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Why the dipolar response in 
dielectrics and spin-glasses is 
unavoidably universal
Eduardo Cuervo-Reyes

Materials response to electric or magnetic fields is often dominated by the dynamics of dipoles in 
the system. This is for instance the case of polar dielectrics and many transition metal compounds. 
An essential and not yet well understood fact is that, despite their structural diversity, dielectric 
solids exhibit a striking universality of frequency and time responses, sharing many aspects with the 
behaviour of spin-glasses. In this article I propose a stochastic approach to dipole dynamics within which 
the “universal frequency response” derives naturally with Debye’s relaxation mechanism as a special 
case. This formulation reveals constraints to the form of the relaxation functions, which are essential 
for a consistent representation of the dynamical slowing-down at the spin-glass transition. Relaxation 
functions with algebraic-, and exponential-tails, as well as damped oscillations, are shown to have a 
unified representation in which the stable limit of the distribution of waiting-times between dipole flips 
determines the present type of dynamics.

According to Debye’s model1, the polarization developed by a system of dipoles in response to the influence of 
an external field, relaxes exponentially as a consequence of thermal fluctuations once the field is switched off. 
However, conclusive evidence collected over many decades indicates that this does not hold true for a wide range 
of solids2–19. A prominent example is the slowing-down of the spin dynamics associated with the on-set of a 
glassy phase. This problem has received considerable attention over the last decades, yet a coherent description 
remains elusive. The spin-relaxation function is often modelled2–5 with a stretched-exponential, also known as 
Kohlrausch-Williams-Watts (KWW) function,

λ β− < ≤β~m t t( ) exp( [ ] ) with 0 1, (1)

where both parameters, β and λ, decrease as temperature is lowered. Equation (1) is very appealing since it seems 
to describe a variety of phenomena such as the conductivity close to the metal-insulator transition20, glass form-
ing liquids21,22, and the jamming transition23. However, experimental5,6 and numerical7 evidence indicate that it 
does not represent adequately systems exhibiting critical behaviour at the freezing temperature, Tf. In such cases, 
the return to equilibrium over long observation times can be modelled more accurately with

λ∝ − >β−m t t t T T( ) exp( [ ] ) for , (2)
x

f

∝ ≤−m t t T T( ) for , (3)
x

f

where 0 <  x <  1, varying from x ~ 0.5 around 4Tf to nearly zero well below Tf. The emergence of a purely algebraic 
relaxation (when λ →  0 as → +T T f ) is compatible with the scaling theory of critical phenomena7,24,25, but a 
microscopic model that leads to such a behaviour is still needed for a deeper understanding. Moreover, the alge-
braic tail with 0 <  x <  1 is also a universal feature for the dielectric relaxation of solids11–15, which may hint at the 
existence of some underlying generic constraints.

A sound explanation for this ubiquitous behaviour should not rely on very specific assumptions. For instance, 
models invoking independent parallel relaxation channels are not appropriate as it is very improbable11–14,26 that 
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equation (3) results from a superposition of (Debye-)exponentials with a continuous distribution of relaxation 
times. In addition, no proper (normalized) distribution of exponentials can result in a non-integrable algebraic 
decay.

More recently it has been proposed17,18 that a general relaxation equation,

λ= + β −m t k t( ) [1 ( ) ] (4)
k

0
1/

of purely stochastic origin27, could also describe spin-glasses across Tf, in which case k(> 0) is related to the 
non-extensiveness of the system and k →  0 above Tf, transforming equation (4) in to equation (1).The large-t 
exponent x ≡  β/k goes continuously from x ≪  1 well below Tf, to x ≫  1 above Tf. However, the corresponding 
relation between x and the relevant time scale known as average relaxation time7,

∫τ ≡
∞

m t dt( ) , (5)av
0

seems to be at odds with scaling arguments7,24. While τav should be finite in the high-T phase and diverge at Tf, the 
resulting τav from equation (4) does not diverge at the critical point, but at a higher temperature. I.e., the fit to 
experimental data18, and numerical simulations of Ising spin-glasses7 give .~x T( ) 0 15f , but equation (4) predicts 
the divergence of τav already at x =  1 (see Methods). At present, it is neither clear why power-law relaxations are 
so ubiquitous in nature, nor is there consensus on the description of its transformation across Tf.

