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Abstract

In the tumor microenvironment (TME), functional interactions among tumor, immune, and 

stromal cells and the extracellular matrix play key roles in tumor progression, invasion, immune 

modulation, and response to treatment. Intratumor heterogeneity is ubiquitous not only at the 

genetic and transcriptomic levels but also in the composition and characteristics of TME. 

However, quantitative inference on spatial heterogeneity in the TME is still limited. Here, we 

propose a framework to use network graph-based spatial statistical models on spatially annotated 

molecular data to gain insights into modularity and spatial heterogeneity in the TME. Applying 

the framework to spatial transcriptomics data from pancreatic ductal adenocarcinoma samples, 

we observed significant global and local spatially correlated patterns in the abundance score of 

tumor cells; in contrast, immune cell types showed dispersed patterns in the TME. Hypoxia, EMT, 

and inflammation signatures contributed to intra-tumor spatial variations. Spatial patterns in cell 

type abundance and pathway signatures in the TME potentially impact tumor growth dynamics 

and cancer hallmarks. Tumor biopsies are integral to the diagnosis and clinical management of 

cancer patients; our data suggest that owing to intra-tumor non-genetic spatial heterogeneity, 

individual biopsies may underappreciate the extent of clinically relevant, functional variations 

across geographic regions within tumors.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and 
reproduction in any medium, provided the original work is properly cited.

Correspondence: Subhajyoti De, Rutgers Cancer Institute of New Jersey, Rutgers the State University of New Jersey, New 
Brunswick, NJ 08901, USA. subhajyoti.de@rutgers.edu.
Antara Biswas and Bassel Ghaddar contributed equally.
AUTHOR CONTRIBUTIONS
Subhajyoti De conceived the project. Antara Biswas, Bassel Ghaddar, and Subhajyoti De designed the experiments. Antara Biswas, 
Bassel Ghaddar, and Subhajyoti De analyzed the data with assistance from Gregory Riedlinger. Subhajyoti De wrote the paper with 
input from all authors.

CONFLICT OF INTEREST
The authors declare no conflict of interest.

SUPPORTING INFORMATION
Additional supporting information can be found online in the Supporting Information section at the end of this article.

HHS Public Access
Author manuscript
Comput Syst Oncol. Author manuscript; available in PMC 2022 September 01.

Published in final edited form as:
Comput Syst Oncol. 2022 September ; 2(3): . doi:10.1002/cso2.1043.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://creativecommons.org/licenses/by/4.0/


Keywords

cancer; heterogeneity; multivariate analysis; spatial transcriptomics; tissue microenvironment

1 | INTRODUCTION

While individual cell types have specialized functions, the tissue microenvironment provides 

a framework for an organized cellular activity to produce coordinated organ-level functions 

[1] and forms the basis for multicellular life. Tissue microenvironments tend to be self-

organizing units, as observed during development, wound healing, and organoids [2]. In 

cancer, the tumor microenvironment (TME), which is comprised of the tumor, immune, 

stromal and extracellular compartments, is remodeled during tumorigenesis, and the TME 

in turn plays a key role in cancer progression, tissue invasion, metastasis, and response to 

treatment [3].

Heterogeneity and evolvability are hallmarks of all cancers, and intra-tumor heterogeneity is 

widespread not only at the genetic and transcriptomic levels but also in the composition and 

characteristics of TME. Spatial transcriptomics has been used to study a number of cancer 

types [4–8], revealing regional niches and heterogeneity, identifying spatially regulated 

compartments and genes, and localizing tumor-immune interfaces or lack thereof [9, 10]. 

