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Abstract: The aryl hydrocarbon receptor (AHR) regulates the toxic effects of  

2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The AHR repressor (AHRR) is an AHR 

target gene and functions as a ligand-induced repressor of AHR; however, its mechanism 

of inhibition is controversial. Recently, we reported that TCDD-inducible poly  

(ADP-ribose) polymerase (TiPARP; ARTD14) also acts as a repressor of AHR, 

representing a new player in the mechanism of AHR action. Here we compared the ability 

of AHRR- and TiPARP-mediated inhibition of AHR activity. TCDD increased AHRR 

mRNA levels and recruitment of AHRR to cytochrome P450 1A1 (CYP1A1) in MCF7 

cells. Knockdown of TiPARP, but not AHRR, increased TCDD-induced CYP1A1 mRNA 

and AHR protein levels. Similarly, immortalized TiPARP−/− mouse embryonic fibroblasts 

(MEFs) and AHRR−/− MEFs exhibited enhanced AHR transactivation. However,  

unlike TiPARP−/− MEFs, AHRR−/− MEFs did not exhibit increased AHR protein levels. 

Overexpression of TiPARP in AHRR−/− MEFs or AHRRΔ8, the active isoform of AHRR, 

in TiPARP−/− MEFs reduced TCDD-induced CYP1A1 mRNA levels, suggesting that they 

OPEN ACCESS



Int. J. Mol. Sci. 2014, 15 7940 

 

 

independently repress AHR. GFP-AHRRΔ8 and GFP-TiPARP expressed as small diffuse 

nuclear foci in MCF7 and HuH7 cells. GFP-AHRRΔ8_Δ1-49, which lacks its putative 

nuclear localization signal, localized to both the nucleus and the cytoplasm, while the  

GFP-AHRRΔ8_Δ1-100 mutant localized predominantly in large cytoplasmic foci. Neither 

GFP-AHRRΔ8_Δ1-49 nor GFP-AHRRΔ8_Δ1-100 repressed AHR. Taken together, AHRR 

and TiPARP repress AHR transactivation by similar, but also different mechanisms. 

Keywords: aryl hydrocarbon receptor; AHR (Aryl hydrocarbon receptor) repressor; 

TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin)-inducible-poly (ADP-ribose) polymerase; 

ADP-ribosyltransferase diptheria-like toxin 14; 2,3,7,8-tetrachlorodibenzo-p-dioxin; 

transactivation 

 

1. Introduction 

Aryl hydrocarbon (AHR) is a ligand-activated transcription factor and a member of the  

basic-helix-loop-helix Per (Period)-ARNT (aryl hydrocarbon receptor nuclear translocator)-SIM 

(single-minded) (bHLH/PAS) protein superfamily. AHR mediates the toxic effects of the 

environmental contaminant, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), but it is also activated by 

numerous endogenous, natural and dietary compounds [1]. Despite extensive research, the biological 

role of AHR remains unclear. However, there is significant evidence to suggest that AHR plays 

important roles in growth, differentiation, reproduction, immunity, and the vasculature [2]. Once 

activated by the ligand, AHR translocates from the cytoplasm into the nucleus where it associates with 

its obligatory heterodimerization partner, ARNT. The activated AHR/ARNT complex binds to AHR 

response elements (AHREs) located within the regulatory regions of AHR target genes such as  

cytochrome P450 1A1 (CYP1A1), CYP1B1, AHR repressor (AHRR) and TCDD-inducible  

poly-ADP-ribose polymerase [TiPARP]) also known as ADP-ribosyltranferase diphtheria-like toxin 14 

(ARTD14) [3–5]. After binding to DNA, the AHR recruits a variety of different coregulatory proteins 

resulting in changes in target gene expression [6]. 

The mechanism by which AHR regulates its target genes is for the most part well understood; 

however, our understanding of how a transcriptionally activated AHR is regulated or inhibited is 

incomplete. Some of the proposed mechanisms include: (1) increased metabolism of the activating 

ligand through induction of drug metabolizing enzymes; (2) ligand-induced proteolytic degradation of 

AHR via the ubiquitin/proteasome pathway; and (3) negative auto-regulatory feedback control via the 

induction of AHR-dependent repressors, such as AHRR [3,7,8]. The AHRR, which is also a member 

of the bHLH protein family, is structurally similar to AHR but lacks a ligand-binding region  

(PAS B domain) and an activation domain [4]. Two AHRR splicing variants have been described in 

immortalized human cell lines, full length AHRR719 (amino acids 1-719; NM_020731) and AHRRΔ8 

(amino acids 1-701; NM_001242412) with lacks exon 8 [9]. AHRRΔ8 is the active and the 

predominant isoform in human cell lines [9]. Much of the current understanding of AHRR-mediated 

repression of AHR is based on in vitro transient transfection and overexpression experiments [4,9]. 

Under these conditions, AHRR strongly inhibits AHR transactivation, but its mechanism of inhibition 
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remains unclear. It was first proposed that AHRR repressed AHR through competition between 

AHR/ARNT and AHRR/ARNT complexes for binding to AHREs [4]. However, overexpression of 

ARNT fails to rescue AHRR-dependent repression of AHR and mutation of the DNA binding domain 

does not affect the ability of AHRR to repress AHR [9,10]. Moreover, AHRR expression levels do not 

correlate with CYP1 activity in human skin fibroblasts nor do they correlate with CYP1A1 responsiveness 

in mice exposed to the AHR agonist, benzo[a]pyrene (B[a]P) [11,12]. Treatment of AHRR−/− mice 

with the AHR agonist, 3-methylcholanthrene, results in tissue-specific rather than whole body increases 

in CYP1A1 mRNA levels [13]. Collectively, these data suggest that the current model of AHRR-mediated 

repression is not fully understood and that alternative mechanisms to inhibit AHR exist. 