In this report I propose a stochastic approach to the macroscopic response, which represents the dynamics in 
both (ergodic and glassy) phases correctly and explains why the response in Ising-like dielectrics and spin-glasses 
is unavoidably universal. With this formulation we do not aim at solving specific dynamical models and pre-
dicting their relaxation exponents. Instead, it allows us to show that the response of any macroscopic system 
of dipoles must have certain asymptotic forms, and must show relaxation exponent within specific ranges; for 
instance, 0 <  x <  1 and 0 <  β ≤  1. The global response is reformulated in terms of a distribution of waiting times, 
whose stable limit determines the type of dynamics. Three types of solutions compatible with fundamental phys-
ical principles are derived. One class leads to algebraic decays, another to short-tail relaxations, and the third 
type corresponds to oscillatory responses. Asymptotic forms, and commonly used interpolation functions are 
discussed. The present approach supports the evidence6,7 that above Tf neither equation (1) nor equation (4) 
describes the magnetic relaxation of a system that undergoes a continuous phase-transition.

Results and Discussion
Stochastic formulation of dipole relaxation. Our system consists of a large number of identical spins, 
or dipoles in general, in equilibrium with a thermal bath. We want to find a generic expression for the time evo-
lution of an induced polarization after the polarizing field has been removed. Evidence indicates that Ising-like 
models describe well a large number of systems, presumably due to the fact that the rotational SU2 symmetry is 
often broken in solid materials. Therefore, we restrict our analysis in the present work to Ising-like dipoles and 
assume in the following that each spin can take two values, + 1 and − 1. This choice also represents any set of two-
state variables. Generalisations to other spin values are left for future investigations.

At finite temperatures, each spin can invert its orientation after more or less random time-intervals, being 
driven by thermal fluctuations, and by the interaction with the other spins in the system. Let us imagine that we 
follow the dynamic of every spin, writing down the times elapsed between consecutive flips, and that a histogram 
of waiting-times (in bins of width Δ t) is created for each spin. If the system is ergodic, one should find that all 
histograms become practically identical and reproducible, once the dynamics are recorded for long enough time. 
The limit Δ t →  0 (with a proper normalization) defines the continuous probability distribution function (PDF) of 
waiting times. For non-ergodic systems, the shape of the histogram may depend on the chosen spin, and may 
change from one realization of the experiment to another. However, as long as the system size, L, is much larger 
than the spin-spin correlation length, ξ, the global PDF obtained by averaging the histograms of all spins, ψ(t), is 
reproducible. Although local conditions may be different for each spin due to their interactions, focusing at a 
global scale in which ξL  guarantees that there is always a pair of uncorrelated sites in the system where spins 
have similar conditions with opposite orientations. The dynamics of up- and down-spins are statistically equiva-
lent (in global sense) and their response to small perturbations can be considered linear. In terms of ψ(t), we can 
calculate the global likelihood that the number of flips performed by a spin until time t is odd,

∫ ∫ ∑ψ ψ= ′ ″ ″ ′
− ′

∞

=

∞
+⁎P t dt dt t t( ) ( ) ( ),

(6)

t

t t j

j
odd

0 0

(2 1)

where [ψ]*j denotes the jth convolution of ψ. The average polarization value at time t, among the spins that were 
in the state + 1 at t =  0, is

≡ −m t P t( ) 1 2 ( ), (7)odd

and the same (but with opposite sign) holds for the spins which had the value − 1 as initial condition. Thus, equa-
tion (7) defines the fundamental solution for the global relaxation function, m(t) with m(0) =  1, and allows us to 
calculate the global moment at any later time as [N↑(0) −  N↓(0)] · m(t) (given the initial number of dipoles up and 
down, N↑(0) and N↓(0), respectively).

