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Introduction

Fruits constitute excellent habitats for yeasts, mainly 
due to their low pH, availability of nutrients, and active 
fruit-associated vectors. These traits are variable across 
the type and maturity of the fruit. Changes in the com-
munity in response to varying availability of nutrients, 
production of mycotoxins, and the arrival of new yeast 
species are evident (Tournas and Katsoudas 2005; 
Starmer and Lachance 2011).

The majority of research has focused on the diver-
sity of yeasts on grapes and wine-related samples 
due to their application in the winemaking process 
(Guillamón et al. 1998; Filho et al. 2017), although 
some expansions have been made beyond this zone 
of interest. Koricha et al. (2019) identified yeasts from 
lemon, mango, and guava fruits, with Candida albicans, 
Debaryomyces hansenii, Kodamaea ohmeri, Rhodoto
rula mucilaginosa, among others, found to be present. 
Vadkertiová et al. (2012) studied the diversity of yeasts 

and yeast-like microbes associated with fruits and blos-
soms of apple, plum, and pear orchards in Slovakia. 
Trindade et al. (2002) investigated yeasts inhabiting 
the fresh and frozen pulps of Brazilian tropical fruits. 
Notably, some fruits have been described as sources of 
new yeasts (Bhadra et al. 2008; Sipiczki 2011).

Yeast diversity on the wide variety of Amazonian 
native fruits (ANF) has not been widely investigated, 
with reports focusing mainly on other tropical fruits 
like passion fruit (Passiflora edulis), mangaba (Hancor
nia speciosa), umbu (Spondias tuberosa), and acerola 
(Malpighia glabra) (Trindade et al. 2002; Da Silva et al. 
2005; Grondin et al. 2015). The Amazonian rainforest’s 
environmental characteristics suggest the possibility of 
finding diverse yeast communities, including new spe-
cies or strains with new characteristics of biotechno-
logical interest (Morais et al. 1995; Da Silva et al. 2005). 
Yeasts represent a promising source for obtaining 
microbial enzymes (Trindade et al. 2002; Da Silva et al. 
2005; Raveendran et al. 2018), flavorings (Grondin et al. 
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A b s t r a c t
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2015), and can be used as biocontrol agents for posthar-
vest fruit diseases (Janisiewicz et al. 2010; Ruiz-Moyano 
et al. 2016). Yeasts or their metabolites isolated from 
the Amazonian rainforest may display unique char-
acteristics due to the particularities of their habitat. 
Accordingly, this study aimed to identify and char-
acterize yeasts isolated from Amazonian native fruits 
using molecular and phenotypic methods to glimpse 
also their potential biotechnological features.

Experimental

Materials and Methods

Fruit samples. One hundred specimens from ten 
different species (ten of each species) of Amazonian 
native fruits (ANF) were obtained from a  small rus-
tic market in the city of Iquitos (Amazonian region 
of Peru), which is supplied with fruits from different 
localities of the region, in July 2015. At that time, tem-
perature was on average 25°C with the least amount 
of rains of the year. Fruits were all ripe with no apparent 
spoilage. Fruits were transported in refrigerated and 
sterile bags to Lima for laboratory analysis. The fol-
lowing ANF were employed in this study: aguaje (Mau
ritia flexuosa), camu camu (Myrciaria dubia), chari-
chuelo (Garciniama crophylla), cidra (Citrus medica), 
cocona (Solanum sessiliflorum), pomarrosa (Syzygium 
jambos), taperiba (Spondias dulcis), ubos (Spondias 
mombin), umarí (Poraqueiba sericea), and ungurahui 
(Oenocarpus bataua).

Yeast isolation. For surface sampling, the same 
species of ANF were pooled and washed under aseptic 
conditions with sterile water which was used for further 
preparation of serial decimal dilutions in liquid YPD 
medium (1% yeast extract, 2% peptone, 2% glucose 
w/v), supplemented with chloramphenicol (100 mg/l; 
AppliChem GmbH, Germany). Aliquots of several 
dilutions were spread onto YPD plates and incubated 
at 30°C for 24 h. Ten colonies from each fruit were 
selected based on different colony morphologies (form, 
size, color, margin, and elevation) for further purifica-
tion. Yeast colonies were identified and characterized 
genotypically and phenotypically.

