. The other 58 controls had a high risk for devel-

oping lung cancer because of age>60 years (n = 40) and/or a history of cigarette smoking

(n = 57). Among the 18 controls with benign lung mass, 11 were of age>60 years and 14 had a

Table 1. Characteristics of cohorts of the study.

Cases (n = 85) Controls (n = 76) P valuea

Mean age (years; range, SDb) 63.5 (41–83, 8.4) 61.1 (45–83, 8.7) 0.07

Male gender 42 (49%) 39 (51%) 0.88

Caucasian race 71 (84%) 67 (88%) 0.50

History of smoking 84 (99%) 71 (93%) 0.10

Stage of cancer (n = 85)

I 37 (44%)

II 22 (26%)

III 14 (16%)

IV 12 (14%)

Histology of cancer (n = 85)

Adenocarcinoma 45 (53%)

Squamous cell carcinoma 33 (39%)

Histology of benign lung nodule (n = 18)

Granuloma 13 (72%)

Hamartoma 2 (11%)

Mean blood parameters (SD) (n = 84) (n = 30)

White blood cells (x1000/μl) 6.7 (1.8) 7.7 (2.7) 0.15

Platelets (x1000/μl) 233.9 (81.1) 263.4 (68.8) 0.01

Hemoglobin (g/dl) 13.5 (1.4) 13.5 (1.3) 0.37

Mean RNA parameters (range, SD)

Yield (μg) 8.3 (2.3–22.6; 3.6) 8.1 (3.0–24.8; 3.7) 0.74

RNA integrity numberc 7.6 (5.5–9.0; 0.7) 7.5 (2.8–9.0; 0.9) 0.62

Absorbance 260 nm/280 nm 2.2 (2.1–2.5; 0.1) 2.2 (1.9–2.5; 0.1) 0.36

Absorbance 260 nm/230 nm 0.4 (0.1–1.0; 0.2) 0.4 (0.1–0.8; 0.2) 0.55

aIn Fisher’s exact test in case of categorical variables, and in two-tailed t tests assuming equal group variances in case of others.
bStandard deviation.
cObtained by Bioanalyzer™ assay. Unknown for five samples.

https://doi.org/10.1371/journal.pone.0181926.t001
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history of cigarette smoking. There was no significant difference between the case and control

cohorts for age, gender, Caucasian ethnicity, or history of cigarette smoking (Table 1). Data on

some blood parameters, prior to any surgical resection, could be obtained for 84 cases and 30

controls. The two cohorts did not differ significantly for blood hemoglobin level or white

blood cell (WBC) count, but blood platelet count was significantly less by 12% among cases

compared to controls (t test P = 0.01; Table 1).

Microarray-based quantification of microRNAs in RNA isolated from

whole blood

To measure microRNA levels in whole blood of cases and controls, total RNA was first

extracted from blood samples that had been collected in PAXgene™ Blood tubes, which contain

reagents for cell lysis and RNA stabilization [29]. The blood samples had been obtained within

a month before surgery for cases or controls who underwent operative procedures for removal

of their lung masses. Amounts of RNA obtained from 2.5 ml blood of cases and controls were

similar, with an overall mean of 8.2 μg (range = 2.3–24.8; standard deviation, SD = 3.6). RNAs

of cases and controls were of similar quality, as suggested by their Bioanalyzer™ electrophero-

grams and spectrophotometric absorbances at 230, 260 and 280 nm (Table 1 and S1 Table).

There was a small but significant negative Pearson correlation between RNA yield and blood

hemoglobin value (r = -0.2, P = 0.04) but not age, blood WBC count, or blood platelet count.