A key point in equation (7), which makes it fundamentally different to the stochastic approach leading to 
equation (4), is that relaxation is not described as the probability that a system remains in its initial state. Instead, 
it is given here by the (measurable) remaining polarization despite multiple flips. This takes into account that 



www.nature.com/scientificreports/

3Scientific RepoRts | 6:29021 | DOI: 10.1038/srep29021

fluctuations are always present, and some transitions do not change the value of the macroscopic observable. 
To better understand the difference between the two definitions, let us take the extreme case of non-interacting 
dipoles that invert their orientation periodically. While the probability of not making any transition fades at half 
of the oscillation period, the spins never forget their initial phase (because the movement is periodic) and the 
polarization oscillates.

For the simplicity of this formulation based on the global statistics, we pay the price of not knowing about 
local quantities. In return, the current approach provides a closed-form expression for the relaxation function, 
without the need for assumptions on the statistical independence of microscopic variables. As a matter of fact, the 
macroscopic response of spin-glasses and disordered solids is generally reproducible despite the broken ergodic-
ity at microscopic level. In terms of the Laplace transforms, ≡m̂ s m t( ) { ( )} and ψ ψ≡ˆ s t( ) { ( )} , equation (7) 
acquires a simple form

ψ
ψ

=
−
+

ˆ
ˆ
ˆm s

s
s
s

( ) 1 1 ( )
1 ( )

,
(8)

and the frequency-dependent dipolar current is

ω ψ
ψ

=




 +





 .
ω= + +

ˆ ˆ
ˆJ s

s
( ) 2 ( )

1 ( ) (9)s i 0

For the time-domain counterpart of equation (9) we have

∑ ψ= −
=

∞
− ⁎J t t( ) 2 ( 1) ( ),

(10)j

j j

1

1

which, by definition (J(t) ≡  − dm/dt), fulfils the integral condition ∫ ≡ =
∞ Jdt m(0) 1

0
.

The dynamic response of any dipolar system is then expressed, via equation (10), in terms of the correspond-
ing global PDF of waiting times, ψ(t), which still has to be found by other microscopic methods. But we have not 
just transferred the problem of calculating J(t) to the one of finding ψ(t), which is not necessarily simpler. We 
have actually gained in that the present formulation unveils important constraints to the possible forms of J(t), 
even without further knowledge of ψ(t). In the remaining of this report we address the following points: (1) the 
high-frequency universal form of the response is related to the causality principle (this result does not depend on 
our definition of m(t)); (2) the stochastic character of the long time response leads to a universal low-frequency 
form; (3) only few asymptotic long-time forms are physically observable and correspond to different values for the 
stability exponent of the stable limit on ψ(t); (4) applying these results to commonly used relaxation functions, we 
unveil limitations of some specific models and show which of them can describe a continuous phase transition.

Universality. High frequency-short time response. The natural requirement of causality applied to the defi-
nition of J(t) reveals an important constraint to the asymptotic high-frequency form of ωĴ ( ). In general, m(t) is a 
continuous function with negative derivative in the vicinity of t =  0, but it is not necessarily differentiable at t =  0. 
Thus, its power series may have a leading dependence 1 −  m(t) ∝  t1−n, with a non-integer exponent, 1 −  n >  0, in 
general. By verifying that ωĴ ( ) satisfies the Kramer-Kronig relations28 (i.e., the causality principle in frequency 
domain), it is found that n must lie within the interval 0 ≤  n <  1, and that