However, efforts thus far to define spatial compartments in the TME have largely been 

observational, and quantitative inference on spatial heterogeneity in the TME is limited 

due to a number of factors. High throughput technologies for spatially annotated molecular 

profiling are developed only recently. Adjacent tissue regions are not independent data 

points for statistical analyses. Due to organ architecture and potential tissue distortions 

during sample preparation the patterns of cell-to-cell contacts in tissue contexts may be more 

relevant than Euclidean distances. To address these challenges, we propose a framework 

to use network graph-based spatial statistical models on spatially annotated molecular data 

to quantitatively examine modularity and spatial organization in the TME. Such models 

have been adopted in ecological modeling and allow us to incorporate geometric and 

context-dependent constraints. We apply the framework to spatial transcriptomics data to 

gain insights into spatial patterns and heterogeneity at the level of cell type abundance and 

pathway-level signatures in pancreatic cancer.

2 | RESULTS

Emerging biomedical technologies allow the collection of high throughput molecular data 

from spatially annotated spots in tissues. We outline a framework to project spatially 

annotated molecular data onto a neighborhood connectivity graph, where each spatially 

annotated data point from a tissue sample is a node, and two adjacent nodes are connected 

by an edge (Figure 1A). The edges in the graph could be constructed based on any 

reasonable proximity criteria such as physical adjacency, Euclidean distance, Delaunay 

triangulation, and so forth, and/or based on additional constraints. Given tissue architectures 

and contours, and sample preparation techniques, some distance measures may be more 

relevant than the Euclidean distance in specific contexts. The network graph transformation 
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retains spatial relationships among the spatially barcoded regions and allows the application 

of graph-based ecological statistics to examine aspects of tissue rheology in the TME while 

incorporating context-dependent constraints imposed by tissue architecture, biophysical 

characteristics, or experimental conditions.

We showcase the framework utilizing data obtained from spatial transcriptomics 

technologies which allow gene expression profiling of 102–103 annotated units from 

histological slides, each having a distinct X-Y coordinate-based barcode (Figure 1B); 

individual barcodes may have aggregated transcriptomic data from 10–100 cells - typically 

representing multiple cell types depending on the tissue context. As a case study, we 

analyzed spatial transcriptomics data for pancreatic ductal adenocarcinoma samples from 

Moncada et al. [5] and used marker gene expression signatures to estimate cell-type 

abundance scores of pancreatic tumor cells, as well as immune (myeloid, T cell, and B 

cell) and stromal cell types (fibroblasts, acinar, stellate and normal ductal cells) for each 

spatial barcode (see Methods; Figure 1B and S1).

First, we used Moran’s I, a measure of spatial autocorrelation, to assess whether cellular 

abundance correlates among spatially adjacent barcodes in the neighborhood graph. Results 

for four ‘representative’ samples are shown, and Supporting Information Figures present 

equivalent results for other samples. I values were positive (0.35–0.57) and statistically 

significant for tumor cell abundance scores in all the samples (Figure 1C and Figure 

S2). Using variogram analysis, we observed that semi-variance, a measure of distance-

dependent decay in association, increased by 40–80% over a distance equivalent of 4–6 

units (600-1000μm) - which is comparable to the typical size of pancreatic organoids 

observed in laboratory conditions (StemCell Technologies Inc., Doc #27088). We then 

jointly analyzed spatial abundance patterns of all cell types (Figure S1); apart from tumor 

cells, fibroblasts showed significantly high Moran’s I indicating spatial autocorrelation in all 

samples. In contrast, immune cell types were more dispersed and showed negligible spatial 

autocorrelation.

Next, we used spatial principal component analysis (sPCA) to examine regional variation 

in cell type compositions in each tumor histological slide (Figure 1D and Figures S1 and 

S2), while taking into consideration any potential spatial correlation in the neighborhood 

connectivity graph. Abundance scores of tumor cells and fibroblasts contributed to 

considerable loadings of the first two PCs of the sPCA – indicating that tumor cells and 

fibroblasts primarily dominate the patterns of spatial cell type heterogeneity in pancreatic 

tumors. Immune cell types had a minor contribution to the principal components (PCs), 

and the association between patterns of spatial abundance of tumor and T cells was 

consistently weak, suggesting a lack of concordance in spatial patterns of tumor and immune 

heterogeneity. These observations are consistent with reports that pancreatic tumors are 

typically immune cold [4, 5].