As per the current miRBase microRNA sequence repository [30], humans have 2,588 known

mature microRNAs. About 74% of them (1,916), and 25 proprietary Exiqon1 miRPlus™
mature microRNAs were quantified in the RNAs extracted from cases and controls with the

seventh generation Exiqon1 miRCURY™ microarray platform, whose DNA oligonucleotide

probes have locked nucleic acids for binding microRNAs with improved sensitivity and speci-

ficity [18]. All of the miRBase microRNAs that were detectable with the fifth generation of the

miRCURY™ microarray platform that was used in our previous study [13] were also detectable

with the seventh generation. Microarray signals for 598 microRNAs, detected by a total of 586

microarray probes, were reliably detected among at least a quarter of this study’s samples.

These ’expressed’ microRNAs, which included 12 miRPlus™ microRNAs, were used for the

analyses that are described here. Microarray assays were done in duplicate for three RNA sam-

ples, and inter-duplicate correlation of measurements of the 598 expressed microRNAs was

good for all three samples (Pearson r >0.99; Fig 2A). About 13% of the miRBase microRNAs

that were identified as expressed in our previous study [13] were not among the 598 expressed

microRNAs of this study. To assess the effect of blood parameters on microRNA levels, Spear-

man correlation analyses were performed. Modest but significant correlations, with coefficient

values between 0.35 and 0.50, were noted for levels of four, five and two microRNAs respec-

tively with blood hemoglobin, platelet count and WBC count values. These microRNAs

included miR-23a-3p and miR-223-3p, which are known to be highly expressed in platelets and

myeloid cells, respectively [31, 32].

Validation of microarray-based microRNA quantifications using RT-PCR

To assess the accuracy of the microRNA expression data-set that was generated using microar-

rays, levels of five microRNAs in all 161 RNA samples of cases and control were also measured

with TaqMan1 microRNA RT-PCR assays [23]. The microRNAs that were examined were let-
7a-5p, let-7g-5p, miR-93-3p, miR-126-3p, and miR-942-5p. These microRNAs were selected so

that the RT-PCR data can also be used to evaluate their potential as lung cancer biomarkers

that has been suggested by other studies. A reference RNA was used to calibrate measurements

obtained in the ten batches of RT-PCR assays that were performed. The assays had good
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replicability across batches (Fig 2B), and all five microRNAs were detected in all 161 samples

(S2 Table). As has been observed previously (e.g., [13, 33]), the RT-PCR-based measurements

had a wider range (1.2–2.1x) compared to those obtained by microarray. There was good Pear-

son correlation between the sets of measurements obtained by RT-PCR and microarray for all

five microRNAs (-0.90 < r < -0.63), indicating validity of the microarray-based microRNA

quantification (Fig 3). Such correlation coefficient values between TaqMan™ RT-PCR and

miRCURY™ microarray platforms are noted in numerous studies (e.g., [33]).

Fig 2. Technical replicability of microRNA quantification by microarray and reverse transcription

(RT)-PCR. (A) The two scatter-plots show the inter-duplicate correlation of microRNA quantifications for two

RNA samples (RNA 1 and 2) that were analyzed with microarrays in duplicate. Microarray signal values for

the 598 expressed human microRNAs of this study are plotted for the two pairs of duplicates. Also shown are

the coefficients of Pearson correlation (r, rounded to two decimal places), and their 95% confidence intervals

and associated two-tailed P values, and the slopes (m) of the linear regression lines (ordinary least squares

method) and their 95% confidence intervals. To depict the relatively poor correlation for microRNAs with low

signals, a rolling window of width 99 along the X axis was used for calculating r at the mid-window abscissa

and plots of these r values are shown in grey. (B). MicroRNAs let-7a-5p, let-7g-5p, miR-93-3p, miR-126-3p,

and miR-942-5p, and the RNU6-2 (U6B) small RNA were measured in a reference RNA in ten separate

batches of RT-PCR assays. Raw (left) and RNU6-2-normalized (right) quantification cycle (Cq) values from

the ten assays, and their means and standard deviations are plotted.

