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Site-selective electrooxidation of methylarenes
to aromatic acetals
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Jun Cheng 1✉ & Hai-Chao Xu 1,2✉

Aldehyde is one of most synthetically versatile functional groups and can participate in

numerous chemical transformations. While a variety of simple aromatic aldehydes are

commercially available, those with a more complex substitution pattern are often difficult to

obtain. Benzylic oxygenation of methylarenes is a highly attractive method for aldehyde

synthesis as the starting materials are easy to obtain and handle. However, regioselective

oxidation of functionalized methylarenes, especially those that contain heterocyclic moieties,

to aromatic aldehydes remains a significant challenge. Here we show an efficient electro-

chemical method that achieves site-selective electrooxidation of methyl benzoheterocycles to

aromatic acetals without using chemical oxidants or transition-metal catalysts. The acetals

can be converted to the corresponding aldehydes through hydrolysis in one-pot or in a

separate step. The synthetic utility of our method is highlighted by its application to the

efficient preparation of the antihypertensive drug telmisartan.

https://doi.org/10.1038/s41467-020-16519-8 OPEN

1 State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovative Collaboration Center of Chemistry for Energy Materials, and College of Chemistry
and Chemical Engineering, Xiamen University, 361005 Xiamen, PR China. 2 Key Laboratory of Chemical Biology of Fujian Province, Xiamen University,
361005 Xiamen, PR China. ✉email: chengjun@xmu.edu.cn; haichao.xu@xmu.edu.cn

NATURE COMMUNICATIONS |         (2020) 11:2706 | https://doi.org/10.1038/s41467-020-16519-8 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-16519-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-16519-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-16519-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-16519-8&domain=pdf
http://orcid.org/0000-0001-6971-0797
http://orcid.org/0000-0001-6971-0797
http://orcid.org/0000-0001-6971-0797
http://orcid.org/0000-0001-6971-0797
http://orcid.org/0000-0001-6971-0797
http://orcid.org/0000-0002-3008-5143
http://orcid.org/0000-0002-3008-5143
http://orcid.org/0000-0002-3008-5143
http://orcid.org/0000-0002-3008-5143
http://orcid.org/0000-0002-3008-5143
mailto:chengjun@xmu.edu.cn
mailto:haichao.xu@xmu.edu.cn
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Benzylic oxygenation of alkylarenes provides crucial access to
many industrial chemicals, such as terephthalic acid, phe-
nol, and acetone, on a multimillion-ton scale1. Aldehyde is

one of the most versatile synthetic handles and can be converted
to numerous functionalities. As a result, aromatic aldehydes have
been widely used in the manufacture of fine chemicals, nutra-
ceuticals, performance materials, and pharmaceuticals. The oxy-
genation of methylarenes is a straightforward and attractive
strategy for the preparation of aromatic aldehydes, especially
considering that the starting materials are widely available and
easy to handle. However, partial oxidation of methylarenes to
aldehydes remains a largely unsolved challenge due to the strong
propensity of product overoxidation under aerobic conditions
(Fig. 1a)2,3, and unsatisfactory chemo- and regioselectivity with
substrates bearing multiple oxidizable C–H bonds and/or func-
tionalities4. Despite these difficulties, oxygenation of simple

methylarenes to aldehydes has been achieved using stoichiometric
chemical oxidants such as o-iodoxybenzoic acid (IBX)5, ceric
ammonium nitrate (CAN)6, pyridinium chlorochromate7 or poly-
oxometalate H5PV2Mo10O40

8. Transition metal-catalyzed aerobic
oxidation using hexafluoro-2-propanol as solvent9 or by adding
polymethylhydrosiloxane as reagents to avoid overoxidation10 have
also been reported (Fig. 1a). As an alternative to chemical oxidation,
electrooxidation eliminates the use of stoichiometric chemical oxi-
dants and is attracting increasing interests11–26. Notably, electro-
oxidation of electron-rich toluene derivatives to substituted
benzaldehydes has been applied in the industrial production of p-
anisaldehyde and 3,4,5-trimethoxybenzaldehyde27–29. Despite these
accomplishments, the conversion of structurally complex methy-
larenes, including medicinally relevant benzoheterocycles in parti-
cular, has remained synthetically elusive because of selectivity issues
and catalyst inhibition by the coordinating heteroatoms30.
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Fig. 1 Methylarene oxidation. a Examples of reported oxidation of relatively simple toluene derivatives to benzoic acids or benzaldehydes. b The present
study focuses on site-selective electrooxidation of methyl benzoheterocycles to aromatic aldehydes.

