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Abstract

Understanding the mechanisms underlying ErbB3 over-expression in breast cancer will facilitate 

the rational design of therapies to disrupt ErbB2-ErbB3 oncogenic function. While ErbB3 over-

expression is frequently observed in breast cancer, the factors mediating its aberrant expression 

are poorly understood. In particular, the ErbB3 gene is not significantly amplified, raising the 

question as to how ErbB3 over-expression is achieved. In this study we demonstrate that the 

ZNF217 transcription factor, amplified at 20q13 in ~20% of breast tumors, regulates ErbB3 

expression. Analysis of a panel of human breast cancer cell lines (n = 50) and primary human 

breast tumors (n=15) demonstrated a strong positive correlation between ZNF217 and ErbB3 

expression. Ectopic expression of ZNF217 in human mammary epithelial cells induced ErbB3 

expression while ZNF217 silencing in breast cancer cells resulted in decreased ErbB3 expression. 

While ZNF217 has previously been linked with transcriptional repression due to its close 

association with CtBP1/2 repressor complexes, our results demonstrate that ZNF217 also activates 

gene expression. We demonstrate that ZNF217 recruitment to the ErbB3 promoter is CtBP1/2-

independent and that ZNF217 and CtBP1/2 play opposite roles in regulating ErbB3 expression. In 
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addition, we identify ErbB3 as one of the mechanisms by which ZNF217 augments PI-3K/Akt 

signaling.
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Introduction

Over-expression of members of the ErbB family of receptor tyrosine kinases is frequently 

observed in cancer and correlates with poor patient prognosis and therapeutic resistance. 

Aberrant activation of ErbB3 has been linked to decreased survival in ovarian, prostate, 

breast, pancreatic and lung cancer (Sithanandam and Anderson, 2008) and has been 

functionally implicated in resistance to the targeted therapies Tamoxifen (Liu et al., 2007, 

Folgiero et al, 2008), Trastuzumab (Wang et al., 2008) and Gefitinib (Sergina et al, 2007, 

Engelman et al., 2007). Consequently, ErbB3 is evolving into an attractive therapeutic target 

in its own right. ErbB3 is unique in that it has an impaired tyrosine kinase activity (Guy et 

al., 1994) and in this respect, cannot be directly targeted although recent findings may revise 

this model (Shi et al., 2010). Various strategies for interfering with ErbB3 function have 

been examined, including siRNA (Sithanandam and Anderson, 2008) and inhibition of 

ADAM-mediated ligand cleavage (Zhou et al., 2006). A more thorough understanding of the 

endogenous mechanisms regulating ErbB3 expression will aid in the design of strategies to 

interfere with ErbB3 function.

In breast cancer, ErbB3 plays an essential role in ErbB2-driven breast cancer, with the 

ErbB2-ErbB3 heterodimer functioning as an “oncogenic unit”. In fact, ErbB3 is required for 

ErbB2-dependent breast tumor cell proliferation (Holbro et al., 2003) and strongly enhances 

ErbB2-dependent metastasis (Xue et al., 2006). While ErbB2 gene amplification is observed 

in approximately 20% of breast cancers, ErbB3 gene amplification is not a common event 

and mechanisms driving ErbB3 over-expression are not well understood. Interestingly, very 

little is known about the transcriptional regulation of ErbB3. Here, we report that the 

ZNF217 transcription factor, found amplified at 20q13, enhances ErbB3 transcription and 

contributes to ErbB3 protein expression in breast cancer cells.

20q13 amplification is associated with high histological grade, aneuploidy, high S-phase 

fraction, and with short disease-free survival of patients with node negative breast cancer 

(Tanner et al., 1995). The mapping of a commonly amplified region at 20q13 led to the 

positional cloning of the gene encoding ZNF217 (Collins et al., 1998). The ZNF217 gene is 

amplified in a variety of tumor types, such as breast (Kallioniemi et al.,1994), pancreas 

(Solinas-Toldo et al., 1996), ovarian (Iwabuchi et al., 1995), and colon (Schlegel et al., 

1995). Retroviral transduction of normal human mammary epithelial cells (HMECs) and 

ovarian surface epithelial cells (OSE) with ZNF217 can facilitate immortalization (Nonet et 

al., 2001, Li et al., 2007), supporting a role for ZNF217 in carcinogenesis.