DNA extraction, rep-PCR, and RFLP-PCR of the 
5.8S-ITS region. DNA extraction was performed as 
per Querol et al. (1992) with a slight modification in 
the use of lyticase (3.3 U · µ/l; Sigma, USA) instead of 
zymolase. For discrimination at the strain level, PCR of 
the repetitive extragenic palindromic sequences (rep-
PCR) (Versalovic et al. 1991) was performed using 
a primer (GTG)5 (5’-GTG GTG GTG GTG GTG-3’) as 
described by Gori et al. (2013). Amplification products 
were separated by electrophoresis on 0.8% agarose gel 

using the 100 bp Plus DNA (Thermo Scientific, USA) 
and Lambda DNA/EcoR I + Hind III Marker (Thermo 
Scientific, USA) ladders. One representative of each 
strain pattern obtained was chosen for the RFLP-PCR 
analysis of the 5.8S-ITS region.

PCRs were carried out using primers ITS1 (5’-TCCG-
TAGGTGAACCTGCGG-3’) and ITS4 (5’-TCCTC-
CGCTTATTGATATGC-3’) (White et al. 1990) in 
order to amplify the 5.8S rRNA gene and 2  internal 
transcribed spacers (ITS1 and ITS2), according to the 
methodology described by Esteve-Zarzoso et al. (1999). 
PCR products were digested by the restriction enzymes 
Hinf I, Cfo I, and Hae III (Thermo Scientific, USA) 
following the manufacturer’s instructions. PCR prod-
ucts and their restriction fragments were separated by 
electrophoresis on 1 and 2% agarose gels, respectively. 
Gels were stained with ethidium bromide, and DNA 
fragments were visualized under UV. Sizes were esti-
mated by comparison against a  DNA ladder (100 bp 
Plus; Thermo Fisher Scientific, USA). Preliminary 
iden tification of restriction profiles was determined by 
comparison with those previously reported (Guillamón 
et al. 1998; Esteve-Zarzoso et al. 1999).

Sequencing and phylogenetic analysis. The strains 
were subjected to sequencing. D1/D2 domains of the 
26S rRNA gene were amplified using primers NL-1 
(5’-GCATATCAATAAGCGGAGGAAAAG-3’) and 
NL-4 (5’-GGTCCGTGTTTCAAGACGG-3’) (Kurtz-
man and Robnett 1998). PCR products were sent to 
Macrogen (Rockville, USA) for sequencing. Electro-
pherograms for both primers were evaluated using 
Sequencher version 4.1.4 (Gene Codes, USA) and 
contigs for each sample were assembled. Sequences 
are deposited in the GenBank database (https://www.
ncbi.nlm.nih.gov/genbank/) under the accession codes 
MF979591-MF979618 and MF979620.

To construct our dataset, similar sequences were 
searched using the BlastN algorithm against the Gen-
Bank database. Identities were matched at 99–100% 
similarity. In addition, we searched for similar 
sequences against the Mycobank database (http://www.
mycobank.org) using its pairwise sequence alignment 
tool (MolecularID) for confirming results. Both of these 
results provided preliminary information on the iden-
tification of each sample. Following this, preliminary 
information was used to search for the correspond-
ing type strain sequences described by Kurtzman et al. 
(2011a). If accession codes for any type strain were 
not present, they were searched in GenBank (Fig. 1). 
For phylogenetic tree construction, we aligned multi-
ple sequences using ClustalX 2.1 (Larkin et al. 2007). 
Long flanks were removed to obtain a similar alignment 
size for all sequences. MEGA7 (Kumar et al. 2016) was 
used to estimate conserved and variable positions and 
a genetic distance matrix (K2P). This matrix was used 
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to estimate a tree using the neighbor-joining method 
(Saitou and Nei 1987). Branch support was estimated 
using 1,000 bootstrap replicates.

