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Foreword

It would be a challenge to place this paper into one specific 
category; it encompasses a lot for one article, by providing 
a glimpse into a variety of topics, all interconnected but 
diverse. Even having a quite large supplemental material 
still requires from a reader—who might be a bioengineer or 
biochemistry major—to dig into the carbon dots (CDs) and 
RNA methylomics, and from a clinical scientist—to refresh 
their molecular knowledge (and insight into the herbal 
medicine!). We consider this to be a plus for any scientific 
publication to both enlighten the reader in the new findings 
as well as to make them wish to learn/read more. What 
is certain, this report is a must-read for a bone-centered 
biologist. Here we review this demanding article having 
mostly this type of audience in mind. 

Problem

Radiotherapy alone or in combination with chemotherapy 
has been proven successful in cancer patients. As survival 
rates rise, the collateral consequences of radiation therapy 
become prominent; these include bone deterioration which 
leads to a wide range of skeletal abnormalities, including 
osteoradionecrosis (ORN) and pathological (low energy) 
fractures (1,2). Significant patient morbidity and increased 

mortality can thus arise from cancer treatment-related 
radiation and radiation-induced ORN (2,3). Conservative 
management of ORN includes local irrigation, systemic 
antibiotics, and hyperbaric oxygen therapy (3,4). ORN is 
akin to osteonecrosis of the jaw because of bisphosphonate 
treatment. For the advanced stage of ORN, the radical 
excision of the jaw with repair using a microvascular 
osteomyocutaneous free flap is crucial (5). Nevertheless, up 
to 43% of surgical procedures result in complications (6).  
Specifically for the jaws and dental implants, radiation 
therapy induces ORN and therefore significantly reduces 
the longevity of implants (7,8). Bottom line, at present there 
is no effective treatment for radiation-induced bone injury.

Proposed solution

In a research article, Guo and colleagues (9) report an 
important translational study on the potential therapeutic 
effect of CDs synthesized from Lycium barbarum against 
radiation-induced bone injury in a rat model of ORN. 
The group of the co-authors are all affiliated with the 
Department of Oromaxillofacial, Head & Neck Oncology and 
College of Stomatology, which explains its focus on mainly jaw 
bones. The main translational outcomes of this study are that 
CDs alleviated radiation-induced bone injury and stimulated 
osteogenesis surrounding titanium implants (9).
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Nanoparticles

C D s  a r e  i n n o v a t i v e  n a n o p a r t i c l e s  w i t h  s t a b l e 
physicochemical properties and good biocompatibility that 
are receiving a lot of attention in biomedical applications 
(10,11). CDs have been shown to increase osteogenic 
activity (12). Shao and colleagues reported both tracking 
and the osteogenic potential of citric acid-based CDs in 
rat bone marrow mesenchymal stem cells (BMSCs). The 
authors demonstrated that the presence of CDs effectively 
facilitated osteogenic differentiation of the BMSCs via 
ROS-mediated MAPK pathway (13). Jin and colleagues 
reported ascorbic acid CDs which promote osteoblasts 
differentiation by activation of endoplasmic reticulum stress 
and PERK-eIF2α-ATF4 pathway by inducing calcium 
leakage in the endoplasmic reticulum of osteoblasts (14). 
Wan and colleagues reported dexamethasone CDs that 
can stimulate the bone immune microenvironment and 
further accelerate the differentiation of BMSCs to facilitate 
bone tissue healing (15). We conducted one study in our 
Musculoskeletal Genetics Laboratory where zebrafish 
were treated with nitrogen-doped CDs functionalized 
with hydroxyapatite nanoparticles (NCDs-HA) for up 
to 35 days after jaw resection surgery (16). Our findings 
demonstrated that NCDs-HA nanoparticles induced 
MC3T3-E1 osteoblast line differentiation and proliferation; 
ensuing micro-CT (μCT) analyses affirmed the ability of 
NCDs-HA nanoparticles to accelerate regeneration in a 
zebrafish jawbone (16). In their fundamental work, Guo and 
colleagues (9) went further; they explored the mechanism 
behind such remarkable benefits of the CDs.