Table 1 Optimization of reaction conditionsa.

"standard conditions"

Et4NPF6 (0.5 equiv)
MeOH, reflux,10 mA

Me

Me

N

N

Bn

1 2

4

6

Me

N

N

Bn

MeO

OMe

Entry Deviation from standard conditions Yield (%)b

1 None 72c

2 Reaction at RT 25
3 Reaction at 8mA 61
4 Reaction at 12 mA 66
5 Reaction under air 50
6 Et4NPF6 (0.2 equiv) 63
7 Et4NBF4 instead of Et4NPF6 72
8 n-Bu4NPF6 instead of Et4NPF6 64
9 Et4NOTs instead of Et4NPF6 66
10 Pt plate (1 cm × 1 cm) as anode 20 (69)d

11 Graphite plate (1 cm × 1 cm)
as anode

56

Bn benzyl
aReaction conditions: RVC anode, Pt plate cathode, 1 (0.2 mmol), MeOH (9mL), Et4NPF6 (0.1 mmol), 10 mA, 2.3 h (4.3 F mol–1).
bDetermined by 1H NMR analysis using 1,3,5-trimethoxybenzene as the internal standard.
cIsolated yield.
dUnreacted 1 in bracket.
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Fig. 2 Scope of site-selective electrooxidation of benzimidazoles. Reaction conditions: heterocycle (0.2 mmol), MeOH (0.022M), reflux, 2.2–4.5 h. All
yields are isolated yields. Regioisomers were not observed unless otherwise mentioned.
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We have been interested in electrochemical synthesis of
heterocycles23,31,32 and recently reported intramolecular dehy-
drogenative cyclization reactions for the preparation of several
types of benzoheterocycles33–37. Alternatively, we envision the
synthesis of functionalized benzoheterocycles by modification of
alkyl side chains of existing benzoheterocyclic scaffolds. Herein
we report a generally applicable electrochemical strategy capable
of oxidizing various methyl benzoheterocycles to aromatic
acetals in a site-selective manner (Fig. 1b). These side chain
oxidation reactions allow access to various functionalized ben-
zoheterocycles difficult to obtain directly through cyclization
processes.

Results
Reaction optimization. We began our study by first optimizing
the electrooxidation of benzimidazole 1 bearing Me groups at
positions 4 and 6 (Table 1). The best results were achieved in
an undivided cell with refluxing methanol as solvent, Et4NPF6
(0.5 equiv) as electrolyte, a Pt plate cathode, and a reticulated
vitreous carbon anode. Under these conditions, compound 1
reacted site-selectively at C6-Me group to give dimethyl acetal

2 in 72% yield (entry 1) without overoxidation to orthoester or
unwanted oxidation of other potentially labile substituents
such as C4-Me, N–Bn, or 3° C–H on the cyclohexyl moiety.
Lowering the reaction temperature to RT dramatically
decreased the yield of 2 to 25% (entry 2). Furthermore, mod-
erate reduction in reaction efficiency was observed when the
electrolysis of 1 was performed at a different current (entries 3
and 4), under air (entry 5), with a decreased amount of
Et4NPF6 (entry 6), or with another electrolyte such as
n-Bu4NPF6 (entry 8) or Et4NOTs (entry 9). Et4NBF4 (entry 7)
was, however, equally effective as a supporting electrolyte.
Product formation was also diminished with the use of a Pt
(entry 10) or graphite anode (entry 11).