ω τ ω ωτΓ − −� �Ĵ n i( ) (2 )[ ] for 1, (11)n
0

1
0

where τ0 is a time constant, and Γ (⋅ ) is the gamma function. It turns out that only in the given range of n the 
stored energy and the loss function are non-negative; i.e., ≥ˆR J[ ] 0 and ≤ˆI J[ ] 0 (where ⋅R[ ] and ℑ [⋅ ] refer to 
the real and the imaginary part of a complex function, respectively). For n =  0, m(t) is also differentiable at the 
origin, and the leading asymptotic behaviour is purely lossy. This is featured in Debye’s relaxation model and 
corresponds to losses by friction forces that are proportional to the velocity. Although this model provides an easy 
to understand scenario due to its analogy with the interaction of macroscopic objects with fluids, its accuracy in 
the (non smooth) molecular world is debatable. For the more general case 0 <  n <  1, real and imaginary parts of 
ωĴ ( ) have the same asymptotic dependence, ∝ ωn−1, meaning that the polarization-to-losses ratio is frequency 

independent. This behaviour is actually found in many solids, and liquids11,14,29,30, and corresponds to relaxation 
currents that follow for short times (i.e., for t ≪  τ0) the Curie-von Schweidler law31,32,

τ
τ

−
.J t n t( ) 1 ( / )

(12)
n

0
0

Jonscher11, and Dissado & Hill33 discussed a simple but brilliant view of dynamical screening at microscopic 
level, which leads to such a constant loss-tangent over a wide frequency range. Jonscher reasoned that the con-
stancy of the ratio energy-loss/energy-stored in response to a field must be a fundamental dynamical principle. 
Here we restate the universality of this feature without making reference to any specific dynamical model. It 
appears simply linked to the causality, and general analytical properties of the response. In addition, Debye’s 
behaviour, ωτ= + −Ĵ i[1 ]0

1, is naturally included as a limiting case.
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Low frequency-long time response. Let us now turn our attention to the low frequency limit, where the present 
approach offers a unique insight. From equation (9), taking into account that ψ(t) (as any PDF) must be 
non-negative and normalised, one finds that ωĴ ( ) must admit a power series expansion in the vicinity of ω =  0; 
i.e.,

ω τω ωτ− α� �Ĵ i( ) 1 [ ] for 1, (13)

with α >  0, where τ is another characteristic time. The range of α can be inferred from purely stochastic consid-
erations noting that it must be in accordance with the α-stable limit of ψ(t)34,35. In more detail, J(t) is dominated 
at long times by high-order convolutions of ψ(t), which converge asymptotically to a stable distribution, with 
ψ − α



⁎ b s{[ ] } 1j
j  to leading order. The bjs are coefficients which do not depend on s. Since ψ(t) is normalized 

and non-negative, α can only take real values in the interval (0, 2]36, which gives from equation (13) a 
non-negative loss-function, as it should be.

A fundamental consequence of the definition via equation (7) is the asymptotic expression

τ τ τα−� �m̂ s s s( ) [ ] , for 1, (14)1

which naturally results in a classification of the dynamics based on the exponent α. As ∫→ ≡
∞m̂ s m t dt( 0) ( )

0
, 

three cases are quickly recognized. For 0 <  α <  1, the time-integral of the relaxation function diverges. For α =  1, 
τ=m̂(0) , in which case τ is equivalent to the average relaxation time, τav. Last, the integral of m(t) vanishes for 

1 <  α ≤  2. As I shall show later on, these three cases correspond to quite distinct relaxation functions. Thus, by 
defining the macroscopic relaxation function via equations (6) and (7), three different types of dynamics are rep-
resented in a unified manner. Equations (11) and (13) with 0 ≤  n <  1 and 0 <  α ≤  2 restrict the possible asymptotic 
forms of the response. Time constants, τ and τ0, are system specific and may in general depend on temperature, 
either directly or through n and α.