https://doi.org/10.1371/journal.pone.0181926.g002

Diagnostic value of whole blood microRNAs in non-small cell lung cancer

PLOS ONE | https://doi.org/10.1371/journal.pone.0181926 July 25, 2017 9 / 19

https://doi.org/10.1371/journal.pone.0181926.g002
https://doi.org/10.1371/journal.pone.0181926


Similarity of whole blood microRNA profiles and cases and controls

To compare cases and controls for microRNA levels, a differential expression analysis was per-

formed. Empirical Bayes-moderated t statistics calculated by the limma Bioconductor package

[34] were used in the analysis, and P values obtained for case-control comparisons were

adjusted by the Benjamini-Hochberg method to keep false discovery rate in the multi-testing

below 5%. This differential expression analysis revealed that levels of none of the 598 micro-

RNAs were significantly different between the case and control cohorts (all adjusted P>0.05).

S3 Table lists the 19 microRNAs for which the adjusted P value was between 0.05 and 0.15. Sta-

tistically significant differential expression of microRNAs was not seen if subjects with cancer

of only AC histology (n = 45) were included in the case cohort. Three microRNAs had differ-

ential expression when cases were of only SCC histology (n = 33). Similarity of whole blood

microRNA profiles and cases and controls that was suggested by the differential expression

Fig 3. Confirmation of microarray-based microRNA quantifications by reverse transcription (RT)-

PCR. Scatter-plots show measurements of five microRNAs in 85 cases (black) and 76 controls (gray) by

RT-PCR (Cq, quantification cycle value) or microarray (log2-transformed signal value). Also shown are the

best-fitting lines (least squares method) and their slopes (m), and Pearson correlation coefficients (r).

https://doi.org/10.1371/journal.pone.0181926.g003
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analysis was also noticeable in an unsupervised hierarchical clustering analysis of the case and

control samples by their microRNA levels. The analysis used Pearson correlations among val-

ues for the set of 598 expressed microRNAs and did not reveal a good separation of cases and

controls. This is depicted in Fig 4, which also has a heat map of relative microRNA expression

Fig 4. Whole blood microRNA expression among cases and controls. A heat map, with its pseudo-color scale underneath, depicts Z-

scaled log2-transformed microarray signal values for the study’s 598 expressed microRNAs among its 161 cases and controls. Unsupervised

hierarchical clustering is used to order the samples and microRNAs, dendrograms for which are drawn based on uncentered Pearson

correlations, average linkages, and leaf order optimization. Node heights are indicated by the scales next to the dendrograms. Lower-level

detail of the sample dendrogram beyond a distance threshold is not shown, with elements on the nodes below the threshold instead depicted

as one cluster (black and grey bars). Graphs at the top of the figure indicate cohort membership (case or control) of the samples, and their

age (in years), gender, institution (RPCI, Roswell Park Cancer Institute), and blood hemoglobin (g/dl), platelet count (x103/ul), and white blood

cell (WBC) count (x103/ul) values (if known). Adenocarcinoma (AC) or squamous cell carcionoma (SCC) histology of cancer, presence of a

benign nodule in controls, or their being at high risk to develop lung cancer, and sample identities (ID) are also indicated.

https://doi.org/10.1371/journal.pone.0181926.g004
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among the study subjects. The lack of segregation of cases and controls by their microRNA

expression was also noticeable in visualization of the top three principal components of the

microRNA data (S1A Fig).

Inability of whole blood microRNA expression profiles to distinguish

cases from controls

To test if the whole blood microRNA profiles contained information from a subset of micro-

RNAs that could be used to distinguish cases from controls, classification analyses with inter-

nal cross-validation were performed. In these analyses, microRNA data of a sub-group of

subjects was used to develop a classifier and the ability of the classifier to accurately identify

the remaining subjects as case or control by their microRNA expression was evaluated. Size of

sub-group used for classifier development was 160 in LOOCV cross-validation. In MCCV

cross-validation, the size was 131; MCCV was iterated a thousand times with randomized sub-

ject selection. Two separate methods were employed to develop classifiers: SVM with linear

kernel, and TSP. These methods were chosen for their simplicity and because they were used

in our previous study on diagnostic value of whole blood microRNAs for lung cancer [13].