Phenotypic characterization. Physiological tests 
were performed as described by Kurtzman et al. (2011b) 
with slight modifications, including fermentation of 

Fig. 1. Neighbor-joining tree of strains obtained from ANF (codes and accession numbers are highlighted in bold) and the correspond-
ing type strains. Bootstrap values in nodes that received > 70 of support are shown. Culture collection codes of type strainsT and their 

accession numbers are shown.
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sugars (ᴅ-glucose, sucrose, maltose, lactose, starch, 
and cellobiose), growth at high concentrations of glu-
cose (50 and 60%), acidity production on YPD medium 
supplemented with 2% CaCO3, and tolerance of 1% of 
acetic acid in a liquid medium. Growth at 4, 15, 30, 
and 37°C was evaluated in YPD broth. Production of 
extracellular hydrolases was tested on YPD plates sup-
plemented with the specific substrates and incubated 
at 30°C for 48 h. Esterase activity was determined by 
the formation of precipitate around the growth using 
1% Tween 80 as substrate (Sierra 1957). Degradation of 
tributyrin for lipase production was evaluated through 
the formation of zones of clearing around colonies. The 
cellulolytic activity was investigated using carboxym-
ethyl cellulose as a substrate following the methodol-
ogy of Teather and Wood (1982) which uses Congo 

red as an indicator. Production of proteases was evalu-
ated using 1% skim milk as substrate. Casein hydroly-
sis was evident by zones of clearing around colonies. 
The amylolytic activity was tested using starch (2 g/l) 
as substrate after flooding plates with a solution of 
Lugol’s iodine (Cowan and Steel 1974). Zones of clear-
ing around the growth revealed the production of amyl-
ases (Sánchez-Porro et al. 2003).

Results

A total of 81 yeast isolates were obtained from one 
hundred specimens of 10 different fruit species from 
the Peruvian Amazonia. Typing at the strain level by 
rep-PCR discriminated 29 strain profiles (Table I). Our 

P01 Not determined C. quercitrusa Candida quercitrusa

P04 Not determined C. intermedia Candida intermedia

P05 Not determined C. jaroonii  Candida jaroonii 

P06 C. tropicalis C. tropicalis Candida tropicalis

P07 Not determined C. carpophila  Candida carpophila 

P08 D. hansenii D. hansenii Debaryomyces hansenii

P09 D. hansenii D. hansenii Debaryomyces hansenii

P10   – C. tropicalis Candida tropicalis

P11 Not determined C. akabanensis  Candida akabanensis 

P12 Not determined C. carpophila  Candida carpophila 

P13 H. guilliermondii/H. uvarum H. opuntiae Hanseniaspora opuntiae

P14 H. guilliermondii/H. uvarum H. opuntiae Hanseniaspora opuntiae

P15 C. tropicalis C. tropicalis Candida tropicalis

P16 H. guilliermondii/H. uvarum H. thailandica Hanseniaspora thailandica

P17 H. guilliermondii/H. uvarum H. thailandica Hanseniaspora thailandica

P18 H. guilliermondii/H. uvarum H. opuntiae Hanseniaspora opuntiae

P19 Not determined C. pseudohaemulonii Candida pseudohaemulonii

P20 D. hansenii D. nepalensis Debaryomyces nepalensis

P21 C. incommunis K. ohmeri Kodamaea ohmeri

P22 D. hansenii D. nepalensis Debaryomyces nepalensis

P23 Not determined Meyerozyma caribbica Meyerozyma caribbica

P24 H. guilliermondii/H. uvarum H. opuntiae Hanseniaspora opuntiae

P25 H. guilliermondii/H. uvarum H. uvarum Hanseniaspora uvarum

P26   – H. thailandica Hanseniaspora thailandica

P27 H. guilliermondii/H. uvarum H. opuntiae Hanseniaspora opuntiae

P28 H. guilliermondii/H. uvarum H. thailandica Hanseniaspora thailandica

P29 H. guilliermondii/H. uvarum H. thailandica Hanseniaspora thailandica

P30 H. guilliermondii/H. uvarum H. pseudoguillermondii Hanseniaspora pseudoguillermondii

P32 C. sake Martiniozyma asiatica Martiniozyma asiatica

Table I
Molecular methods for the identification of yeasts isolated from Amazonian native fruits.

– not evaluated; Not determinated – the restriction profile could not been matched to any previously published data

Strain
profile

Method of identification

Restriction profile
Identification consensusD1/D2 26S ribosomal

RNA sequencing
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naming system for the strain profiles employed the letter 
P, followed by a 2-digit number. One representative of 
each strain profile was chosen for further RFLP analysis 
of the 5.8S-ITS region. Using this methodology, we were 
able to distinguish 12 restriction profiles (Table II).