Protein motif analysis indicates that the ZNF217 gene encodes a transcription factor with 

eight C2H2 Kruppel-like DNA-binding motifs and a proline-rich transactivation domain at 
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the C-terminus (Collins et al., 1998). ZNF217 has been reported to physically interact with 

C-terminal Binding Protein (CtBP) (Quinlan et al., 2006), a known co-repressor, and 

biochemically purify with histone deacetylases, histone methyltransferases, and other 

proteins associated with transcriptional repressor complexes (Shi Y et al., 2003). Since 

ZNF217 is thought to be a DNA-binding protein, it has been proposed that ZNF217 

functions in gene repression by recruiting CtBP and an associated repressor complex to 

DNA (Chinnadurai, 2007). CtBP family members CtBP1 and CtBP2 are found together in 

repressor complexes suggesting redundant transcriptional regulatory roles (Hildebrand and 

Soriano, 2002). Various studies using mouse fibroblast cells null for CtBP1/2 have revealed 

both redundant and unique transcriptional regulatory roles for CtBP1 and CtBP2 during 

development, although mechanisms underlying the individual roles are still unclear 

(Chinnadurai, 2009).

Over-expression of ZNF217 may provide a selective advantage to tumor cells by interfering 

with pathways associated with normal regulation of growth, death, or differentiation. 

Previously published work has demonstrated that over-expressed ZNF217 attenuates 

apoptotic events triggered by transiently induced telomere dysfunction or doxorubicin-

induced DNA damage (Huang et al., 2005). This work connected elevated levels of ZNF217 

with increased phosphorylation of the serine/threonine kinase AKT, a known mediator of 

apoptosis resistance. This finding prompted a search to identify the ZNF217 target genes 

upstream of the PI3K/AKT pathway and our current studies make the novel finding that 

ZNF217 contributes to ErbB3 over-expression in breast cancer.

RESULTS

ZNF217 and ErbB3 expression correlate in breast cancer cells and primary tumors

To identify novel transcriptional targets of ZNF217, expression profiling was used to 

generate a list of genes displaying altered expression upon RNAi-mediated silencing of 

ZNF217 (Krig et al., 2007). Data analysis identified the ErbB3 receptor tyrosine kinase as a 

candidate transcriptional target of ZNF217. We therefore examined ZNF217 and ErbB3 

transcript levels in a panel of 50 breast cancer cell lines (Chin et al., 2006). The breast 

cancer cell lines are listed along with the corresponding log2 signals for ZNF217 and ErbB3 

RNA levels in supplementary Table 1. These values are graphed in Figure 1. Regression 

models were fitted to assess the strength of the apparent association, using the R statistical 

package (http://www.r-project.org/). On average, we found that a two-fold difference in 

ErbB3 expression between cell lines was associated with a 26% higher level of ZNF217 

RNA (95% confidence interval, 15% to 38% increase). This linear relationship on the log2 

scale was statistically significant (P<0.001), with a correlation coefficient of 0.69, 

accounting for 47% of the variation in ZNF217 (r2 =0.47) (Figure 1). This positive 

correlation suggested that, despite its reported association with transcriptional repressor 

proteins (Shi Y et al., 2003; Shi Y. J. et al., 2005), ZNF217, when bound to the ErbB3 

promoter, activates, rather than represses, transcriptional activity.

To determine if the correlation between transcript levels observed in the breast cancer cell 

lines was reflected at the protein level in primary human breast tumors, we next screened 15 

breast tumor lysates. Densitometry of immunoblots probed with antibodies to ErbB3, 
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ZNF217, and actin (control) revealed a strong association between ZNF217 and ErbB3 

protein levels (r2=0.7) (Figures 2A&B). A doubling of ErbB3 protein level across these 

samples was associated with a 75% higher level of ZNF217 (95% confidence interval, 41% 

to 132% increase, P<0.001).

In another test of the link between ZNF217 and ErbB3 levels, we analyzed tissue lysates 

from the NDL murine mammary tumor model in which ErbB2 expression is driven by the 

MMTV promoter/enhancer (Siegelet al., 1999). In this model, transgenic over-expression of 

activated ErbB2 (NDL2-5 or Neu deletion mutant) in mouse mammary epithelium yields 

focal adenocarcinomas that evolve after long latency and metastasize to lungs with high 

frequency (Ursini-Siegel et al., 2007). Previous studies have shown that endogenous ErbB3 

protein levels are elevated 10- to 15-fold in NDL tumor tissue, underscoring the link 

between ErbB2 and ErbB3 in mammary tumorigenesis (Siegel et al., 1999). We examined 

the expression of ErbB3 and ZNF217 in normal mammary glands from non-transgenic age-

matched FvB littermates, in normal tissue from two independent NDL2-5 transgenic mice, 

and in tumor tissues from these mice (Figure 2C). Endogenous ErbB3 protein expression 

was significantly elevated in tumor tissues, as previously reported (Siegel et al., 1999), as 

was ZNF217 protein.