SVM classifiers had 15 variables, microRNAs that were identified as most differentially

expressed between cases and controls as per the empirical Bayes-moderated t test implemented

in the limma Bioconductor package. TSP classifiers, which are independent of differential

expression of microRNAs, had two variables (microRNAs) [35]. In LOOCV with the SVM

classification method, accuracy, sensitivity and specificity for categorization of cases and con-

trols by their microRNA expression were quantified to be 47%, 47% and 57%, respectively.

With the TSP method, the values were 50%, 49% and 51%, respectively. The poor performance

characteristics of both SVM and TSP classifiers were also noted in MCCV (Table 2). To exam-

ine if classification was better for a specific histology of NSCLC, the analyses were performed

for subjects that included only AC or SCC cases. Sizes of test groups in MCCV were reduced

from 30 to 20 for these analyses. As shown in Table 2, restricting cases to one cancer sub-type,

either AC or SCC, significantly improved sensitivity of SVM classifiers from 47% to 83%-88%

Table 2. Performance in classification analyses of microRNA expression profilesa.

Subjects Nb Classifier typec Validation methodd Accuracy (%) Sensitivity (%) Specificity (%)

All cases; all controls 85; 76 SVM LOOCV 47 47 57

MCCV 56 (8) 53 (15) 61 (13)

TSP LOOCV 50 49 51

MCCV 54 (8) 55 (18) 53 (16)

Adenocarcinoma cases; all controls 45; 76 SVM LOOCV 62 84 24

MCCV 61 (10) 83 (13) 27 (18)

TSP LOOCV 65 51 87

MCCV 50 (9) 53 (20) 47 (29)

Squamous cell carcinoma cases; all controls 33; 76 SVM LOOCV 64 87 12

MCCV 68 (9) 88 (10) 23 (19)

TSP LOOCV 36 51 0

MCCV 60 (9) 66 (17) 50 (27)

aMean, with standard deviation in parentheses, of values obtained in 1,000 iterations are shown for MCCV.
bSizes of the two groups whose subjects are examined in the analysis.
cSVM–linear kernel support vector machines; TSP–top-scoring pair.
dLOOCV–leave-one-out cross validation; MCCV–Monte Carlo cross-validation.

https://doi.org/10.1371/journal.pone.0181926.t002
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in both LOOCV and MCCV. However, accuracy and specificity measurements remained

poor. Results of these classification analyses were thus concordant with those of differential

expression, unsupervised clustering, and principal component analyses, which indicated the

absence of a strong association between existence of lung cancer and whole blood microRNA

expression.

Cancer resection does not affect whole blood microRNA expression

It is conceivable that an effect of presence of lung cancer on blood microRNA expression may

disappear after surgical removal of the cancer, and this may be noticed in comparison of

microRNA levels before and after surgery. For 12 cases of this study, whole blood samples that

had been collected three to four weeks after surgical resection of lung cancer were available,

and microRNA expression profiles of these samples were obtained along with the other sam-

ples of this study. Histology of lung cancer was AC for eight of these cases and SCC in the oth-

ers (S1 Table). Eight of the tumors were of pathologic stage I. A paired differential expression

analysis of the pre- and post-surgery microRNA profiles of the 12 cases, which used the empir-

ical Bayes-moderated t test implemented in the limma Bioconductor package, showed that sur-

gery had no significant effect on the blood level of any of the 598 expressed microRNAs of this

study. Furthermore, segregation of the microRNA profiles by time of blood collection was not

seen in either unsupervised hierarchical clustering or principal component analyses (Fig 5 and

S1B Fig).