Phylogenetic analysis of the D1/D2 domains of 
the 26S rRNA gene was used to identify all 29 rep-
resentative strains, revealing 16 species belonging to 
6  genera. Our dataset comprised 45 sequences from 
the 26S rRNA partial gene (Fig. 1). The final alignment 
resulted in 578 aligned positions and 288 variable sites. 
All isolates were identified as ascomycetous and non-
Saccharomyces species. Hanseniaspora (40.7%) was the 
most common genus, followed by Candida (35.6%), 
and Debaryomyces (17.3%). H. opuntiae (24.7%) was 
found to be the most prevalent species among all the 
isolates, followed by C. tropicalis with 16.0%. D. hansenii 
and H. thailandica were also present at 11.1% of strains 
obtained (Table II). The highest number of strain pro-
files was observed in both H. opuntiae and H. thailan
dica (five strain profiles each), followed by C. tropicalis 
(three strain profiles). C. carpophila, D. hansenii, and 
D. nepalensis exhibited two strain profiles; others exhib-
ited one (Table II).

Analysis of yeast presence on Amazonian fruits 
showed that H. opuntiae was found most frequently 
across the ANF of our study, with a presence on five 
of the studied fruits, while C. tropicalis was the second 
most common, with presence on four of the studied 
fruits. Yeasts species tended to cluster together with 
multiple species present on each fruit. The highest 
number of species of yeasts was found associated with 
cidra (five species) and ungurahui (four species) fruits, 
while the lowest was found in camu camu and chari-
chuelo fruits, with only one species being associated 
with each. Pomarrosa, taperiba, and ubos fruits shared 
a  similar yeast profile, with each harboring H. opun
tiae and H. thailandica. Cidra and taperiba showed the 
highest number of strain profiles (data not shown). 
Cidra exhibited six strain profiles corresponding to five 
yeast species; taperiba showed six strain profiles, from 
three yeast species (Table II).

The biochemical profiles of selected yeasts (one 
representative per each strain profile in most cases) 
are presented in Table III. Some phenotypic traits were 
investigated as hydrolytic capabilities for potential bio-
technological applications. Isolates showed a diverse 
range of phenotypic characteristics, with differentia-
tion evident even between strains belonging to the same 
species. Fermentation of lactose and growth at 60% 
glucose was negative in all isolates tested. Hydrolytic 
capabilities were rarely detected, and lipolytic activity 
was determined in only one isolate (P11 strain profile). 
Degradation of Tween 80, carboxymethyl cellulose, 
casein, gelatin, and starch was not evident in any strain.

Discussion

Fruits possess essential traits that make them suit-
able habitats for yeasts. In this study, we isolated yeasts 
from 10 ripe ANF of the region of Loreto, Peruvian 
Amazonia, and belonging to the genera Citrus, Gar
ciniama, Mauritia, Myrciaria, Oenocarpus, Poraqueiba, 
Solanum, Spondias, and Syzygium. Repetitive sequence-
based PCR (rep-PCR) yielded 29 strain profiles of 
yeasts from these fruits. Although this method was 
initially developed for fingerprinting bacterial genomes 
(Versalovic et al. 1991), it has also been applied 
in describing fungal diversity in various samples 
(Ceugniez et al. 2015; Filho et al. 2017).

For preliminary visualization and identification 
of the microbial community, we conducted an RFLP 
analysis of the amplified 5.8S rRNA gene with the two 
flanking internal transcribed spacers ITS1 and ITS2 
(Esteve-Zarzoso et al. 1999), yielding 12 restriction pro-
files. The majority of RFLP restriction profiles could 
not be matched with previous reports (Guillamón et al. 
1998; Esteve-Zarzoso et al. 1999). As far as we know, 
restricted profiles belonging to our strains P01, P04, 
P05, P07, P11, P12, P19, and P23 had no match to any 
previously published strains. Meanwhile, P13, P14, P16, 
P17, P18, P24, P25, P27, P28, P29, and P30 were similar 
to H. opuntiae, H. pseudoguilliermondii, H. thailandica 
or H. uvarum. This is probably because the method-
ology in question includes only a limited number of 
strains currently isolated from other types of fruits and 
environments. Nonetheless, this approach provided 
important information about the profiles and, in some 
cases, the species. We found that several yeast species 
exhibited the same restriction profile of the ITS region. 
For example, C. carpophila and Meyerozyma caribbica 
(restriction profile II, Table II). However, all the species 
could be differentiated using rRNA gene sequencing 
(Jindamorakot et al. 2009).