Their CDs were synthesized from Lycium barbarum, 
a fruit (berry) used in traditional Chinese medicine for 
thousands of years. Among the effects of L. barbarum 
are antioxidant, antiaging, anti-inflammatory, and 
immunoregulatory effects. Guo et al. (9) synthesized CDs 
from L. barbarum using a hydrothermal strategy. Analysis 
using high-resolution transmission electron microscopy (HR 
TEM) showed that these CDs were well dispersed with an 
average diameter of 3.5 and 0.32 nm lattice spacing. The 
absolute fluorescence quantum yield of these CDs was up to 
67%. The functional groups and the chemical structure of 
CDs were also validated by X-ray photoelectron spectroscopy 
(XPS) and Fourier transform infrared (FTIR) spectrometry. 

Therapeutic effect

Rat model of ORN was established by mandibular first 

molar extraction after radiotherapy and the CDs were 
delivered by local injection (9). We remember that the study 
was performed by the oral and maxillofacial surgery experts, 
therefore osseointegration of dental titanium implants 
installed in irradiated bone was tested and—together with 
osteogenesis—shown to be promoted by CDs. The authors 
demonstrated that CDs exhibited excellent biocompatibility 
and promoted osteogenic differentiation of BMSCs more 
than adipogenic differentiation.

Following that, titanium implants were placed in the 
tibia of rats to see if CDs might stimulate osseointegration 
in irradiated bone. These in vivo experiments revealed 
that CDs enhanced trabecular bone formation around 
titanium implants of irradiated tibia, confirmed by μCT and 
histology examination. Furthermore, cell apoptosis analysis, 
β-galactosidase staining, quantitative polymerase chain 
reaction, and western blots provided evidence that CDs 
could attenuate the radiation-induced damage by lowering 
cellular senescence. 

Radiation-induced senescence

Senescent cells appear to have dual roles in physiologic 
tissue homeostasis/repair as well as pathology. The 
beneficial role of senescent cells is recognized in embryonic 
skeletal development; senescent cells also possess an 
essential role in optimal wound healing (17). While there is 
substantial interest in the beneficial roles of senescent cells, 
much of cellular senescence research has been aimed at their 
roles in pathologies and emphasized their contributions to 
pathoetiology of various organs and tissues, including bone 
diseases (18-21).

A bone-aging expert would be familiar with the 
senescence-associated secretory phenotype (SASP) concept, 
which entered the field relatively recently (20); the clearance 
of senescent cells in vivo is proposed to be beneficial for 
reducing age-related bone pathology. Beyond many cellular 
(phenotypic) changes and metabolic alterations, the SASP 
phenomenon is marked by epigenetic rearrangements. 
Blocking the secretome of senescent cells and even trying 
to eliminate these cells is thus a valid therapeutical target to 
alleviate the radiation-induced bone injury. 

And here comes into use the stated effect of L. barbarum 
fruit—anti-aging and anti-senescent agent. 

Towards mechanism of action

Mechanistically, CDs cause one of the most frequent 
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chemical modifications—methylations—occurring in 
mRNAs, by the addition of −CH3 group in the N6-
position of adenosine; the product is then called N6-
methyladenosine (m6A).  As a fundamental mRNA 
modification, m6A participates in various pathological 
processes (22). The dynamic m6A level is known to be 
regulated by RNA modification enzymes, methyltransferases 
(also known as “writers”), and demethylases (so-called 
“erasers”); one of these enzymes is methyltransferase-like 3 
(METTL3). 

METTL3 emerges as a central regulator of BMSCs 
aging. Thus, Wu et al. [2018] had shown that Mettl3 
overexpression in mesenchymal stem cells (MSCs) protects 
the bone marrow niche in mice (23). Wu et al. [2020] 
reported that METTL3 inhibited premature aging of 
human MSCs of the kidney thanks to the regulatory role of 
METTL3 in age-related processes (24). Reduced METTL3 
levels in prematurely senescent human MSCs parallel a 
decreased m6A RNA methylation (25). The protective 
role of this enzyme is demonstrated by accelerated 
senescence in METTL3-knockout MSCs and the reversal 
of senescence upon METTL3 overexpression. Decreased 
METTL3 expression significantly downregulates m6A RNA 
methylation levels in endometrium cells (22).