Glassy systems. Solutions with 0 <  α <  1 represent glassy systems; i.e., systems which lack of a finite τav. It 
follows from equation (14) and the Tauberian theorem, that the relaxation function always has a power-law tail

 τ Γ −m t t x( ) [ / ] / (1 ) , (15)x

with x ≡  α. In the limit x →  1, Γ (1 −  x) →  ∞  and the algebraic tail disappears, making the way for the short-tail 
decays that correspond to α =  1. It may be worth anticipating that for 1 ≤  α <  2, equation (14) does not give 
power-law decays. Instead, other functional forms are obtained which will be discussed later on. This is in full 
agreement with considerable amount of data15,14, where dielectric relaxation with power-law tails is only observed 
for 0 <  x ≡  α <  1. Furthermore, the algebraic decay in spin-glasses also satisfies this constraint6,7. From measure-
ments of the relaxation current in many dielectrics14 it is known that the log-log plot of J(t) vs t consists of two 
smoothly connected straight lines, with slopes in the ranges (− 1, 0) and (− 2, − 1) for short and long times, 
respectively. Those slopes correspond within the present approach to − n and − 1 −  α, and therefore, the range of 
values are naturally constrained. As a consequence of equation (13), ωĴ ( ) obeys the constant phase relation

ω
ω

απ ωτ
−

= 

ˆ
ˆ ˆ
I

R

J
J J

[ ( )]
[ ( ) (0)]

tan( /2) for 1,
(16)

and as shown before if n ≠  0, it also satisfies

ω
ω

π ωτ− = .

ˆ
ˆ

I

R

J
J

n[ ( )]
[ ( )]

cot( /2) for 1
(17)

0

Equations (16) and (17) accurately represent Jonsher’s experimental finding on the ubiquitous constant-phase 
response of dielectric polymers. Known as Jonscher’s11,14 universal laws, these relations are considered experi-
mental signatures of a non-Debye relaxation.

Dielectric-loss peak. The presence of loss-peaks is a characteristic feature for the loss-function, 
ρ ω ω≡ − ˆI J( ) [ ( )], of dipolar systems. In log-log plots of ρ(ω) vs. ω, the regions on either side of the peak maxi-
mum are approximately straight lines12,13. This frequency dependence is determined by the universal relations 
(11) and (13), giving ρ απ ωτ α sin( /2)[ ]lo  and ρ β βπ ωτΓ + β−

 (1 )sin( /2)[ ]hi 0  with β =  1 −  n, for ωτ  1 and 
ωτ  10 , respectively. Although the best form to interpolate between these two limits is still an open question 
(and multiple models seem to give a good overall fit12,29,30) the common result is that the slope parameters 
extracted from the experimental data always fall in the predicted ranges, 0 <  α <  1, and 0 <  β ≤  111–14,29,30 (shown 
in Fig. 1).

Short-tail relaxation. That the time-integral of m(t) is finite for α =  1 is (according to equation (14)) a man-
ifestation of a much stronger condition. The causality principle ensures28 that if m̂ s( ) is finite, it is also analytic at 
the origin. This means that ∫≡ < ∞

∞M dt t m t( )l
l

0
 for any l ≥  0, which is only possible if m(t) exhibits some 

sort of strong cut-off. (Stretched-)exponentials, and of course also faster than exponential decays fall into this 
class. Without reference to a specific dynamical model, there is certain freedom for the exact form of m(t). 
Nevertheless, all relaxation functions with finite integral have the asymptotic low-frequency response
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ω ωτ ωτ−� �Ĵ i( ) 1 for 1 , (18)

and only in those cases τ ≡  τav (i.e., the the average relaxation time is finite and is equivalent to the characteristic 
time-scale τ). The analytical relations between ωĴ ( ) and m(t) also provide an explanation for equation (2) to fit the 
data of spin-glasses above Tf better than equation (1) in those cases where the behaviour at Tf is critical6,7.