ADP-ribosyltransferases (ARTs), formerly known as poly(ADP-ribose) polymerases [PARPs], 

catalyze the transfer a single or multiple ADP-ribose units from nicotinamide adenine dinucleotide 

(NAD+) onto themselves or other protein substrates [14]. We recently reported that TiPARP (also 

known as ARTD14) is a mono-ADP-ribosyltransferase and a ligand-induced negative regulator of 

AHR transactivation that may play a role in regulating AHR protein levels [15,16]. Our findings 

revealed that similar to AHRR, TiPARP is also part of an auto-regulatory negative feedback loop 

regulating AHR activity. However, it remains to be determined whether AHRR and TiPARP work 

together, independently or in opposition to repress AHR activity. 

In the present study, we compared the ability of AHRR and TiPARP to repress in vitro AHR 

activity. Our data reveal some important similarities in the actions of AHRR and TiPARP, but also 

demonstrate that these proteins inhibit AHR activity by distinct mechanisms. 

2. Results and Discussion 

2.1. Differential TCDD (2,3,7,8-Tetrachlorodibenzo-p-dioxin)-dependent Regulation of TiPARP and 

AHRR (Aryl Hydrocarbon Repressor) Expression  

AHRR and TiPARP (ARTD14) are both TCDD-responsive genes [4,16–18]; however, direct 

comparisons of the time-dependent regulation of these genes by TCDD has not been reported. To this 

end, we treated MCF7 human breast cancer cells with 10 nM TCDD for 15 min to 24 h. We chose 

MCF7 cells because they express functional AHR, ARNT, and AHRR and they are widely used to 

study AHR signaling. TCDD-dependent increases in TiPARP mRNA levels were rapid, reaching 

statistical significance after 45 min, peaking after 1.5 h and declining thereafter, although levels 

remained elevated above time zero for the remainder of the time course (Figure 1A; [15]). Significant 

increases in AHRR mRNA levels occurred after 2 h of TCDD treatment, reaching a maximum after 

2.5 h, which was maintained throughout the time course (Figure 1A). Despite increases in AHRR 

mRNA levels as early as 2 h, TCDD-dependent increases in AHRR protein levels were not detectable 

before 24 h treatment (Figure 1B). Endogenous TiPARP protein levels were not determined due to  

the lack of a suitable antibody. In our hands, existing commercially available antibodies detect 

overexpressed TiPARP, but we have been unable to detect endogenous protein using these antibodies 

(data not shown). The time course data show that TiPARP mRNA levels are induced more rapidly than 

those of AHRR. Unlike the decline in TiPARP mRNA levels after 2 h, AHRR mRNA levels are 

maintained at maximum levels from 2.5 h through 24 h, suggesting distinct mechanism of regulation. 
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Characterization of the murine AHRR 5'-upstream regulatory region revealed a tata-less promoter in 

which its high level of induction by AHR ligands was regulated by 3 AHREs and a GC-rich sequence [19]. 

The isolated human AHRR promoter region also contains multiple AHREs and is very responsive to 

TCDD [20]. Little is known about the AHR-dependent regulation of the TiPARP upstream regulatory 

region. The isolated mouse TiPARP promoter was unresponsive to TCDD, which might be due to its 

high constitutive expression levels [21]. These findings might also suggest a more complex mechanism 

of regulation of TiPARP. ChIP-Sequencing data, however, confirm the TCDD-dependent recruitment 

of AHR to the upstream regulatory regions of AHRR and TiPARP [22]. TiPARP is also induced by 

platelet derived growth factor, estrogen receptor alpha (ERα) and glucocorticoid receptor [23–25], 

suggesting that TiPARP might also influence the regulation of these receptor pathways. Similarly, 

AHRR has also been reported to repress hypoxia inducible factor 1α (HIF-1α) and ERα [9,26], 

revealing that its repressor activity and that of TiPARP extend beyond simply targeting AHR. 

Figure 1. Time- and TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin)-dependent regulation of 

AHRR (Aryl hydrocarbon receptor repressor) and TiPARP mRNA levels. (A) MCF7 cells 

were treated with 10 nM TCDD at the indicated times. TiPARP and AHRR mRNA  

levels were determined as described in Materials and Methods. Data were presented as  

means ± SEM mRNA expression significantly greater (p < 0.05) than 0 h is denoted with 

an asterisk; (B) TCDD-induced AHRR protein expression after 24 h treatment with 10 nM 

TCDD. A representative Western blot from three independent experiments was provided.  

 

2.2. AHR (Aryl Hydrocarbon Receptor) but not ARNT (Aryl Hydrocarbon Receptor Nuclear 

Translocator) Overexpression Rescues AHRR-Mediated Repression of CYP1A1 Reporter Gene Activity 

We next confirmed the ability of overexpressed AHRR to repress CYP1A1 reporter gene activity, 

and determined if overexpressed AHR or ARNT prevented AHRR-mediated repression of AHR. 

Increasing concentrations of AHRRΔ8 repressed CYP1A1 reporter gene expression (Figure 2A). 