Invalidation of previously suggested microRNA biomarkers by RT-PCR

Results of seven studies that have suggested a value for whole blood microRNA expression for

lung cancer were examined to choose ten microRNAs that were noted by the studies for differ-

ential expression or for being a constituent of microRNA classifiers. The concordance among

the findings of these studies has been noted to be poor [13]. Diagnostic values were observed

for let-7a-5p, let-7g-5p, miR-126-3p, miR-1248, miR-675, miR-942-5p, and miR-93-3p respec-

tively in only two [9, 14], two [9, 10], one [9], two [10, 13], two [11, 13], two [12, 13], and four

of the seven studies [9, 10, 12, 13]. A diagnostic value for miR-630 and -1284 was suggested by

us [13] but either not examined or not noticed in the other six studies. As mentioned earlier,

microarray-based measurements of blood level of none of the nine microRNAs was different

between cases and controls of this study. To strengthen this invalidation of the previously sug-

gested microRNA biomarkers, measurements of the microRNAs obtained with a different

method were analyzed. RT-PCR-based measurements could be obtained for five microRNAs;

the other four could not be detected in whole blood RNA with the assays that were used (Cq

>36). The microRNA measurements for each sample were normalized against the sample’s

measurement value for RNU6-2 (U6B). RNU6-2 is probably the most commonly used normal-

izer for RT-PCR-based microRNA measurements. It was used as the normalizer for RT-PCR

data in the study of Jeong et al. [14], one of the two RT-PCR-based studies that have suggested a

diagnostic value of whole blood microRNAs for lung cancer. For the five detectable microRNAs

(let-7a-5p, let-7g-5p, miR-93-3p, miR-126-3p, and miR-942), areas under curve were<0.56 in

receiver operating characteristic analyses. Levels of none of these microRNAs were different

between cases and controls (t test P>0.25; Fig 3). The lack of a significant difference was also

seen when only those with AC or only those with SCC were included in the case cohort.

Discussion

This study investigated the plausible usefulness of microRNA expression levels in whole blood

as biomarkers for screening NSCLC in clinically relevant populations. Levels of about 75% of
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the 2,588 known human mature microRNAs were determined in blood of 86 NSCLC cases

and 75 controls from two different institutions (Table 1). The controls, individuals with history

of cigarette smoking or diagnosed radiologically with a lung mass, represented populations for

which there is a need for a screening test for lung cancer. Cases and controls were matched for

age, ethnicity, gender, and history of cigarette smoking, and for blood hemoglobin values and

WBC counts. The study had good statistical power (Fig 1), and it utilized molecular assays

with good technical replicability to determine microRNA levels that were partially validated

(Figs 2 and 3). Examination of the whole blood microRNA levels in a variety of analyses–classi-

fication, differential expression, principal components, unsupervised clustering–failed to

reveal any difference between cases and controls (Fig 4 and S1A Fig). A difference in levels of

cases and controls for five microRNAs whose utility as lung cancer-diagnostic whole blood

biomarkers has been suggested in seven published studies was also not seen when the micro-

RNA levels in whole blood were quantified by a different method (RT-PCR). Additionally, any

effect of resection of cancer on whole blood microRNA expression was not noticed (Fig 5 and

Fig 5. Unsupervised hierarchical clustering of whole blood microRNA profiles of pre- and post-

resection samples. Twelve non-small cell lung cancer cases of pathologic stage I before (pre) and three to

four weeks after (post) tumor resection were analyzed. Microarray-based measurements the study’s 598

expressed microRNAs are used for the clustering. Uncentered Pearson correlations, with average linkages

used for joining clusters, are used to draw the leaf order-optimized microRNA and sample dendrograms.

Node heights are indicated by the scales next to the dendrograms. Patient and time-point identifiers are

shown above the sample dendrogram. The heat map is truncated (like the microRNA dendrogram), and

shows inter-sample Z-scaled expression values of 24 microRNAs. A pseudo-color scale for the values is

provided below the heat map.

https://doi.org/10.1371/journal.pone.0181926.g005
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S1B Fig). These findings suggest that whole blood microRNAs do not have a diagnostic

value for screening NSCLC in a population with history of chronic smoking or of old age. It

remains possible that whole blood microRNAs do possess a diagnostic value for specific sub-

types of NSCLC and/or other types of screening population, and that they have a biomarker

value for other aspects of NSCLC besides diagnosis, such as indication of responsiveness to

immunotherapy.