To investigate spatial heterogeneity in terms of the clonal composition of tumor cells, we 

identified large-scale copy number variations (CNVs) in the tumor cells, and accordingly, 

clustered the spatially annotated regions into 2–4 major subclones (Figure 2 and Figure S3). 

Although we did not have access to actual samples for validation, the copy number and 
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clonal architecture inferences appeared reasonable. For example, S1 and S4, which were 

obtained from different regions from the same tumor specimen, had the same CNV pattern, 

verifying that the same clusters across different sections had identical CNV characteristics. 

We found heterogeneity in terms of CNV-based clonal architectures, and spatial distributions 

of major subclones. For instance, C4, a minor subclone had a localized presence in S1, but 

not in S4. Likewise, C2, another subclone was common in S1 but rare in S4. Overall, spatial 

distributions of the subclones varied within and across tumors, but in most tumors, the major 

subclones overlapped, at least partly, in their spatial localization.

Next, we examined spatial patterns of cellular activities in the same samples. We computed 

enrichment scores for several pathways [11, 12] related to cancer hallmarks and tumor-

immune interactions [13] for each spatial unit using a published approach [12] (Figure S4). 

Hypoxia showed consistent and significant spatial autocorrelation in all samples, suggesting 

that hypoxia signatures may be broadly distributed in TMEs. Cell cycle and apoptosis were 

more heterogeneous, potentially suggesting stochastic cell growth and death, both in tumor 

and non-malignant cell populations. Cell cycle activity was closely associated with tumor 

cell-rich regions and did not overlap with hypoxia. Spatial autocorrelation in EMT was 

considerably common in the samples; this might be due to composite effects of tumor 

growth, migration and other factors.

Extending the sPCA approach to pathway-level signatures, we found that EMT and hypoxia 

were dominant features that consistently had the highest loading in the first two PCs – 

suggesting that EMT and hypoxia signatures contributed to most regional variations in 

pathway activities on the tissue slides (Figure 3A,B). Interestingly, although immune cells 

were heterogeneously distributed, the inflammation signature had substantial loading in 

multiple samples, typically along an axis orthogonal to EMT, indicating that inflammation 

signatures also contribute to regional variation in vivo.

Next, we modeled regional variation in the pathway activities based on regional abundances 

of the tumor, immune, and other cell types, using a multivariate regression model with a 

spatial lag to account for spatial autocorrelation along the neighborhood graph (Figure 3C 

and Figure S5). In tumors S1 and S4, EMT and cell cycle signatures were significantly 

associated with tumor cell abundance, while the effects were weaker in the other two 

samples. Inflammation was significantly associated with an abundance of immune (e.g., 

myeloid cells in S1) and tumor cells, but the effects varied between samples. Nonetheless, 

the proportion of variance in pathway-level scores estimated by spatial autoregressive 

parameters Rho and residual variance, explaining the abundance of different cell types was 

modest (Table S4). Therefore, there were substantial inter-tumor variations in the patterns of 

spatial heterogeneity in TME characteristics.

3 | DISCUSSION

Our analyses show that the transformation of spatially annotated omics data from tissue 

sections using neighborhood graphs and spatial multivariate modeling provides insights 

into the modularity and spatial heterogeneity of the TME. Spatially correlated patterns 

in tumor cell abundance might be due to clonal growth and moderate density-dependent 
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migration of tumor cells [14]. In contrast, the immune landscape was more heterogeneous 

in these samples – which is in line with reports that immune microenvironments are more 

dynamic, pancreatic tumors are typically immunologically cold, and that immune evasion is 

common in pancreatic adenocarcinoma [15]. Pathway-level analysis indicated that hypoxia 

is widespread and spatially correlated in TME. In the sPCA analysis, EMT, hypoxia and 

inflammation explained regional variations, indicating that those might be among the key 

functional contexts shaping the pancreatic cancer microenvironment [3, 15, 16]. The lack of 

spatial autocorrelation observed for immune cells suggests that factors other than cell-type 

composition, EMT and hypoxia drive immune migration in tumors.