Over-expression of ZNF217 up-regulates endogenous ErbB3 expression in HMECs

Previous studies (Nonetet al., 2001) found that expression of retrovirally-introduced 

ZNF217 in HMECs could lead to immortalization. We analyzed total ZNF217 and ErbB3 

protein levels in HMECs before immortalization (p9), after retroviral infection (p10), and 

after immortalization (p28), and found that ErbB3 levels corresponded to those of ZNF217 

(Figure 3A). To model ZNF217 gene amplification and directly assess its role in regulating 

ErbB3 expression, we infected HMECs (which express modest endogenous ZNF217 levels) 

with either control adenovirus or one expressing ZNF217. RNA and protein lysates were 

collected at several time-points post-infection. ZNF217 protein levels accumulated with 

time, as expected. At the 48 hour time-point where ZNF217 expression was the most robust, 

expression of ErbB3 mRNA and protein were also significantly increased (Figures 3B & C). 

Moreover, the results indicated that infection with the ZNF217 adenovirus led to a 

detectable increase in ErbB3 transcripts as early as 16 hours post-infection. These results 

indicate that ZNF217 overexpression is sufficient to up-regulate ErbB3.

Silencing ZNF217 reduces ErbB3 expression

To further implicate ZNF217 in ErbB3 regulation, we depleted ZNF217 with ZNF217-

specific siRNA in two different human breast cancer cell lines in which it is robustly 

expressed (Figure 4A, MCF7, left panel; ZR75-1, right panel). Depletion of ZNF217 led to 

significant decreases in endogenous ErbB3 protein (Figure 4A) and transcript (Figure 4B; 

MCF7 cells), demonstrating that ZNF217 is required for robust ErbB3 expression. Since 

ZNF217 has been previously characterized as a transcriptional repressor, we next examined 

its impact on the activity of the ErbB3 promoter. To accomplish this, we performed a dual 

luciferase reporter assay. MCF7 cells were co-transfected with an ErbB3 promoter-driven 

luciferase reporter along with control or ZNF217 expression vectors and assayed for 

luciferase activity. Although MCF7 cells express high levels of endogenous ZNF217, 
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ectopic ZNF217 expression increased the relative luciferase activity by approximately three-

fold compared to the control (Figure 4C, left panel). Conversely, ZNF217 depletion in 

ZR75-1 (Figure 4C, right panel) and MCF7 cells (not shown) led to a significant decrease in 

reporter activity. Taken together, these results support the conclusion that ZNF217 regulates 

ErbB3 expression through activation of the ErbB3 promoter.

ZNF217 and CtBP2 bind to the ErbB3 proximal promoter

Earlier ChIP-chip array data indicated that ZNF217 and CtBP1/2 binding overlapped at the 

majority (~75%) of promoters where they were detected (Krig et al., 2007). However, 

ZNF217-CTBP complexes have been implicated in transcriptional repression (Cowger et al., 

2006). To determine whether both proteins are bound to the ErbB3 promoter, which our data 

suggests is activated rather than repressed by ZNF217, we performed chromatin 

immunoprecipitation (ChIP) using specific antibodies to ZNF217 and CtBP2. MCF7 lysates 

immunoprecipitated with either ZNF217 or CtBP2 antibodies show enrichment at the 

promoter sequence −458 to −200 upstream of the transcription start site (TSS) identified as 

the ZNF217 binding sequence from ChIP-chip array experiments (Krig et al, 2007) (Figure 

5A and 5B). ZNF217 and CtBP2 also show weak but detectable binding approximately 3kb 

upstream from the TSS.

Since the ZNF217-CtBP complex has thus far been associated with transcriptional 

repression, we next examined a series of histone “marks” to probe the chromatin state of the 

ErbB3 proximal promoter (−458 to −200) where both ZNF217 and CtBP1/2 reside. 

Chromatin immunoprecipitations were performed on MCF7 lysates with antibodies for 

histone activation and repression marks along with an antibody for RNA polymerase II (Pol 

II). The histone activation marks, AcH3K9 and TrimeK4, were clearly evident at the ErbB3 

proximal promoter, along with a robust signal for Pol II (Figure 5C top panel). In contrast to 

the activation marks, histone methylation marks (TrimeK9 and TrimeK27) commonly 

associated with promoter repression (Martin and Zhang, 2005) were notably absent from the 

ErbB3 proximal promoter (Figure 5C lower panel), despite the presence of CTBP1 and its 

repressor partner, coREST (Shi Y et al., 2003; Cowger et al., 2007). The same DNA was 

used to analyze the status of the NRK gene, previously shown to be repressed by ZNF217 

(Krig et al., 2007). We found that ZNF217, CtBP1/2 and coREST were bound to the 

proximal promoter of the NRK gene. In contrast to the ErbB3 promoter, TrimeK27 was 

clearly present at the NRK promoter along with modest levels of TrimeK9 (Supplementary 

Figure 1). Collectively, the presence of robust activation marks and the absence of any 

repressive marks at the ErbB3 promoter support the conclusion that ZNF217 occupancy at 

the ErbB3 promoter is associated with gene activation rather than repression.