AHRR719 failed to repress CYP1A1 reporter gene expression even when transfected with 1 µg total 

DNA concentration (data not shown), supporting the notion that AHRRΔ8 is the active form of AHRR 

in human cell lines [9]. Increasing amounts of AHR, but not ARNT prevented AHRR-mediated 

repression of reporter gene activity (Figure 2B,C). This was consistent with a previous report [8,9], and 

further questions the notion that AHRR functions by squelching or competing with ARNT thereby 

reducing the availability of ARNT to interact with AHR at AHREs [4,27]. We previously reported that 

AHR, but not ARNT overexpression rescued TiPARP-dependent repression of AHR transactivation [15]. 
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Moreover, AHRR [9] and TiPARP [15] directly interact with AHR, suggesting that interactions 

between AHRR or TiPARP and AHR rather than ARNT are important for repression of AHR. The 

combination of AHRRΔ8 and TiPARP resulted in significantly more inhibition of CYP1A1 reporter 

gene levels than either repressor alone. Although these data do not show whether AHRR and TiPARP 

work together or independently to repress AHR, they suggest that their combined expression results in 

greater repression of AHR activity (Figure 2D). 

Figure 2. AHRRΔ8 or TiPARP repress CYP1A1-regulated reporter gene activity. HuH7 

cells were transfected with pCYP1A1-luc and increasing amounts of (A) pcDNA-AHRRΔ8. 

Cells were then treated with TCDD for 24 h and reporter gene activity was determined; 

Overexpression of (B) AHR (Aryl hydrocarbon receptor); but not (C) ARNT  

(aryl hydrocarbon receptor nuclear translocator) rescued CYP1A1-luc activity; Reporter 

gene activity significantly different (p < 0.05) than cells transfected with AHRRΔ8 alone is 

denoted with an asterisk and (D) Overexpression of AHRRΔ8 and TiPARP resulted in 

greater repression of AHR regulated reporter gene activity than either one alone. Data are 

presented as means ± SEM of three independent replicates. Reporter gene activity of 

AHRRΔ8 + TiPARP transfected cells significantly less (p < 0.05) than cells transfected 

AHRRΔ8 or TiPARP alone was denoted with an asterisk or pound sign, respectively.  

 

2.3. TCDD-Induced AHRR Recruitment to AHR-Target Genes  

To determine if endogenous AHRR is recruited to AHR target genes and whether its presence at 

these genes would affect AHR and ARNT recruitment levels, we examined the TCDD-dependent 

recruitment of AHR, ARNT and AHRR to CYP1A1 and CYP1B1. Since the recruitment of many 

transcription factors occurs in a time-dependent manner, chromatin immunoprecipitation (ChIP) assays 

were done on extracts from MCF7 cells treated with 10 nM TCDD for 45 min, 6 h, and 24 h.  

TCDD-induced recruitment of AHR and ARNT to CYP1A1 and CYP1B1 reached maximum levels 
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after 45 min (Figure 3A,B). Their occupancy levels were reduced by approximately 50% after 6 h and 

were maintained at those levels at 24 h. No significant differences in AHR or ARNT recruitment to 

downstream genomic control regions for both genes were observed (Figure 3A,B). TCDD-induced 

AHRR recruitment to CYP1A1 was observed only after 24 h TCDD treatment, whereas significant 

recruitment of AHRR to CYP1B1 was observed after 6 h and this level was further increased at 24 h 

(Figure 3C,D). No significant recruitment of AHRR was observed to downstream genomic control 

regions for both genes (Figure 3C,D). It is worth noting that the antibody used in these experiments 

does not discriminate between AHRRΔ8 and AHRR719, which are both expressed in MCF7 cells, but 

the AHHRΔ8 is the predominant and active form in this cell line [9]. The time-dependent differences 

in recruitment of AHRR to CYP1A1 vs. CYP1B1 could be related to the sensitivity of the ChIP assay, 

since in our hands the fold increases of AHR or ARNT recruitment to CYP1B1 in MCF7 cells is 

always greater than that observed to CYP1A1 [18,28]. Because we have previously observed  

TCDD-dependent recruitment of overexpressed TiPARP to the CYP1A1 [15], these findings together 

with the data generated here reveal that both AHRR and TiPARP are present at AHR regulatory 

regions in response to TCDD. Since ChIP assays do not distinguish between direct DNA binding of 

AHRR or its recruitment to chromatin through tethering to other transcription factors, we cannot 

conclude that AHRR is recruited to CYP1A1 or CYP1B1 through binding to AHREs in their promoter 

regions. A DNA binding mutant of AHRR represses AHR activity, suggesting that mechanism of 

AHRR-mediated repression may involve a transrepression mechanism [10]. Future ChIP-Sequencing 

studies to map the genomic binding patterns of AHRR, and AHRR DNA binding mutant or TiPARP 

will be important to determine gene selective or DNA sequence preferences between AHRR and TiPARP. 

Figure 3. TCDD-induced recruitment of AHR, ARNT and AHRR to CYP1A1 and 

CYP1B1. Recruitment of (A,B) AHR, ARNT and (C,D) AHRR to CYP1A1 and CYP1B1 

regulatory and distal downstream regions was determined using ChIP assays done on 

MCF7 cell extracts. Data were presented as means ± SEM from three independent 

experiments. Recruitment levels significantly different (p < 0.05) than 0 h were denoted 

with an asterisk, whereas recruitment levels significantly different (p < 0.05) than 45 min 

TCDD were denoted with a pound sign. 
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Figure 4. Effect of AHRR or TiPARP knockdown on AHR regulated genes in MCF7 cells. 