Only about 75% of known human mature microRNAs were examined by microarray in

this study, and only 598 of the examined microRNAs were detected and quantified among its

samples. It is thus possible that one or more microRNAs with true diagnostic value were

missed by the study. Besides this issue of sensitivity, the likely lack of absolute specificity of at

least some of the probes of the microarray platform [18] could also have contributed to the fail-

ure to detect the diagnostic value of whole blood microRNAs. Aside from differences in the

nature of study populations, differences in sensitivity and specificity among different platforms

to quantify microRNAs (e.g., [36, 37]) likely explains to some degree the discordance among

the seven previous studies that have suggested a diagnostic value of whole blood microRNAs

for lung cancer [13]. In five of the seven studies, total sample sizes were small (<60), and a

false discovery of microRNA biomarkers in these studies is a possibility. Case and control

cohorts differed significantly for age in all but two of the seven studies [14, 15]. This difference

for age, and that all cases were of AC sub-type and were recruited at one institution may

explain the discrepancy between the findings of our current and previous studies.

Different methods of processing and normalization of microRNA expression data too can

have significant effect on results of microRNA expression data analyses (e.g., [38, 39]). In this

study, we utilized RNU6-2 RNA measurements for normalizing for microRNA measurements

obtained by RT-PCR. RNU6-2 is a commonly used normalizer and was used so in the study of

Jeong et al. [14], one of the two RT-PCR-based studies that have suggested a diagnostic value

of whole blood microRNAs for lung cancer. The other study, by Ulivi and colleagues used

other small RNAs for normalization [15]. The microarray data that were obtained in our study

was processed using well-established and commonly used methods that are also recommended

by the microarray manufacturer. The same methods were also used by us in a study that uti-

lized microarrays of the same manufacturer to suggest a diagnostic value of whole blood

microRNAs for lung cancer [13]. We did not bias our study by attempting to analyze the

microarray- or RT-PCR-based microRNA measurements with different normalization meth-

ods to identify a method with which a biomarker value of whole blood microRNAs could be

identified. Instead, we chose data processing and normalization methods that are used com-

monly and have been used in previous studies on whole blood microRNAs in lung cancer. The

suitability of the methods that we used is also indicated by the observation of reasonably good

correlation of the microarray- and RT-PCR-based normalized microRNA measurement values

(Fig 3).

Our study evaluated microRNA expression in whole blood samples, and its findings have

no relevance to biomarker values for NSCLC of microRNA levels in specific components of

blood such as plasma and mononuclear cells. MicroRNAs in whole blood exist both extracel-

lularly, within microvesicles that arise from all parts of the body, or bound to circulating

proteins, and intracellularly within blood cells such as leukocytes and any circulating cancer

cell population. Changes in whole blood microRNA expression profiles have been associated

with both non-cancerous diseases, such as myocardial infarction [40] and sarcoidosis [41],

and cancer of tissues besides lung such as breast [42] and ovary [43]. While these changes

may arise from diseased tissue, they may also have a complex causation such as a disease-

predisposing genetic constitution that affects microRNA expression, or a specific type of

immune response by the body that changes circulating immune cell sub-populations. Blood
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microRNA expression profiles also reflect the physiological state of the body, as suggested by

studies that have shown their correlations with age [44], blood pressure [45], diurnal rhythm

[46], gender [47], mental anxiety [48], physical stress [49], etc. Thus, while the presence of

NSCLC can per se have an effect on microRNAs in blood, detection of such an effect on the

microRNA analytes whose levels are influenced by many other factors may be difficult or

impossible.
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