To directly examine the link between ZNF217 and the activation marks, we depleted 

ZNF217 by siRNA in MCF7 cells and performed chromatin immunoprecipitation with 

antibodies to ZNF217, CtBP2, AcH3K9 and trimeK4. Depletion of ZNF217 reduced the 

ZNF217 occupancy of the ErbB3 promoter, as expected (Figure 5D, top panel). CtBP2 

levels were reduced commensurate with ZNF217 depletion suggesting that CtBP2 is 

recruited to the ErbB3 promoter, at least in part, through interaction with ZNF217 (Figure 

5D, top panel). In agreement with this, ZNF217 and CtBP are known to physically interact 
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through the PXDLS protein motif (Qunilan et al., 2006). Interestingly, ZNF217 depletion 

dramatically reduced the TrimeK4 levels but had no significant effect on AcH3K9 levels 

(Figure 5D and Supplementary Figure 2).

CtBP function in ErbB3 regulation

Our data support the conclusion that ZNF217 activates rather than represses the ErbB3 

promoter. However, ZNF217 is found at the ErbB3 proximal promoter along with CtBP1/2, 

a known ZNF217 interaction partner and transcriptional repressor. To more clearly delineate 

the individual roles of ZNF217 and CtBP1/2 in ErbB3 transcriptional regulation, we turned 

to a defined genetic model, CtBP1/2 null mouse embryo fibroblasts (MEFs, a gift from the 

Hildebrand lab). Lysates were collected from wild type MEFs as well as CtBP1/2 null MEFs 

and subjected to immunoblotting. As shown in Figure 6A, CtBP1/2 protein was not 

detectable in the null MEFs, as expected. Interestingly, ErbB3 protein was dramatically up-

regulated in the null MEFs, strongly suggesting that CtBP1/2 represses ErbB3 transcription.

We next examined the presence of activation and repression marks at the ErbB3 proximal 

promoter (found on ch: 10 in the mouse genome) in wild type and CtBP1/2 null MEFs. As 

shown in Figure 6B, ZNF217 was enriched at the ErbB3 promoter in both cases, 

demonstrating that despite its tight association with CtBP1/2 (Cowger et al., 2007;Quinlan 

et al., 2006), ZNF217 is recruited to the ErbB3 promoter in a CtBP1/2-independent manner. 

In wild type cells, where ErbB3 expression was very modest, a mix of activation (AcH3K9, 

TrimeK4) and repression marks (TrimeK27) were present (Figure 6B top gel and ChIP-

qPCR graphs below). However, in the CtBP1/2-null MEF cells where ErbB3 expression was 

significantly elevated, the activation marks were preserved (and enriched in the case of 

AcH3K9) while the repression marks (TrimeK9, TrimeK27) were nearly absent (Figure 6B 

lower gel and ChIP-qPCR graph below). Notably, the methylation of histone3 lysine 27 is 

dramatically reduced in CtBP-null mefs (Figure 6B and Supplementary Figure 3). To 

examine this further and directly implicate CtBP proteins in ErbB3 repression, a rescue 

experiment was performed. CtBP1/2 null MEFs were transiently transfected with either 

empty vector or a vector expressing CtBP2, and ErbB3 protein levels were examined by 

immunoblotting. A representative experiment is shown in Figure 6C (left panel) and 

quantified in the right panel. Ectopic expression of CtBP2 in CtBP1/2 null MEFs was clearly 

sufficient to suppress ErbB3 expression, defining a role for CtBP2 as an ErbB3 repressor. In 

agreement with this, ectopic expression of CtBP2 in null MEFs led to a significant decrease 

in ErbB3-promoter driven reporter activity (Figure 6D). These data demonstrate that despite 

their close association and overlapping promoter occupancy, ZNF217 and CtBP play 

opposing roles in the regulation of ErbB3 expression.

Depletion of ZNF217 limits downstream signaling through ErbB3

To examine the functional impact of ZNF217 modulation of ErbB3, ErbB3-mediated 

activation of the PI3K/Akt signaling cascade was examined in ZR75-1 breast cancer cells. 

ErbB3 is unique amongst the ErbB family in its propensity to potently activate the PI3K/Akt 

signaling cascade. To determine whether ZNF217 status impacts downstream signaling 

through ErbB3, ZR75-1 cells were treated with either scramble control or siZNF217 and 

then stimulated with two different concentrations of the ErbB3 activating ligand, 
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Neuregulin-1β. Lysates were probed for ZNF217, phospho-Akt (S473) and actin control and 

a representative immunoblot is shown in Figure 7A with quantification of several 

experiments in Figure 7B. Depletion of ZNF217 decreased basal Akt phosphorylation and 

limited ligand-stimulated Akt phosphorylation such that at both Neuregulin 1β 

concentrations, Akt phosphorylation was significantly diminished. This attenuation of 

Neuregulin 1β-stimulated Akt phosphorylation is likely a direct consequence of the ErbB3 

depletion observed following ZNF217 knockdown, although other means by which ZNF217 

may influence ErbB3 signaling through the PI3K/Akt pathway cannot presently be ruled out. 