(A) TiPARP mRNA expression levels in MCF7 cells following 24 h knockdown with two 

independent siRNAs targeting TiPARP (siTiPARP_1 and siTiPARP_2) compared with a 

non-targeting control (NT) siRNA; (B–D) TiPARP knockdown increased TCDD-induced 

CYP1A1, CYP1B1 and AHRR mRNA levels after 24 h treatment; (E) Immunoblot 

showing the ability of siRNAs targeting TiPARP (siTiPARP_1 and siTiPARP_2) to reduce 

GFP-TiPARP protein levels; (F) AHRR mRNA expression levels following 24 h 

knockdown with single siRNAs targeting AHRR (siAHRR_1 and siAHRR_2) compared 

with NT; (G–I). AHRR knockdown did not affect TCDD-induced CYP1A1, CYP1B1 and 

TiPARP mRNA levels after 24 h treatment. Data were presented as means ± SEM of three 

independent experiments; Expression levels significantly (p < 0.05) different than NT were 

denoted with an asterisk and (J) Immunoblot of TCDD-induced AHRR protein expression 

following RNAi-mediated AHRR knockdown in MCF7 cells. Data shown were from a 

representative Western blot from three independent experiments.  

 

2.4. AHRR Knockdown did not Affect TCDD-Mediated AHR Target Transactivation or AHR/ARNT 

Protein Levels 

We next determined the impact of AHRR and TiPARP knockdown on TCDD-induced CYP1A1 

and CYP1B1 mRNA levels in MCF7 cells. TiPARP mRNA levels were reduced to approximately  

33%–40% compared with non-targeting siRNA (NT) dimethyl sulfoxide (DMSO)-treated cells and 

resulted in reduced TCDD-dependent increases TiPARP mRNA levels (Figure 4A). Consistent with our 

previous studies [15], RNAi-mediated knockdown of TiPARP in MCF7 cells significantly increased 

TCDD-dependent CYP1A1, CYP1B1 and AHRR mRNA levels compared with control cells  

(Figure 4B–D). So despite increases in AHRR mRNA levels significantly higher CYP1A1 and 

CYP1B1 expression levels were observed. We confirmed the ability of the siRNAs to decrease 

TiPARP protein levels by testing the ability of the two different siRNAs to prevent the expression of 

GFP-TiPARP (Figure 4E). AHRR knockdown reduced AHRR mRNA levels to 40%–45% compared 

with NT DMSO-treated cells and resulted in reduced TCDD-dependent increases in AHRR mRNA 

levels (Figure 4F); however, this did not affect constitutive or TCDD-induced CYP1A1, CYP1B1 or 
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TiPARP mRNA levels (Figure 4G–I). Because AHRR protein was not detected in solvent or  

non-treated MCF7 cells (Figure 1B and data not shown), we tested the ability of the siRNA to target 

AHRR protein levels after 24 h TCDD treatment. We observed a significant reduction in AHRR 

protein levels after transfection of both siAHRR sequences compared with TCDD-treated NT cells, 

suggesting that the failure of AHRR knockdown to affect AHR target gene expression in MCF7 cells 

was not due to inefficient knockdown at the protein level (Figure 4J).  

Figure 5. TiPARP, but not AHRR knockdown increases AHR protein levels. (A,B) TiPARP 

knockdown increased; while (C,D) AHRR knockdown did not affect AHR protein levels in 

MCF7 cells treated for 24 h with dimethyl sulfoxide (DMSO) (D) or TCDD (T). AHRR 

protein levels were unaffected by TiPARP knockdown. Data shown were from a 

representative Western blot from three independent experiments. Quantification of AHR 

and AHRR protein levels in panels B and D was done using ImageJ analysis software 

(NIH). Asterisks denoted protein levels significantly (p < 0.05) less than transfection-matched 

DMSO-treated cells. Pound signs denoted protein levels significantly (p < 0.05) different 

treatment-matched NT cells.  

 

2.5. TiPARP and AHRR Differentially Affect AHR Protein Levels 

We reported that TiPARP knockdown in T47D cells increased constitutive AHR expression and 

reduced the TCDD-induced proteasome-mediated degradation of AHR [15]. To determine if this 

regulation also occurred in MCF7 cells and if AHRR knockdown affected AHR protein levels, we 

compared AHR and AHRR proteins levels after TiPARP or AHRR knockdown in the presence or 

absence of TCDD. TiPARP knockdown significantly increased constitutive AHR protein levels and 

reduced TCDD-dependent AHR degradation compared with NT cells (Figure 5A,B). TiPARP 

knockdown did not affect the constitutive or TCDD-induced AHRR protein levels (Figure 5A,B). 
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AHRR knockdown did not affect constitutive or TCDD-dependent changes in AHR protein levels 

(Figure 5C,D). Collectively, these results demonstrate that TiPARP knockdown increased AHR 

transactivation and AHR protein levels, whereas AHRR knockdown did not alter AHR transactivation 

nor did it affect AHR protein levels. These findings highlight key differences between the ability  

of AHRR and TiPARP to repress AHR activity, where TiPARP but not AHRR influences AHR  

protein levels.  