Evaluation of substrate scope. With the optimized reaction
conditions defined, we set out to explore the scope of the elec-
trooxidation of methylarenes. Notably, the site-selectivity was not
significantly affected by introducing a phenyl (3), bromo (4), or
cyano group (5) at C5, or by varying the substituent on N1 (6–9)
or C2 (11–29) of the C4,C6-dimethylated benzimidazole substrate
(Fig. 2). However, the installation of a carbamoyl group on N1
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Fig. 3 Electrooxidation of various methyl benzoheterocycles. Reaction conditions: methylarene (0.2 mmol), MeOH (0.022M), reflux, 2.2–5.3 h. All yields
are isolated yields. Regioisomers were not observed unless otherwise mentioned. aElectrolysis was followed by hydrolysis with aqueous HCl (2 N).
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resulted in a slight decrease of regioselectivity (10). The method
showed broad compatibility with common functional groups or
moieties such as alkyl bromide (7), alkyne (8), alkene (9), ester
(15, 16), alcohol (17, 18), ketone (19), aldehyde (20), Boc-
protected amine (21–23), ketal (24), azido (25), and aromatic
heterocycles (12, 13, 26, and 27). Molecular fragments derived
from natural products dehydroabietic acid (28) and lithocholic
acid (29) were equally well tolerated. On the other hand, site-
selective oxidation of the C6-Me group in C5,C6-dimethylated
benzimidazoles bearing an aryl substituent at C2 (30–32) could
also be achieved. The replacement of the aryl group with a
cyclohexyl, however, resulted in a moderate site-selectivity (33).
This reduction in site-selectivity for the 2-cyclohexyl substrate was
probably caused by the increased reactivity of the corresponding
radical cation compared with the 2-aryl counterparts.

Benzoxazoles (34–37) and benzothiazoles (38, 40–42) with
multiple open benzylic positions were all found to undergo site-
selective oxidation at the C6-Me group (Fig. 3). The site-
selectivity was maintained even for substrates bearing an ethyl
(37) or isopropyl group (41) at C5 that contained secondary or
tertiary benzylic C–H bonds. Notably, the oxidation of 5,6,7-
trimethyl benzothiazole proceeded site-selectively as intended
despite the high steric hindrance of its C6-Me substituent.
However, the resultant product mixture comprised mono-
methoxylated 42 as the main product with a minor amount of
acetal 43, because the steric environment was detrimental to the
second C–H cleavage38. Meanwhile, oxidation of a C4,C7-
dimethylated benzothiazole with a methylated phenyl group on
C2 occurred preferentially on the C4-Me (44). The electrooxida-
tion method was successfully extended to many other

benzoheterocycles, including 2-benzimidazolidinone (45, 46), 2-
benzoxazolone (47, 48), 2-oxindole (49), 3,4-dihydro-1H-quino-
lin-2-one (50), and quinoxalinone (51). Once again, probably due
to the steric hinderance, monomethoxylated product 46′ could be
obtained selectively with good yield when the electrolysis was
stopped at 4.1 F mol−1. The electrochemical method was not
limited to benzoheterocycles as demonstrated by the site-selective
oxidation of methylated alkoxybenzenes (52–54). The relatively
electron-deficient 3,4-dimethylphenylboronic acid (55), however,
decomposed into intractable material and did not afforded any
aldehyde product. The above results clearly suggested that the
site-selectivity for the electrochemical benzylic oxidation reaction
are not controlled by steric effects or bond dissociate energies
(BDEs) of the C–H bonds.

The Me oxidation reaction could be coupled with amidine
cyclization that we previously described to construct functiona-
lized benzimidazoles (56–65) and imidazopyridines (66–70)
(Fig. 4)33. The reaction of an amidine containing a 3,4-
disubstituted phenyl ring afforded two products 62 and 62′
because of unselective cyclization. The benzylic oxidation was,
however, selective for both regioisomers. Compound 71 did not
undergo further Me oxidation because its oxidation potential
exceeded the decomposition potential of MeOH solvent. The
tandem cyclization/Me oxidation process provided access to
benzimidazoles with substitution patterns difficult for the existing
methods33,39.