To examine whether this attenuation of signaling has consequences for tumor cell growth, 

an MTT assay was performed. ZR75-1 cells were treated with either scramble control or 

ZNF217 siRNA and then stimulated with a sub-saturating concentration of Neuregulin-1β 

(necessary to appreciate the differences between ZNF217-replete and -depleted cells). 

Although ZR75-1 cells have a high basal rate of proliferation, they demonstrated a modest 

but reproducible response to a low concentration of Neuregulin-1β(p = 0.005). Conversely, 

in ZNF217-depleted cells, the proliferative response to Neuregulin-1β was abolished and 

cells instead proliferated less in the presence of Neuregulin-1β that in its absence (p = 

0.009). Similar results were observed in MCF7 cells (data not shown). These findings have 

important implications for future therapeutic approaches which aim at targeting ErbB3. 

Depletion of ZNF217 may be beneficial in this regard.

DISCUSSION

In this study, we find that ZNF217 and ErbB3 expression strongly correlate in human breast 

cancer cell lines and murine and human tumor samples. In addition, we demonstrate that 

ZNF217 binds to the proximal ErbB3 promoter and activates this promoter in a reporter 

assay. Ectopic expression of ZNF217 is sufficient to augment ErbB3 expression in human 

mammary epithelial cells. Conversely, depletion of endogenous ZNF217 leads to significant 

decreases in ErbB3 expression, indicating that ZNF217 expression is required for the 

maintenance of robust ErbB3 expression in breast cancer cells. These gain and loss of 

function studies indicate that ZNF217 is upstream of ErbB3 expression. On the basis of 

these findings, we propose that cells bearing amplified ZNF217 genes may be selected for 

during breast cancer evolution, at least in part due to increases in ErbB3 levels and 

associated Akt signaling, which would contribute to a pro-survival phenotype of ZNF217-

positive breast tumors. Our findings strongly suggest that ErbB3 is one link between 

ZNF217 and enhanced phospho-Akt levels (Huang et al, 2005).

While the ErbB2 gene at ch.17q12 is frequently found amplified, the mechanisms leading to 

over-expression of ErbB3 in breast cancer are not well understood. Low-level ErbB3 gene 

amplification has been reported (Sassen et al., 2008), but the frequency with which this 

contributes to ErbB3 over-expression in cancers is unknown. Presumably, over-expression 

of ErbB3 can occur through loss of regulatory controls at the transcriptional, translational or 

protein stability levels (Yen et al., 2006, Folgiero et al., 2007). Indeed, loss of the ubiquitin 

ligase Nrdp1 has been associated with ErbB3 overexpression (Yen et al., 2006). Our data 

demonstrate that ZNF217 contributes to the transcriptional dys-regulation of ErbB3 in breast 

cancer. While we favor the model that ZNF217 directly activates the ErbB3 promoter, due 

to its consistent presence at the promoter in various cell types, we cannot rule out the 
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possibility that ZNF217 regulates ErbB3 transcription in an indirect manner. Nevertheless, 

our data indicate that ZNF217 is both necessary and sufficient for robust ErbB3 expression.

ErbB3 has been implicated in resistance to targeted therapies such as Tamoxifen (Liu et al., 

2007) and Trastuzumab and has been linked to breast tumor cell invasion (Yen et al., 2006) 

and metastasis (Xue et al., 2006). ErbB3 plays a central role in ErbB2-driven breast tumor 

cell growth (Holbro et al., 2003) and has also been implicated in signaling by other receptor 

tyrosine kinases such as the Met receptor (Lee et al., 2007) and TGF beta type 1 receptors 

(Wang et al., 2008). Manipulation of ZNF217 levels and/or function in cancer cells may 

present a novel means for lowering ErbB3 expression and limiting its oncogenic activity and 

contributions to therapeutic resistance. The ErbB2-targeted antibodies Trastuzumab (Junttila 

et al., 2009) and Pertuzumab (Agus et al., 2002) disrupt ErbB2-ErbB3 heterodimers, 

limiting ErbB3 contribution to ErbB2 signaling, but leave ErbB3 free to interact with other 

receptors. Targeting ZNF217 in cancer cells may have benefits beyond its effects on ErbB3, 

since our previous work and the work of others have identified several genes subject to both 

transcriptional activation and repression by ZNF217 (Krig et al., 2007, Thillainadesan et al., 

2008). Although more challenging than enzymes, transcription factors are emerging as 

viable therapeutic targets in cancer (Frank, 2009, Shakya et al., 2009). Approaches that 

disrupt protein-protein interactions necessary for transcription factor activity (Plowright et 

al., 2009) or utilize RNA interference to silence transcription factor expression 

(Heidenreich, 2009, Singh et al., 2008) are on the horizon.