Describing the critical slowing-down. To describe a continuous phase transition, m(t) should provide us with a 
parametric representation of the divergence of τav. Simultaneously, the parameters τ0, τ and β must correspond 
to a physically meaningful loss-function. Equation (2) satisfies these requirements, and equation (1) does not. 
Regardless of the form chosen to interpolate between the tail given by equation (2) and the initial condition 
m(0) =  1, the leading behaviour of τav as λ →  0 is

τ
τ β

τ λ
β

Γ




− 




−


x1 [ ] 1 ,
(19)

av x

0
0

1

which diverges as τav ∝  λx−1. This does not affect the form of the algebraic factor (m(t) ∝  t−x) which allows for a 
physically meaningful frequency response with a short-time scale, τ0, that remains finite in the limit λ →  0. As τav 
diverges, the range of validity of equation (18) shrinks to zero frequency, while equation (18) is being replaced by 
the form corresponding to the emerging glass phase. This transformation, which starts at the high frequency end 
(also shown by the decrease of β), extends to lower frequencies as λ →  0. At λ =  0, the low frequency form of ωĴ ( ) 
has been completely taken by equation (13) with α =  x, where τ is not any more given by equation (19) and it is 
not the (now divergent) average relaxation time.

For equation (1) on the other hand, τ0 ≡  λ−1 and

τ λ β= Γ + .− (1 1/ ) (20)av
1

As such, τav only diverges if either λ or β vanishes. However, neither of the two options seems reasonable, 
because the system would not relax at all (i.e., m(t) ≡  1) at finite temperature. While there is no evidence that β 
goes below 0.3 in spin-glass systems3,6,7, the limit τ →− 00

1  would imply according to equation (11), that the criti-
cal system has no losses at finite frequencies. The KWW function may only be adequate for systems which do not 
have a second order phase transition at finite temperature. This may explain why unusual features were recently 
found employing equation (1) to fit the spin relaxation data for the solid solution Ba1−yEuySi; a system that seems 
to have a true phase transition from a paramagnetic high temperature phase to a glassy one at lower 
temperatures5.

For completeness, let us briefly recall the case of equation (4). As shown before, the type of algebraic decay 
given by this Ansatz for k >  β corresponds to solutions with α <  1 (glassy phase) and has therefore the correct 
functional form for T ≤  Tf. However, equation (4) with k ≤  β is not compatible with our fundamental equa-
tion (14). While this m(t) has a finite time-integral for x ≡  β/k >  1, all moments ∫≡

∞M dt t m t( )l
l

0
 of order 

l ≥  x −  1 diverge, in contradiction with the requirement of analyticity for m̂ s( ). This indicates that equation (4) 
cannot represent a causal response in the high-temperature phase and that equation (1) cannot be considered (in 
the present physical context) as the k →  0 limit of equation (4), in contrast with previous thoughts17,18,27. This 

Figure 1. Pairs (α; β) extracted from the slopes of 130 loss-peaks from the literature12,29,30. Triangles 
correspond to pairs with α =  1. Loss-peaks are commonly obtained using an impedance spectrometer. Materials 
considered were both organic and inorganic solids, as well as liquids (see cited refs 12,29,30 for more details).
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conclusion does not depend on any particular definition of the average relaxation time. It is a direct consequence 
of the analytical properties imposed on m(t) by the causality principle (and the equivalent Kramers-Kronig rela-
tions for m̂ s( ))28. i.e.; if m(t) has finite integral, then all the higher moments must be finite. It should be mentioned 
that the discrepancy between equation (4) for k ≤  β and equation (14) does not necessarily imply an inconsistency 
of the model leading to equation (4). The latter represents the probability that the system remains in its initial 
microscopic state, which should not be compared directly with the data of macroscopic relaxation.

Constraints on specific models: Assessments made simpler. Equations (11), (13) and (14), and their 
time-domain counterparts have been derived here without reference to any dynamical model and as such should 
be satisfied by any macroscopic Ising-like dipolar system. Although these equations only restrict the asymptotic 
forms, they can be employed for checking the consistency of models used to fit experimental data. This is a useful 
and quite unique tool as the true asymptotic behaviour of a Fourier transform is often difficult to asses with purely 
numerical evaluations.