In Guo et al.’s work, the authors extracted the mRNA 
of BMSCs irradiated/non-treated and irradiated/treated 
with CDs for transcriptome-wide RNA sequencing and 
methylated RNA immunoprecipitation sequencing. They 
detected increased m6A levels located in the 3-untranslated 

regions of mRNA coding for a protein called CAP-GLY 
domain containing linker protein 3 (CLIP3). Putative m6A 
sites of Clip3 mRNA were predicted by observed sequence-
based m6A modification sites. Subsequently, the increased 
enzyme METTL3 caused increased m6A modification, 
which leads to enhanced degradation of Clip3 mRNA and 
downregulated Clip3 expression (see schematic presentation 
in Figure 1).

This study thus showed that CDs most probably 
elevate m6A levels in irradiated MSCs by boosting 
METTL3 expression. As noted by the authors, the specific 
mechanisms underlying the process of how CDs promote 
METTL3 remain unclear. The authors (9) propose that the 
functional group located at the surface of CDs plays a role. 
As CDs from L. barbarum are rich in −CH3, −OH, −NH, 
and other functional groups, the authors suggested that 
there could be an electrostatic attraction between positively 
charged CDs and protein (or subunit of) since most proteins 
possess a negative potential in vivo. They speculate that the 
interaction of functional groups of CDs and proteins may 
lead to a conformational change in Clip3 mRNA. 

Conclusions and significance

Taken together, CDs produced from L. barbarum alleviate 
bone injury inflicted by radiation therapy, by inhibiting 
cellular senescence via regulation of m6A modification 
of Clip3. This important preclinical research therefore 
indicates that CDs mediate radiation-induced bone injury 
via the downregulation of Clip3 expression (9).

Appraisal of the above findings reported by Guo et al. 
regarding the alleviation of radiation-induced bone injury 
should be considered with its merits and limitations (9). 
There might be alternative mechanisms for the CDs to 
alleviate bone injury. As Guo et al. note, “the effect of CDs on 
other cell types might also participate in the therapeutical process; 
however, the major role was [in] BMSCs”. Also, there were 
suggestions for the effect of METTL3 on m6A modification 
of other genes mRNA, such as SIRT1 (22) or MIS12 (24), 
therefore involving other signaling pathways rather than 
being downstream of the Clip3. 

This pioneering study has provided an in-depth 
comprehension of the impact of CDs on radiation-induced 
bone injury. Such developments in the field of herbal 
CDs may provide promising prospects for the clinical 
management of diseases involving the METTL3/senescence 
pathway, extending beyond the realm of radiation-induced 
bone injury. Various research groups have reported and 
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Figure 1 Schematic illustrating the therapeutic action of CDs 
in promoting osteogenic differentiation of irradiated BMSCs by 
regulation of METTL3/Clip3 in an m6A-dependent manner. Col-1,  
collagen 1; Runx-2, Runt-related transcription factor 2; Alp, 
alkaline phosphatase; Ocn, osteocalcin; CD, carbon dot; BMSC, 
bone marrow mesenchymal stem cell.
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created therapy agents and drug carriers in in vitro and in vivo  
models, however, the data is yet insufficient for clinical 
use. Guo et al. offered an approach for the management 
of radiation-induced bone injury, which is hardly achieved 
by other reported CDs. Clearly, more research studies 
are required to elucidate the therapeutic potential of CDs 
against radiation-induced bone injury and beyond, e.g., for 
drug-induced osteonecrosis of the jaw. There is a need for 
clinical trials, and the long-term toxicological consequences 
have yet to be discovered. Moreover, the pharmacokinetics 
and biodistribution of CDs are challenging because of 
their physiochemical characteristics, surface chemistry, and 
morphology. To acquire trust in the clinical applications of 
CDs in the management of radiation-induced bone injury, 
researchers must conduct repeated and long-term studies. 
Although such studies will necessitate significant additional 
effort, we are optimistic that these objectives can be met.
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