ZNF217 and CtBP2 proteins have been demonstrated to interact (Quinlan et al., 2006) and 

their occupancy at promoters shows substantial overlap (Krig et al., 2007), leading to the 

model that one is involved in the recruitment of the other to target promoters (see model in 

Krig et al. 2007). Previous work (Krig et al., 2007), together with our present work, 

demonstrates that ZNF217 recruitment to the ErbB3 promoter is independent of CtBP. 

However, CtBP may depend, to some degree, on ZNF217 for its recruitment to the ErbB3 

promoter in some cell lines, suggesting a complex relationship between the two. Overall, our 

data demonstrate that ZNF217 and CtBP regulate ErbB3 expression in an opposing manner. 

Given the limited understanding of ErbB3 over-expression in breast cancer, our findings 

have important implications for the future design of therapies targeting ErbB3.

MATERIALS AND METHODS

Cell culture

MCF7 cells and mouse embryo fibroblasts were cultured in DMEM (Gibco) supplemented 

with 10% fetal calf serum (Gibco) and 1% penicillin-streptomycin antibiotics (Cellgro). 

ZR75-1 cells were cultured in RPMI 1640 (Mediatech) with 10 mM Hepes (Gibco), 1 mM 

sodium pyruvate (Gibco), 14 mM glucose, 1 ug/mL insulin (Sigma), 10% fetal calf serum 

(Gibco) and 1% antibiotics (Cellgro). Finite life span HMEC 184 were obtained from 

reduction mammoplasty tissue and grown in a serum-free MCDB 170 medium (Clonetics 

Division of BioWhittaker)
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Primary human tissue specimens

Frozen human breast tumors were provided by the UCD Cancer Center Specimen 

Repository and the NCI Cooperative Human Tissue Network. All samples were de-

identified, and the study was approved by the Institutional Review Board of the UCD School 

of Medicine. Tissues were homogenized in ice-cold T-PER Tissue Protein Extraction 

Reagent (Pierce) with protease and phosphatase inhibitors, then centrifuged to remove 

insoluble debris.

Transgenic mice and tissues

FVB mice expressing the activated Neu transgene (NDL2-5, neu deletion mutant) (Siegel et 

al, 1999) were maintained at UCD animal facilities. Mammary tissues were collected and 

snap-frozen in liquid nitrogen. Tissue lysates were prepared as described above.

Recombinant ZNF217 adenoviral infections

To amplify the ZNF217-adenovirus or control Adeno-X virus (Clontech), HEK293 cells 

were infected and supernatants collected, centrifuged, and flash frozen until use. Post-stasis 

HMECs 184 at early passage were pre-treated with polybrene and infected with adenoviral 

supernatants. Extracts for protein or RNA analyses were collected at various time points. 

Extracts for protein were collected and quantitated using the Pierce BCA protein detection 

reagent. RNA was isolated using the RNeasy Kit (Qiagen). To check the integrity of the 

RNA, aliquots from RNA samples were prepared using the Agilent RNA 6000 Nano Kit and 

assayed on a Bioanalyzer (Agilent).

Luciferase reporter assays

MCF7 cells or MEFs were plated at 2 × 105 cells per well in 12-well plates and allowed to 

settle overnight. Cells were transiently transfected using Lipofectamine LTX Plus 

(Invitrogen) with ErbB3_pGL4 Luciferase Reporter construct, ZNF217 expression vector, 

and pRLO renilla luciferase vector (Promega) or beta-galactosidase pCMX reporter vector 

to normalize cell numbers and transfection efficiency. Lysates were harvested 24 or 48 

hours after transfection with 1x Passive Lysis Buffer (Promega) and assayed for firefly and 

renilla luciferase activity using the Dual Luciferase Kit (Promega), or beta-galactosidase 

actvity was measured using CPRG (chlorophenolred-ß-D-galactopyranoside) at 550nm in a 

plate reader format.

Immunoblotting

Lysates were resolved by 8% SDS-PAGE and immunoblotted with various primary 

antibodies. See supplemental data for antibodies used.

Cell assays using RNAi

ZR75-1 or MCF7 cells were plated at a density of 1 × 105 per well in 24-well culture plates. 