Let us consider, for instance, the KWW decay. Following its extensive use for analysing relaxation data, great 
effort has been also put into finding an accurate representation of the corresponding ωĴ ( )37–41, of which there is 
no exact analytical form. Particularly, since the frequency response of dielectrics is well represented by the 
Havriliak-Negami (HN) equation30,

ω τ ω= + ′ α −Ĵ i( ) [1 ( ) ] (21)
q

0

there have been multiple intents to prove its equivalence with the KWW decay and to find the mapping 
between their form-parameters. Earlier results indicated that not for all values of α and q equation (21) would 
Fourier-transform into something similar to the time response, J(t) =  − dm/dt, obtained from equation (1)37. 
More recently, it was proven that both functions are always distinguishable and values of α for the best fits were 
also reported, taking apparently the whole range 0 <  α ≤  1 as a function of the KWW-parameter β39. However, 
from a recent method using asymptotic series expansions40 it can be deduced that the KWW function should 
always correspond to α =  1, in contrast with the previous numerical results in the literature37,39.

The present approach brings a simple solution to the problem of equivalence between the KWW and the HN 
functions. A straightforward result from equation (14) is that, indeed, the correct asymptotic behaviour requires 
α ≡  1, in agreement with the method from ref. 40. The HN equation has a low-frequency expansion 
ω τ ω− ′ αˆ ~J q i( ) 1 [ ]0  which can only correspond to a KWW m(t) (with finite τav) for α =  1. We can check for the 

equivalence a bit further. Generally, the misfit between two functional forms may be hidden with an independent 
adjustment of several form-parameter, which could lead to incorrect dependences between some of these varia-
bles. An advantage of knowing the asymptotic forms is that we can fix several of the form-parameters and there-
fore reduce the (misleading) degrees of freedom. In the present case requiring full consistency between the 
asymptotic forms of the KWW and the HN functions, one finds that β =  qα, τ τ β′ = Γ + β−[ (1 )]0 0

1/  and

β β βΓ + = Γ + .β−[ (1 )] (1 1/ ) (22)1/

These equalities must be simultaneously satisfied. The latter represents the equivalence of the ratio τ/τ0 
obtained from the analytical form of the KWW decay (r.h.s) and that obtained from the HN response (l.h.s.). Only 

Figure 2. Test showing the general non-equivalence of the KWW decay and the HN response. Equivalence 
requires that the data points fall along the diagonal (see description in the text). The points correspond to β 
values form actual materials12,29,30.
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if both sides of equation (22) are similar within certain error margin for all β, one can then say that KWW and 
HN functions are equivalent. We actually find that they are not equivalent, as it can be seen from the off-diagonal 
distribution of the data points in Fig. 2 evaluated for the β values of actual materials12,29,30. The knowledge of the 
asymptotic relations makes the assessment of equivalence simpler, and free of numerical errors.

A similar test can be done comparing the HN response with the relaxation given by equation (4). The consist-
ency of the asymptotic forms in real-time requires that the parameters in equation (4) satisfy λ τ= −

0 0
1, β =  1 −  n, 

k =  (1 −  n)/α, and

τ τ α α β= Γ − .α β[ (1 )] [ / ] (23)0
1/ 1/

From the HN equation one obtains as before

τ τ β β α= Γ + β α−[ (1 )] [ / ] , (24)0
1/ 1/

and requiring the equivalence of the two representations leads to

α α β β β αΓ − Γ +α β β α−[ (1 )] [ / ] [ (1 )] [ / ] , (25)1/ 1/ 1/ 1/

for any (α; β). The l.h.s. vs. r.h.s. plot of equation (25) is shown in Fig. 3 for about 100 dielectric materials (liq-
uids, and solids), taking the (α; β) values reported in the literature12,29,30. The strong departure from the diago-
nal indicates the non-equivalence of the time response given by equation (4) with the frequency response from 
equation (21).