When various typing methods are used together, 
higher-profile diversity can be observed than when 
single methods are used (Padilla et al. 2016). Thus, for 
the purpose of supporting and determining results, we 
also carried out the sequencing of the D1/D2 domains 
of the 26S rRNA gene (Kurtzman and Robnett 1998). 
The identification consensus of all strains was achieved 
by analyzing the information gathered from these com-
bined techniques. Individual identities were ascribed to 
each of 81 isolates grouped in 29 strain profiles (Table I).

The distribution of species and strains varied across 
the ANF in this study. Communities were dominated 
by the genus Hanseniaspora, followed by Candida and 
Debaryomyces. More than one yeast species was pre-
sent on all fruits except camu camu and charichuelo 
(Table  II). In the conditions of this study, we believe 
that the nature of the fruit peels (chemical composition, 
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thickness, aspect) may be one of the principal reasons 
for the yeast profiles observed on the ANF, but further 
research into the nature of these fruits is needed.

The characteristics of fruits strongly influence the 
diversity of yeasts and other microbes found in their 
adherent communities. The peels of fruits can contain 
various proportions of carbohydrates, crude fibers, 
lipids, crude proteins, minerals, and anti-nutrients. 
Adherent microbes must develop ways to access such 
materials (Villachica 1996; Romelle et al. 2016). Addi-
tionally, some fruit skins are thinner than others or have 
indentations that make them more prone to yeast colo-
nization (Tournas and Katsoudas 2005). Interestingly, 
the highest number of yeast species was found associ-

ated with cidra fruit, a citrus species with low pH, and 
ungurahui, which is considered one of the most useful 
plants for indigenous people in Amazonia. Also, cidra 
harbors strains belonging to four genera (the highest 
number of genera among our ANF), possibly because 
low pH is a favorable condition for yeast growth. The 
range of pH of citrus fruits tends to be between 2.3 
and 3.6 (Irkin et al. 2015). Ungurahui is employed 
for medicinal and cosmetic purposes, and to prepare 
a milk-like alcoholic beverage called chicha (Montúfar 
et al. 2010). Ungurahui was found colonized by mem-
bers of the Candida genus, which may explain why the 
fruit is used to produce fermented alcoholic beverages, 
as frequently different species of Candida are present 

a Glu – glucose, Suc – sucrose, Mal – maltose, Sta – starch, Cel – cellobiose
b Growth at different temperatures in liquid media where : 0.02–0.5, : 0.5–1,  : >1 (OD600)
c Growth in high osmotic pressure media (50% glucose)
d Acid prod – acid production
e Tol – tolerance to 1% acetic acid
f Tri – hydrolysis of tributyrin

C. akabanensis P11 + + + – – ✓ ✓✓✓ ✓✓✓ – – + – +

C. carpophila
 P07 + + – – – – ✓✓✓ ✓✓✓ – + + – –

 P12 + + – – – – ✓✓ ✓✓✓ – + – – –
C. intermedia P04 + + + – + ✓ ✓✓✓ ✓✓✓ – – + – –
C. jaroonii P05 – – – – – – ✓✓ ✓✓ ✓ + + – –
C. pseudohaemulonii P19 + + – – – – ✓✓✓ ✓✓✓ ✓✓✓ + – – –
C. quercitrusa P01 – – – – – – ✓✓ ✓✓ ✓✓ + – – –
 P06 – – – – – – ✓ ✓✓ ✓✓ + – – –
C. tropicalis P10 + + + – – ✓ ✓✓✓ ✓✓✓ ✓✓✓ + + + –
 P15 + + + – – ✓ ✓✓✓ ✓✓✓ ✓✓✓ – + – –