Cells were transfected 24 hours after plating with 100 nM siRNA targeting ZNF217 

(OnTarget plus SMARTpool, Dharmacon, cat # L-004987-01) or non-targeting pool 

(OnTarget plus non-targeting pool, Dharmacon, cat # D-001810-10) using DharmaFect 1 

(Dharmacon). Medium was replaced after 24 h, and cells were left for an additional 48 h or 
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as indicated. For cell signaling and growth assays following RNAi treatment, cells were 

serum starved in medium containing 0.1% FBS before Neuregulin1β treatments. To measure 

proliferation, cells were allowed to grow under Neuregulin1β treatment for 48h and assayed 

by MTT (3-(4,5-dimethylthiaszol-2-yl)-2,5-diphenyltetrazolium bromide; Sigma). Crystals 

formed from the MTT were dissolved in acidic isopropanol and the absorption measured at 

570 nm with a baseline subtraction at 655nm.

RNA isolation and real-time PCR

RNA was purified using a commercial kit (Qiagen; RNAeasy Kit). RNA (2.5ug) was 

converted to cDNA using the High Capacity cDNA Reverse Transcription Synthesis Kit 

(Applied Biosystems). Analyses were performed using TaqMan Gene Expression primers 

(Applied Biosystems) and probes that were labeled with FAM and Two Step RT qPCR 

Master Mix (EuroGentec). Further details are listed in Supplementary Methods.

Chromatin immunoprecipitation

Chromatin immunoprecipitation (ChIP) was performed following the method previously 

described (O'Geen et al, 2006). For MCF7 ChIPs +/−siZNF217, cells were plated, 

transfected with 100nM siRNA for 48h and cross-linked with 1% formaldehyde at 96h. 

Quantitative real-time PCR was performed on a Bio-Rad DNA Engine Opticon real-time 

PCR system using SYBR® Green Master PCR Mix according to the manufacturer's 

instructions (BioRad). The relative fold enrichment of each target site was calculated as 2 to 

the power of the cycle threshold (cT) difference between input chromatin and ChIP samples. 

For MCF7 siRNA ChIP-qPCR, primers to an exon of the ZNF10 gene (unaffected by 

histone marks) were used to normalize differences in DNA between siRNA treatments. See 

supplemental Methods for antibodies and primers used.

Statistical analysis

Regression models were fitted in the R statistical Package (R Development Core Team.) R: 

A Language and Environment for Statistical Computing. Vienna, Austria; R Foundation for 

Statistical Computing, 2006). All experiments were repeated at least 3 times with 

representative experiments chosen. All numerical data are expressed as mean ± s.e.m. 

(standard error of the mean) from a representative experiment performed in triplicate. p 

values were determined with the Student's t test.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. ErbB3 and ZNF217 mRNA expression in 50 breast cancer cell lines
Expression data for 50 breast cancer cell lines were determined using Affymetrix U133A 

arrays. A single probe set represents ErbB3 expression (202454_s_at) and ZNF217 

expression (203739_at) in this dataset (Chin et al., 2006). The breast cancer cell lines are 

listed with the corresponding relative log2 ratio for ZNF217 and ErbB3 in Supplementary 

Table 1. The correlation coefficient (determined by Pearson's method of correlation 

analysis) between ErbB3 and ZNF217 was 0.69 (R2=0.47), indicating a significant linear 

association between the expression of these two genes.
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Figure 2. ErbB3 and ZNF217 protein expression in human and murine specimens
(A) An immunoblot of 15 human primary breast tumor lysates probed with antibodies to 

ZNF217, ErbB3 and actin (loading control). (B) The intensities of the ZNF217 and ErbB3 

signals relative to actin were quantified by densitometry and plotted. (C) Immunoblot of 

lysates from wild-type FvB mouse mammary tissue versus matched normal and tumor 

tissues from NDL 2-5 mice probed with antibodies to ErbB3, ZNF217 and actin.
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Figure 3. Exogenous ZNF217 gene expression enhances endogenous ErbB3 expression in 
HMECs
(A) Protein expression levels of ZNF217 and ErbB3 in HMEC 184 before (passage 9) and 

after infection (passage 10) with ZNF217-encoding retroviruses, and after immortalization 

(passage 28). (B) Immunoblot of ZNF217 and ErbB3 protein expression in HMECs infected 

with control or ZNF217- encoding adenoviruses (C) Relative levels of ErbB3 mRNA in 

HMECs infected with control or ZNF217-encoding adenoviruses, determined at indicated 

time-points by Taqman real-time PCR analyses. Actin was used as an internal control. Note 

that error bars are present but very small.
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Figure 4. Silencing ZNF217 reduces ErbB3 transcript and protein expression
(A) Scrambled control or ZNF217 siRNAs were transiently transfected into MCF7 and 

ZR75-1 cells. Lysates were harvested at 72h post-transfection and subjected to 

immunoblotting with ZNF217, ErbB3 and actin antibodies. Densitometric analysis of 