To date, a relaxation model which gives a coherent representation of the HN response in the general case 
is not yet known. From a different perspective, the HN function is not the only existing parametrization of the 
dipolar loss12,29,30 and it is not clear whether it always gives the most complete description. The answers to these 
questions might be found with the help of the asymptotic relations here presented, but this lies beyond the scope 
of the present report.

Other solutions. Definition (7) does not restrict m(t) to positive-definite functions. For instance, 
m(t) =  exp(− [t/τ0]β) cos(ω0t) is also a “short-tail” function that has a finite time-integral and satisfies the nat-
ural conditions of equations (11) and (13). Thus, exponentially damped oscillations can also be represented via 
equation (7).

The third and last class of relaxation functions, corresponding to 1 <  α ≤  2, represents a behaviour that is 
fundamentally different to those previously described. The asymptotic form of m̂ s( ) given in equation (14) can be 
interpreted as the product of two terms; [sτ]α−2 and sτ2. The first one, [sτ]α−2 with 1 <  α <  2, is equivalent to the 
already discussed [sτ]α−1 with 0 <  α <  1. The second term corresponds to the lowest order expansion of the 
Laplace transform for the cosine function; i.e., L �τ τt s(cos( / )) 2 for sτ ≪  1. Thus, the long time behaviour of m(t) 
in this case is given by the convolution of an oscillating function with a power-law, which may relate to fluctua-
tions in systems with long-range order. As such, the new formulation of dipolar relaxation given by equation (7) 
in terms of a global PDF of waiting times, not only allows to explains the universality of the algebraic decay in 
Ising-like dielectrics and spin-glasses, but also represents several types of dynamics in a unified manner. A key 
aspect in this approach is that it focuses on the macroscopic response which is reproducible and allows us to deal 
with non-ergodic regimes as well as with ergodic ones. The asymptotic relations here presented may be used as 

Figure 3. Test showing the general non-equivalence of the HN response and equation (4). Equivalence 
requires that the data points fall along the diagonal (see description in the text). The points correspond to (α; β) 
values form actual materials12,29,30.
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guidelines for the creation of consistent relaxation models and the analysis of experimental data. Detailed calcu-
lations and further discussion about the relation of this approach with other microscopic models will be presented 
elsewhere. The possibility of a generalisation to higher spins (more than two-state systems) should be addressed 
in future works.

Methods
Definition of the average relaxation time. The response function J(t) relates the induced polarization 
p(t) to the applied field E(t)

∫∝ − ′ ′ ′p t J t t E t dt( ) ( ) ( ) , (26)
t

0

giving how the intensity of the response varies with the time (t −  t′ ) between input signal at time t′  and the meas-
ured polarization at time t. By definition (J(t) ≡  − dm/dt), J(t) satisfies

∫ ≡ ≡ .
∞

J t m( ) (0) 1 (27)0

Therefore, it is also interpreted as a probability distribution from which the average response time (or average 
relaxation time) is calculated as

∫τ = .
∞

tJ t dt( ) (28)av
0

If and only if τav exists (when it is finite), the integral in equation (28) can be done by parts, giving

where the integral in the r.h.s. is the equivalent definition presented in equation (5).

Calculation of the average relaxation time corresponding to equation (4). For equation (4),

∫τ
λ

=
+ β

∞ dt

k t[1 ( ) ] (30)
av k0

0
1/

and it is only finite for x ≡  β/k >  1 because of the large-t asymptotic behaviour, m(t)~t−x. Equation (30) gives

τ
β β
λ β

=
Γ Γ −

Γβ
k

k k
(1/ ) (1/ 1/ )

(1/ )
,

(31)
av

0
1/

which diverges as

τ
λ

≈
−βk x

1
[ 1] (32)

av
0

1/

when x →  1+. Γ (⋅ ) is the gamma function.
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