Synthesis of telmisartan. The synthetic utility of our electro-
oxidation reaction was demonstrated through the construction of
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the antihypertensive drug telmisartan (Fig. 5a). We first prepared
benzimidazole 75 from a commercially available aniline 72 in
four steps. Subsequently, site-selective electrooxidation of 75
afforded dimethyl acetal 76 in 46% yield on a decagram scale. In
contrast, the oxidation of 75 by a stoichiometric amount of
chemical oxidant such as CAN6 or IBX5, in the presence of a Co
catalyst under aerobic conditions9, or iron catalyzed oxidation10

with K2S2O8 afforded 80 in <10% yield despite the success of
these methods with toluene derivatives (Fig. 5b). Compound 76
was then converted to telmisartan by treating with aqueous HCl
to hydrolyze its acetal group to aldehyde and remove its tBu,
followed by condensation with o-phenylenediamine 78. Notably,
the starting material 72 employed in this synthetic route are
much less expensive than ester 79 used in a previously published
8-step method40.

Mechanistic investigation. The reaction regioselectivity that we
observed in this study suggested that the mechanism likely
involved single electron transfer oxidation of the benzene nucleus
to a radical cation, followed by benzylic C–H cleavage28. This
hypothesis is further supported by the finding that bromination
of benzoxazole 81 with NBS, known to proceed through hydro-
gen atom transfer, afforded a regioisomeric mixture of 82 (50%)
and 83 (17%) along with dibrominated 84 (10%) (Fig. 6a).
Density functional theory calculations were also performed to
provide a plausible rationale for the origin of the observed site-
selectivity (Fig. 6b). We first analyzed the distributions of the
lowest unoccupied molecular orbitals (LUMO) of the radical

cations derived from benzimidazoles (I–III), benzoxazoles (IV,
V), benzothiazoles (VI, VII), and 2-benzoxazolone (VIII) that
bear multiple Me groups. As shown in Fig. 6b, the LUMOs are
delocalized throughout the carbon skeletons of the benzohe-
terocycles with the distributions on C6 atoms being higher than
other carbon atoms attached with a Me group. Furthermore, the
natural population analysis shows that the charges of C6 are also
more positive than those of other atoms bearing a Me group,
indicating deprotonation of the C6-Me groups is preferred41.

In summary, we have shown that electrooxidation of methyl
benzoheterocycles occurs in a site-selective manner to afford a
wide range of structurally diverse aromatic acetals. The site-
selectivity is governed by the innate electronic properties of the
benzo ring instead of BDEs of the C(sp3)–H bonds. The benzylic
oxidation takes place efficiently in a simple undivided cell and
employs traceless electric current as the reagents without need for
stoichiometric chemical oxidants. These features render the
reactions scalable and attractive for industrial scale applications.

Methods
Representative procedure for the electrooxidation of methylarenes. A 10 mL
three-necked round-bottomed flask was charged with 1 (0.20 mmol, 1.0 equiv) and
Et4NPF6 (0.10 mmol, 0.5 equiv). The flask was then equipped with a condenser, a
reticulated vitreous carbon (100 PPI, 1.2 cm × 1.0 cm × 0.8 cm) anode and a pla-
tinum plate (1.0 cm × 1.0 cm) cathode, and flushed with argon. MeOH (9.0 mL)
was then added. The electrolysis was carried out at 80 °C (oil bath temperature)
using a constant current of 10 mA until complete consumption of the substrate
(2.3 h, 4.3 F mol–1). The reaction mixture was cooled to RT and concentrated under
reduced pressure. The residue was chromatographed through silica gel eluting with
ethyl acetate/hexanes containing 1% triethylamine to give the desired product 2 in
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72% yield as a white solid. All new compounds were fully characterized (See the
Supplementary methods).

Data availability
The X-ray crystallographic coordinates for structures reported in this study have been
deposited at the Cambridge Crystallographic Data Centre (CCDC), under deposition
number 1964756. These data can be obtained free of charge from The Cambridge
Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. The data
supporting the findings of this study are available within the article and its
Supplementary Information files. Any further relevant data are available from the
authors on request.
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