ZNF217 and ErbB3 relative to actin from three independent experiments is shown for both 

cell lines. (B) RNA samples from MCF7 cells treated in triplicate for 72 h with scrambled 

control or ZNF217-specific siRNAs were subjected to Taqman real-time PCR to determine 

relative ZNF217 and ErbB3 mRNA levels. Actin mRNA levels were used as an internal 

standard. Note that error bars are present but very small. (C) MCF7 cells were co-transfected 

with control or ZNF217 expression construct and an ErbB3-promoter driven luciferase 

reporter construct. Lysates were harvested 24h post-transfection and assayed for firefly and 

renilla luciferase activity using Promega Dual Luciferase Kit. Relative luciferase activity is 

shown. (D) ZR75-1 cells were co-transfected with scrambled control or ZNF217 siRNA and 

an ErbB3-promoter driven luciferase reporter construct. Cells were lysed at 24h post-

transfection and assayed for firefly luciferase and beta-galactosidase activity (as an internal 

control). Relative luciferase activity is shown for a representative experiment performed in 

triplicate. p values for all comparisons in (A) through (D) are < 0.01.
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Figure 5. ZNF217 and CtBP2 occupy the ErbB3 proximal promoter in MCF7 breast cancer cells
(A) Cartoon illustrating the locations of the sequences amplified in the ChIP studies shown 

in B and C. (B) Far right: PCR-amplified DNA enriched by immunoprecipitation with 

antibodies to ZNF217 or CtBP2, or with IgG (negative control) and 1:50 dilutions of un-

enriched lysate (Input). Left: Quantitative PCR on ZNF217 ChIP (far left) and CtBP2 ChIP 

(middle) at the erbB3 proximal promoter versus 3kb upstream. (C) PCR-amplified DNA 

enriched by immunoprecipitation with antibodies to ZNF217, CtBP1, CTBP2, coREST, 

PolII, indicated histone modification marks, IgG (negative control), or 1:50 dilution of input 

are shown for comparison at the proximal erbB3 promoter. Results for ChIP-qPCR with 

primers amplifying the proximal region of the ErbB3 promoter are shown below gel panels. 

(D). ChIP-qPCR was performed on DNA enriched by immunoprecipitation with antibodies 

to ZNF217, CtBP2, AcH3K9, or TrimeK4 from MCF7 cells treated with siRNA to ZNF217 

or scrambled control. Relative enrichment between siZNF217 and scramble control is 

compared (also graphed as fold change in Supplementary Figure 1). For (B) through (D), all 

qPCR was performed in triplicate and graphed as averaged relative DNA over 1:50 input for 

each ChIP sample (relative enrichment). A representative experiment is shown.
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Figure 6. CtBP2 represses ErbB3 expression
(A) Protein lysates from wildtype and CtBP1/2 null MEFs were immunoblotted for ErbB3, 

CtBP1, CtBP2, and actin. (B) Mouse primers for the comparable ErbB3 proximal promoter 

sequence were PCR-amplified on DNA from wildtype or CtBP1/2 null MEFs enriched by 

immunoprecipitation with antibodies to ZNF217, CtBP2, indicated histone modification 

marks or IgG (negative control). 1:50 dilutions of input also shown. ChIP-qPCR was 

performed in triplicate and is shown as relative enrichment of immunoprecipitated DNA for 

mek27 and ZNF217 (left lower graph) and AcH3K9 and trimeK4 (right lower graph). (C) 

CtBP1/2 null MEFs were transiently transfected with a CtBP2 expression construct or empty 

control vector and the levels of ErbB3, CtBP2, and actin were analyzed by immunoblotting. 

Densitometric analysis of ErbB3 from three independent experiments is shown in the right 

panel. p < 0.05. (D) CtBP1/2 null MEFs were transiently transfected with a CtBP2 

expression construct and an ErbB3-promoter driven luciferase reporter construct. Lysates 

were collected at 24h and assayed for firefly luciferase and beta-galactosidase activity. 

Relative luciferase activity is shown for a representative experiment performed in triplicate. 

p < 0.01.
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Figure 7. ZNF217 depletion suppresses ErbB3-mediated downstream signaling
(A) ZR75-1 cells were transiently transfected with either scramble control or ZNF217-

specific siRNA. 48 hours after transfection, cells were serum starved overnight and then 

treated with two different concentrations of Neuregulin1βfor twenty minutes. Lysates were 

prepared and blotted for ZNF217, p-AKT and actin (loading control). A representative 

western blot is shown. (B) Densitometric analysis of phospho Akt signal from three 

independent experiments. p < 0.01 for all comparisons between scramble and siZNF217. (C) 

Cell viability was determined in ZR75-1 cells transiently transfected with either scramble 

control or ZNF217-specific siRNA. 48 hours after transfection, cells were serum-starved 

overnight followed by treatment with Neuregulin1β for an additional 48h. Proliferation of 

cells at 96h post-transfection was measured by MTT assay.
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