2.6. Immortalized AHRR−/− MEFs Exhibit Increased AHR Transactivation but not Increased AHR 

Protein Levels 

To examine the effect of AHRR loss on AHR transactivation, we generated immortalized MEFs 

from wildtype (AHRR+/+) and AHRR−/− embryos as described in Materials and Methods. AHRR 

mRNA levels were significantly lower and were not induced by TCDD in AHRR−/− MEFs compared 

with wildtype cells (Figure 6A). Consistent with its repressor role, constitutive and TCDD-induced 

CYP1A1 and CYP1B1 mRNA levels were significantly greater in AHRR−/− compared with wildtype 

cells (Figure 6B,C). These findings are in agreement with a previous study reporting that AHRR 

knockdown in primary fibroblasts restored AHR-dependent regulation of CYP1A1 mRNA levels [20]. 

However, these data are in contrast to AHRR knockdown studies in MCF7 cells (Figure 4G–I) and 

may reflect cell-type dependent differences or that the level of AHRR knockdown achieved in MCF7 

cells was insufficient to affect AHR target gene expression. We recently generated zinc finger 

nuclease-mediated AHR or ARNT knockout MCF7 cells [29] and a similar targeted gene knockout 

strategy could be used for AHRR to further dissect its mechanism of action in human cell lines. 

Constitutive and TCDD-induced TiPARP mRNA levels were not significantly greater in AHRR−/−cells 

(Figure 6D). Increases in TiPARP mRNA levels would be expected since TiPARP, like AHRR, is an 

AHR target gene and increases in AHR activity due to loss of AHRR would be expected to increase 

AHR target gene expression. We reported similar increases in AHRR mRNA levels in TiPARP−/− 

MEFs treated with TCDD [15]. However, it is not clear if TiPARP protein levels are also increased  

in AHRR−/− MEFs or if AHRR protein levels are increased in TiPARP−/− MEFs. Interestingly, 

constitutive AHR mRNA levels were significantly higher in AHRR−/− MEFs, and these levels were 

reduced in a TCDD-dependent manner (Figure 6E). This observation is consistent with that observed 

in primary AHRR−/− MEFs [12]. No differences in constitutive AHR protein levels or TCDD-dependent 

degradation of AHR were observed (Figure 6F). This is in contrast to TiPARP−/− MEFs which exhibit 

higher constitutive AHR proteins levels and reduced TCDD-induced AHR degradation [15]. These 

data further support that unlike AHRR the mechanism of TiPARP-mediated repression of AHR action 

involves regulating AHR protein levels. ChIP assays revealed small but significant increases in AHR 

recruitment to CYP1A1, but not CYP1B1 after 45 min TCDD treatment in AHRR−/− MEFs compared 

with wildtype cells (Figure 6G,H). No differences in AHR occupancy at CYP1A1 or CYP1B1 were 

observed at 24 h (Figure 6G,H). Since we only observed increases in AHR recruitment to CYP1A1 at 6 

h, the increased CYP1A1 and CYP1B1 mRNA levels in TCDD-treated AHRR−/− MEFs may be due to 

increased recruitment of coactivators or reduced recruitment of corepressor proteins to these genes. 
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Figure 6. Immortalized AHRR−/− mouse embryonic fibroblasts (MEFs) exhibit increased 

AHR activity. (A–F) Wildtype (AHRR+/+) and AHRR−/− immortalized MEFs were treated 

with 10 nM TCDD for 24 h. Gene expression levels were normalized to DMSO treated 

wildtype cells. Gene expression levels significantly (p < 0.05) different than treatment-matched 

wildtype cells were denoted with an asterisk, and levels significantly (p < 0.05) different 

than genotype-matched cells are denoted with a pound sign; (H–I) AHRR−/− MEFs have 

similar AHR protein levels as wildtype cells and loss of AHRR did not affect TCDD-induced 

AHR proteolytic degradation compared with DMSO. Data shown were representative of  

a Western blot from three independent experiments; (I) Quantification of AHR protein 

levels was done using ImageJ analysis software (NIH). Pound signs denoted AHR protein  

levels significantly (p < 0.05) less than genotype-matched DMSO-treated cells; (G) AHR 

recruitment to CYP1A1 or to a distal downstream CYP1A1 region in wildtype or AHRR−/− 

MEFs; (H) AHR recruitment to CYP1B1 or to a distal downstream CYP1B1 region in 

wildtype or AHRR−/− MEFs. Recruitment levels significantly greater (p < 0.05) than 

treatment-matched wildtype cells were denoted with an asterisk; (I,J) AHRRΔ8 and 

TiPARP independently repressed TCDD-induced CYP1A1 mRNA levels. TiPARP−/− or 

AHRR−/− MEFs were transfected with pcDNA-AHRRΔ8, pcDNA-mTiPARP (murine 

TiPARP) or empty vector (pcDNA). Cells were then treated with DMSO or TCDD for 24 h 

and CYP1A1 mRNA levels were determined. The data were representative of three 

independent experiments. Gene expression significantly less (p < 0.05) than empty vector 

transfected cells were denoted with an asterisk. 
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We next determined if AHRR repressed AHR transactivation in the absence of TiPARP and  

vice versa. To accomplish this, we overexpressed AHRR in TiPARP−/− MEFs and TiPARP in AHRR−/− 

MEFs and determined the effect on TCDD-dependent CYP1A1 mRNA levels. Overexpression of 

AHRR significantly reduced TCDD-induced CYP1A1 mRNA levels to a similar level, as did 

overexpression of TiPARP in TiPARP−/− MEFs. Similarly, TiPARP or AHRR overexpression 

significantly reduced CYP1A1 mRNA levels to a similar level in AHRR−/− MEFs (Figure 6I,J). These 

data reveal that TiPARP and AHRR can independently repress AHR transactivation and that the ability 

of TiPARP to repress AHR regulation of CYP1A1 does not require AHRR and vice versa. 