D. hansenii
 P08 – – – – – – ✓✓✓ ✓✓✓ ✓ + – + –

 P09 – – – – – – ✓ ✓✓ – + – – –

D. nepalensis
 P20 + + – – – – ✓✓ ✓✓ ✓✓ + – – –

 P22 – – – – – – ✓ ✓✓ – + – – –
 P13 + + – – – – ✓✓✓ ✓✓✓ – + + + –
 P14 + + – – – – ✓✓ ✓✓✓ ✓ + + – –
H. opuntiae P18 + + – – + – ✓✓✓ ✓✓✓ – – + – –
 P24 – – – – – – ✓✓ ✓✓✓ – + – + –
 P27 + – – – – – ✓✓ ✓✓✓ – + + – –
H. pseudoguillermondii P30 + – – – + ✓ ✓✓✓ ✓✓✓ ✓ – + – –
 P16 + – – – + – ✓✓✓ ✓✓✓ – – + + –
 P17 + – – – – – ✓✓ ✓✓✓ ✓✓ – + – –
H. thailandica P26 – – – – – – ✓✓✓ ✓✓✓ – + – – –
 P28 + – – – – – ✓✓✓ ✓✓✓ ✓✓ – + – –
 P29 + – – – – – ✓✓ ✓✓✓ – – + – –
H. uvarum P25 – – – – – – ✓✓ ✓ ✓ + – – –
K. ohmeri P21 + + – – – – ✓ ✓✓ – + – – –
M. asiatica P32 – – + + – – ✓✓ ✓✓✓ – – – + –
M. caribbica P23 – – – – – – ✓✓ ✓✓ – + – – –

Table III
Biochemical tests performed on yeasts isolated from ANF.

Species
Strain
profile

Fermentation of carbohydratesa Temperature (°C)b Osmc

50%
Acid
prodd Tole Trif

Glu Suc Mal Sta Cel 4 15 30 37
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in fruits used for alcoholic fermentation (Fleet 2003; 
Capozzi et al. 2015).

Conditions such as climate, geography, and other 
factors also interact to determine yeast diversity on the 
fruit surfaces (Andrews and Harris 2000; Fonseca and 
Inácio 2006; El Sheikha et al. 2009). Similarly, the stage 
of fruit maturity also plays an important role in deter-
mining the composition of yeast communities (Morais 
et al. 1995), though in our study, all fruit samples were 
mature. Hence, we showed the composition of yeast 
communities at that stage. Thus, nutrient changes and 
physicochemical characteristics exert an effect on the 
diversity of yeasts.

The same species identified in this study have 
been reported in other investigations using samples as 
diverse as non-Amazonian fruits, other plant surfaces, 
grape-associated products or even clinical samples 
(Kurtzman et al. 2011a). The genera Hanseniaspora 
and Candida have been typically associated with grape 
juice in the first stages of alcoholic fermentation during 
winemaking and have been identified as the main gen-
era in some yeast diversity studies on fruits (Trindade 
et al. 2002; Vadkertiová et al. 2012; Grondin et al. 2015). 
H. opuntiae have been mainly found in the microbiota 
of cocoa bean fermentations (Fernández Maura et al. 
2016). H. opuntiae have also been identified in the pine-
apple vinification process in Angola (Dellacassa et al. 
2017). H. opuntiae can be referred as a ubiquitous yeast 
in nature. This fact is corroborated in our study, where 
H. opuntiae was found among half of the fruits tested 
and exhibited the high number of strains.

H. thailandica was first reported by Jindamorakot 
et al. (2009) in samples of insect frass, crabapple man-
grove (Sonneratia caseolaris) flowers, lichen, and rotted 
Psidium guajava fruit from different locations in Thai-
land. In our study, both H. opuntiae and H. thailandica 
showed various strain profiles and tended to be present 
in consortium with other species of the Hanseniaspora 
genus (Table II). In contrast to the other representatives 
of the Hanseniaspora genus in our study, H. pseudoguil
liermondii and H. uvarum showed low prevalence.

Trindade et al. (2002) isolated yeasts from fresh and 
frozen pulps of the Brazilian tropical fruits pitanga 
(Eugenia uniflora), mangaba (Hancornia speciosa), 
umbu (Spondias tuberosa), and acerola (Malpighia 
glaba). The authors found 405 different strains belong-
ing to 42 ascomycetous and 28 basidiomycetous spe-
cies, including various species of Candida, Hansenias
pora, Kluyveromyces, Rhodotorula, and Saccharomyces, 
among others. Candida showed the highest species 
richness, as was also the case in our investigation. 
However, we observed only ascomycetous yeasts, and 
one reason for this could be the temperature of 30°C 
we used for the isolation of yeasts. Surprisingly, none 
of the isolates identified by Trindade et al. (2002) were 

coincident with our results. This could be due to the 
nature of the fruits.