2.7. AHRR and TiPARP Are Predominantly Nuclear Proteins 

AHRR has been previously described to undergo nucleocytoplasmic shuttling, with an equilibrium 

favoring nuclear localization [30]. Other labs have reported the nuclear localization of AHRR, but 

there are no reports of the nuclear localization of AHRRΔ8. TiPARP is also primarily localized to the 

nucleus, although it has also been reported to exhibit cytosolic staining in Hela cells [31]. To gain 

insight into the mechanism of action of AHRR and TiPARP, we determined the expression patterns of 

AHRRΔ8 and TiPARP in MCF7 and HuH7 cells. GFP-AHRRΔ8 localized in the nucleus in both 

HuH7 and MCF7 cells as diffuse nuclear foci (Figure 7A–D). Similar findings were observed for  

GFP-AHRR719 (data not shown). The nuclear localization sequence (NLS) of AHRR was reported to 

map to amino acids 16-RKRRR-20, and unlike the NLS of AHR it consisted of a monopartite rather than 

a bipartite sequence [30]. To test whether AHRRΔ8 lacking its putative NLS sequence would exhibit 

cytosolic staining in both cell lines, we constructed a GFP-AHRRΔ8_Δ49 and GFP-AHRRΔ8_Δ100 in 

which the first 49 containing the putative NLS or first 100 amino acids were removed, respectively. 

GFP-AHRRΔ8_Δ1-49 was present in both the nucleus and the cytoplasm in HuH7 and MCF7 cells 

(Figure 7E–H), whereas GFP-AHRRΔ8_Δ1-100 localized predominantly as large foci in the cytoplasm 

(Figure 7I–L). This indicates that there may be additional sequences between amino acids 50–99 that 

influence the nuclear localization of AHRR or that AHRR contains a bipartite rather than monopartite 

sequence. GFP-TiPARP exhibited a similar nuclear expression patterns to that of GFP-AHRRΔ8 in 

HuH7 and MCF7 cells, although faint and diffuse cytoplasmic staining was observed in MCF7 cells 

(Figure 7M–P).  

We next determined whether GFP-AHRRΔ8_Δ49 and GFP-AHRRΔ8_Δ100 were able to repress 

AHR-dependent CYP1A1 reporter gene activity in transfected HuH7 cells. Both GFP-AHRRΔ8_Δ49 

and GFP-AHRRΔ8_Δ100 failed to repress CYP1A1 reporter gene activity (Figure 8A,B). Western 

blots showed that the lack of repression was not due to a lack of expression of either truncated 

AHRRΔ8 mutant (Figure 8C,D). These data reveal that amino acid residues 1–49 are required for 

AHRR-dependent repression and that the nuclear form of GFP-AHRRΔ8_Δ49 is unable to inhibit 

AHR under our assay conditions. This is most likely not due to the lack of DNA binding because a 

DNA binding mutant of AHRR still represses AHR [10], but may be due to reduced interaction with 

AHR or other accessory proteins that are required for this inhibition. 
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Figure 7. Sub-cellular localization of GFP-AHRRΔ8, GFP-AHRRΔ8 variants and  

GFP-TiPARP. GFP-AHRRΔ8 (green) was localized in the nucleus (blue) of HuH7 and 

MCF7 cells (A–D); GFP-AHRRΔ8_Δ1-49 was present in both the nucleus and the 

cytoplasm (E–H); while GFP-AHRRD8_Δ1-100 was localized predominantly in large foci 

in the cytoplasm (I–L); Wild-type GFP-TiPARP was localized in the nucleus in a pattern 

similar to that of GFP-AHRRΔ8, although faint cytoplasmic expression was observed in 

MCF7 cells (M–P). Scale bar represents 10 mm (A); all panels were to same scale. Data 

shown were representative images from three independent experiments. 

 

Figure 8. AHRRΔ8_Δ1-49 and AHRRΔ8_Δ1-100 do not repress CYP1A1-regulated 

reporter gene activity in HuH7 or MCF7 cells. (A) HuH7 or (B) MCF7 cells were 

transfected with pCYP1A1-luc and pcDNA-AHRRΔ8 or increasing concentrations of 

pcDNA-AHRRΔ8_Δ1-49 and pcDNA-AHRRΔ8_Δ1-100. Cells were then treated with 

TCDD for 24 h and reporter gene activity determined. The data are presented as means ± SEM 

of three independent replicates. Reporter gene activity significantly less (p < 0.05) than 

cells transfected AHRRΔ8 is denoted by an asterisk. Protein expression levels of AHRRΔ8 

and AHRRΔ8 variants in transfected (C) HuH7 or (D) MCF7 cells was determined by 

Western blotting. Data shown were representative of three independent experiments.  
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3. Experimental Section  

3.1. Chemicals and Biological Reagents 

2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) was purchased from Wellington Laboratories (Guelph, 

ON, Canada). Cell culture media, fetal bovine serum (FBS), trypsin-EDTA and dimethyl sulfoxide 

(DMSO) were purchased from Sigma-Aldrich (St. Louis, MO, USA). All other chemicals and 

biological reagents were purchase from other vendors and were of the highest quality.  

3.2. Plasmids 

The pcDNA-AHRRΔ8 (delta exon 8) and pcDNA-AHRR were generous gifts from Dr. Mark Hahn 

(Woods Hole Oceanographic Institution, Wood’s Hole, MA, USA). Both of these plasmids have been 

described elsewhere [9]. To create pEGFP-AHRRΔ8 we first PCR amplified AHRRΔ8 using primers 

containing EcoRI and XhoI. The plasmid EGFP-AHRRΔΔ49 by PCR amplifying amino acids 50–701 

of AHRRΔ using primers 5'-CAAAGAATTCGCCGAGTTGGACCACCTG-3' and 5'-CAAACTC 

GAGCTATGGCAGGAATGTGCACCCC-3' and then digested with EcoRI and XhoI. The plasmid 

EGFP-AHRRΔ100 by PCR amplifying amino acids 101–701 of AHRR 00 by PCR amplif'　 -CAAA 

GAATTC TCGCCCGGAGACAGCTGT-3' and the same reverse primer as above and then digested 

with EcoRI and XhoI. The digested PCR products were then ligated into EcoRI and SalI sites of pEGFP. 

3.3. Cell Culture 

MCF7 human breast carcinoma cells were purchased from ATCC (Manassas, VA, USA). HuH7 

human hepatoma cells were a kind gift from Dr. Jan-Ake Gustafsson (University of Houston, Houston, 

TX, USA). The derivation and characterization of the TiPARP−/− mouse embryonic fibroblasts (MEFs) 

have been described elsewhere [15]. Primary AHRR−/− and wildtype MEFs were immortalized after 

transfection with Simian virus large T antigen and a puromycin resistance plasmid, and selected in 

puromycin-containing medium for 1 week [12]. MCF7 cells were cultured in low-glucose (1 g/L) 

DMEM (Dulbecco’s modified Eagle’s media) supplemented with 10% (v/v) FBS and 1% (v/v) 

penicillin/streptomycin (PEST). HuH7 and all MEF cells were cultured in high glucose (4.5 g/L) 

DMEM supplemented with 10% FBS and 1% PEST. All cell lines were maintained at 37 °C and 5% 

CO2 and subcultured every 2–3 days or when cells reached 80% confluency. 

3.4. Transient Transfection, Reporter Gene and RNAi Studies 

For the reporter gene assays, HuH7 cells were transfected with or 500–1000 ng pcDNA-AHRR or 

5–100 ng pcDNA-AHRRΔ8 or 100 ng pcDNA-TiPARP [15] or co-transfected with 5 or 100 ng 

pcDNA-AHRRΔ8 and 100–500 ng pCMV-AHR or 100–500 ng pcDNA4-ARNT [32] using 

Lipofectamine LTX (Invitrogen Canada, Burlington, ON, Canada). All reactions included 50 ng of 

pCH110-β-Gal to normalize for transfection efficiency. After 24 h cells were treated with TCDD or 

DMSO for 24 h before luciferase and β-galactosidase assays were c. For the RNAi studies, AHRR 

siRNAs (siAHRR_1; SASI_Hs01_00213384, siAHRR_2; SASI_Hs02_00353811) were purchased 

from Sigma-Aldrich. TiPARP (siTiPARP_1; J-013948-12-0005, siTiPARP_2; J-013948-13-0005) 
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ON-TARGETplus siRNAs and DharmaFECT1 transfection reagent were purchased from Dharmacon 

(Lafayette, CO, USA). MCF7 cells were transfected with 2 µL DharmaFECT1 and 50 nM of each 

siRNA or non-targeting siRNA #2 (NT; D-001810-02-20) (Dharmacon). Twenty-four hours after 

transfection the cells were treated with 10 nM TCDD or DMSO (0.1%) for 24 h. 

Immortalized AHRR−/− and TIPARP−/− MEFs were transiently transfected by nucleofection 

according to manufacturer’s instructions (Amaxa Inc., Gaithersburg, MD, USA). Briefly 1 × 106 

AHRR−/− MEFs or 2 × 106 TiPARP−/− MEFs were electroporated with 10 µg pcDNA-mTIPARP, 5 µg  

pcDNA-AHRRΔ8 in 100 µL nucleofector solution using A023 program on nucleofector device. The 

following day, the transfected cells were treated with DMSO or TCDD for 24 h. RNA was isolated and 

reverse transcribed as described below. 

3.5. RNA Isolation and qPCR 

MCF7 cells were seeded in 6-well plates 24 h prior to treatment with 10 nM TCDD for up to 24 h. 

MEFs were seeded in 6-well plates at a density of 100,000 cells/well. The following day cells were 

treated with 10 nM TCDD or DMSO for 24 h. RNA was isolated with Aurum Total RNA Mini Kit 

(Bio-Rad, Mississauga, ON, Canada) and reverse transcribed using SuperScriptIII (Invitrogen Canana, 

Burlington, ON, Canada). QPCR was done with 1 µL of the cDNA synthesis reaction using SsoFast 

EvaGreen SYBR Supermix (Bio-Rad). Primers used to amplify human AHRR mRNA were  

5'-CCCCGCCCTTGGAGACAGGA-3' and 5'-AGTACTCGGTGGGCGTGCCT-3'. Primers for 

human CYP1A1, CYP1B1 and TiPARP mRNAs have been previously described [28,33]. Primers for 

mouse AHRR mRNA were 5'-CTGCCCAGGTACTCTGAACC-3' and 5'-ACTGTCCACAAAGCCT 

GACC-3'; for CYP1A1 mRNA were 5'-CGTTATGACCATGATGACCAAGA-3' and 5'-TCCCCAAA 

CTCATTGCTCAGAT-3'; for CYP1B1 mRNA were 5'-CCAGATCCCGCTGCTCTACA-3' and  

5'-TGGACTGTCTGCACTAAGGCTG-3'; for TIPARP mRNA were 5'-CCTTCAACCAAGAACA 

AAGCATCT-3'; and for AHR mRNA were 5'-AGCATCATGAGGAACCTTGG-3' and 5'-GGATT 

TCGTCCGTTATGTCG-3'. All target transcripts were normalized to β-actin and analyzed using the 

comparative Ct (ΔΔ Ct) method. RNA data were presented as mean and standard error of the mean of 

three independent experiments.  