The Candida genus is widely found in yeast diversity 
studies on fruits. Candida tropicalis has been descri- 
bed in various ecological niches (Las Heras-Vazquez 
et al. 2003; Limtong et al. 2014). C. pseudohaemulo
nii is ordinarily found in clinical samples at hospitals 
(Sugita et al. 2006; Oh et al. 2011). However, we found 
that C. pseudo haemulonii is also associated with citrus 
fruit in consortium with other yeast genera represent-
ing novel information.

D. hansenii was found on pear fruit surfaces by 
Chand-Goyal and Spotts (1996) from diverse areas 
in the Pacific Northwest United States. Interestingly, 
D. hansenii has been described as harboring particular 
features for biotechnological applications (Prista et al. 
2016). In our investigation, D. hansenii appeared to pre-
fer Garciniama crophylla tree fruit as a habitat and was 
the only yeast species found on this fruit.

K. ohmeri has been mainly reported as a rare 
human pathogen (Al-Sweih et al. 2011; Fernández-
Ruiz et al. 2017). However, it has also been described 
as being associated with food (Ezeokoli et al. 2016). In 
our work, we found K. ohmeri associated with cidra. 
The genus Martiniozyma has recently been described 
(Kurtzman 2015), and C. asiatica is now recognized 
as Martiniozyma asiatica. M. asiatica has been previ-
ously detected in natural samples from various Asian 
countries (Limtong et al. 2010). In our study, M. asiatica 
tended to cohabit with other yeast species associated 
with umarí fruit.

In order to analyze phenotypic characteristics of the 
isolates, and possibly find useful traits for biotechno-
logical purposes (Da Silva et al. 2005; Molnárová et al. 
2013), some phenotypic tests were carried out. Vari-
ation in phenotypic traits of the species compared to 
previous reports (Kurtzman et al. 2011a) may be due 
to diverse factors, including the dynamic environmen-
tal conditions of Amazonia, which may influence the 
physiological features. Certain environmental condi-
tions may switch specific genes on or off, causing the 
broad strain variation. In addition, the patterns we 
observed could also be ascribed to the effects of fruit 
species. These factors have been shown to contribute to 
species variation (Lane et al. 2011; Qvirist et al. 2016).

In terms of hydrolytic capabilities, lipase production 
was only detected in C. akabanensis, which was isolated 
exclusively from aguaje, a fruit with high fatty acid con-
tent. It is possible that C. akabanensis employs lipase to, 
in some way, utilize the fatty acids present in the pulp. 
More generally, however, the rarity of hydrolytic activity 
detected in our study is not unexpected, since it appears 
that these yeasts tend to use straightforward sources of 
carbon such as simple sugars (glucose in most cases, 
Table III). Ecologically, this is a cost-effective strategy, 
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considering that the surface of fruits in the Amazonia 
tends to constitute harsh environmental conditions. It 
is important to consider that strains can be very hetero-
geneous both genetically and biochemically (Prista et al. 
2016; Visintin et al. 2016), and also this variability can 
be strongly influenced by the nutritional composition 
of the samples they are obtained from. Furthermore, 
as far as we know, there are no reports of the same tests 
for hydrolases for all the species of this study to com-
pare. Thus, the majority of negative hydrolytic profiles 
appear in agreement with the information described by 
Kurtzman et al. (2011a). Nevertheless, we recommend 
investigating hydrolytic capabilities using basal nutrients 
different from YPD and non-synthetic or residual sub-
strates because non-natural substrates can result in a dif-
ferent biochemical response of the yeasts. More suitable 
substrates can be starch of potato, olive oil, or beef suet.

Comparing our results with previous works shows 
that yeasts are ubiquitous on different fruits, and even 
in different types of samples. The surface of Amazo-
nian fruits, although a hostile environment, can be an 
interesting source of yeast strains displaying diverse 
phenotypic traits. Different yeasts found in the ANF 
studied seem to be influenced mainly by the nature of 
the fruits and their environment. ANF may constitute 
a good source of new species or strains of yeasts with 
particular characteristics for biotechnological purposes. 
Further investigation is needed in order to explore the 
potential industrial applications of these yeasts in food, 
feed ingredients, biocatalysis, or biocontrol.
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