3.6. Western Blot 

Whole cell extracts were prepared from transfected cells treated with 10 nM TCDD or DMSO and 

proteins were resolved by SDS-PAGE and transferred to nitrocellulose membrane. The membrane was 

blocked in 2% (w/v) fat-free milk PBS/T for 1 h at room temperature and then incubated with  

anti-AHR (H-211, Santa Cruz, Dallas, TX, USA), anti-ARNT antibody (C-19, Santa Cruz),  

anti-AHRR antibody (HPA019614, Sigma-Aldrich) or anti-β-actin antibody (Sigma) overnight at 4 °C. 

After washing, the bands were visualized using ECL Prime chemiluminescent substrate (GE Healthcare, 

Baie d’Urfe, QC, Canada) or SuperSignal West Dura substrate (Pierce, Rockford, IL, USA) according 

to the manufacturer’s instructions. For the immortalized MEFs, each cell line was plated at a density of 

2 million cells in 10 cm dishes. The following day, cells were treated with 10 nM TCDD or DMSO for 

24 h, whole cell extracts were prepared and proteins resolved as described above. Membranes were 

incubated with anti-AHR (SA-210, Enzo Life Sciences Inc., Farmingdale, NY, USA) overnight and 
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incubated 1 h with anti-rabbit HRP-conjugated secondary antibody. Quantification of protein bands 

was done with ImageJ software (NIH) and they were normalized to β-actin levels. 

3.7. Chromatin Immunoprecipitation 

MCF7 cells were plated in 10 cm dishes in culture media at a density of 3.5 × 106 cells/dish and 

treated with 10 nM TCDD for 45 min, 6 h and 24 h and ChIP assays were done as previously  

described [34] using 1 µg of anti-AHR (H-211) or anti-ARNT (H-172). Isolated DNA was quantified 

by qPCR using SsoFast EvaGreen SYBR Supermix. Primers used to amplify CYP1A1 and CYP1B1 

have been previously described [33]. For immortalized wildtype and AHRR−/− MEFs, each cell line 

was plated at a density of 5 × 105 cells per 10 cm dish. The following day cells were treated with  

10 nM TCDD or DMSO at the indicated times and ChIP assays were done using 1 µg anti-AHR  

(SA-210) antibody. Primers used to amplify mouse CYP1A1 and CYP1B1 regulatory regions have been 

previously described [35]. Data were reported as percentages relative to 100% total input chromatin. 

3.8. Indirect Immunofluorescence 

MCF7 or HuH7 cells were seeded onto glass cover slips in a 6-well plate (3.5 × 105 cells/well). 

HuH7 cells were transfected with 100 ng of GFP-AHRR_Δ8, GFP-AHRRΔ8_Δ49,  

GFP-AHRRΔ8_Δ101, or 500 ng of GFP-TiPARP using lipofectamine 2000. After 24 h, cells were 

fixed with 4% paraformaldehyde, permeabilized with 0.4% Triton X-100, and mounted onto  

slides with Vectashield mounting medium containing DAPI to stain DNA (Vector Laboratories, 

Burlingame, CA, USA). GFP-expressing cells were visualized using a Zeiss AxioImager M2 

epifluorescence microscope and images were captured with a Zeiss AxioCam MRm camera and Zeiss 

AxioVision software. 

3.9. Statistical Analysis 

All data were presented as means and standard error of the mean. A one-way Analysis of Variance 

(ANOVA) followed by Tukey’s multiple comparison tests was used to assess statistical significance  

(p < 0.05). 

4. Conclusions  

In this study, we compared the ability of AHRR and TiPARP to repress AHR activity and regulate 

AHR protein levels. AHRR and TiPARP exhibit a number of similarities including that their 

expression is increased by ligand activated AHR, that they directly interact with AHR, and that 

increased ARNT expression does not affect their ability to repress AHR [15]. There are, however, also 

some notable differences. For example, TiPARP overexpression increases the proteolytic degradation 

of AHR, suggesting that TiPARP may act as a more general regulator of AHR activity [15]. Moreover, 

knockdown of TiPARP in a number of cell lines results in increased AHR target gene expression [15]. 

However, in a chicken embryo model, TiPARP was reported to exacerbate TCDD toxicity by  

reducing phosphoenolpyruvate carboxykinase expression levels and consequently reducing 

gluconeogenesis [36,37]. However, unlike human and mouse TiPARP, overexpression of chicken 
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(Gallus gallus) TiPARP in HuH7 cells does not repress AHR regulated reporter gene activity [15]. 

These data suggest that TiPARP’s ability to repress AHR exhibits species or context specificity. 

Careful analysis of TiPARP−/− mice will be important to determine the impact of TiPARP loss on 

AHR signaling pathways and TCDD sensitivity. Studies of TiPARP−/− mice treated with TCDD or 

other AHR ligand will also help dissect the overlapping and independent mechanisms through which 

AHRR and TiPARP repress AHR, solidifying TiPARP and AHRR as key negative regulators and 

important components of the AHR signaling pathway in human and mouse cell lines. 
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