It is important to note the technical limitations for a balanced perspective. First, inference 

from spatial transcriptomics data can be biased by cell-type-specific biomarker selection, the 

effectiveness of deconvolution, regional variation in cell densities, and technical variations 

[10, 17]. Second, calling copy number alterations from spatial transcriptomic data is 

challenging. Third, without access to the original specimen, we were unable to estimate and 

validate relevant biophysical measurements from the spatial transcriptomics data. Tissue-

specimens reflect a snapshot in time and do not directly track dynamic changes in tissue 

microenvironments. For the same reason, we did not extend the multivariate analysis to 

include tumor subclones. Fourth, our analysis was based on 2D spatial transcriptomic data, 

which lacked the 3D perspective, and our analyses involved relatively straightforward spatial 

autocorrelation and multivariate regression; future works will consider more advanced 

models that integrate multiple features to understand the organizing principles of the TME. 

Despite these limitations, spatial analysis of deconvoluted spatial transcriptomic data still 

provides the first quantitative metric by which to define a microenvironment and identify 

spatially dependent features.

Tumor biopsies are integral to the diagnosis and clinical management of cancer patients. 

Patterns of the tumor, immune and pathway-level spatial heterogeneity suggest that 

individual biopsies may underappreciate the extent of clinically relevant, functional 

variations at different levels, especially in immune phenotypes across the geographic regions 

within pancreatic tumors [18, 19]. However, liquid biopsies may address these limitations 

in the future [20, 21]. Lastly, our approach utilizing the neighborhood connectivity graph 

and corresponding spatial applications complements emerging resources to infer cellular 

connectomes [22–24] and the composition of tissue contexts [25–27] using single cell and 

spatial transcriptomics data at a different resolution to investigate spatiotemporal dynamics 

in healthy and diseased tissues.

4 | MATERIALS AND METHODS

4.1 | Spatial transcriptomics dataset

The spatial data for PDAC tumors were obtained from Moncada et al. [5]; each 

sample contained 243–996 spatially annotated barcodes, each capturing the aggregated 

transcriptomic makeup of potentially 20–70 cells in the tumor and adjacent normal tissue 

microenvironments. Each of the spatially barcoded spots on the array was 100 μm in 

diameter and 200 μm from center to center. These data were TP10K normalized, and cell-

type abundance scores for each spatial barcode were calculated as the mean of expression 
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of the cell-type specific marker genes on each respective barcode. The list of cell-type gene 

markers and cell types for each tumor sample is provided in Tables S1 and S2, respectively. 

The gene signature sets for the selected pathways were obtained from the MSigDB database 

[11]. For each spatial barcode, the pathway-level activity scores were determined based on 

the enrichment of the gene-set signatures within the expressed genes using AUCell [12] with 

default parameters (Table S3). Four representative samples- S1, S4, S7, and S8 are discussed 

in the main figures and the rest of the samples are in the Supporting Information Figures.

4.2 | Inference in clonal architecture

We used InferCNV [28] to estimate copy number status from spatial transcriptomic data 

in tumors and related other somatic cell types using ductal cells as reference cells, and 

use inferred copy number status to cluster the barcodes and annotate major subclones. 

We marked the major 2–4 dominant subclones, and annotated spatial barcodes with the 

dominant tumor subclones that occupied that position on the slide.

4.3 | Neighborhood connectivity graph

We define a neighborhood connectivity graph as a connected network, where each spatially 

annotated data point is a node, and two adjacent nodes are connected by an edge 

(Figure 1A). During analyzing spatial transcriptomics data, we connected adjacent spatially 

annotated spots with edges, after excluding those separated by empty spots. All edges in the 

neighborhood connectivity graph had equal weight.

4.4 | Variogram

The semivariogram γ(d) is half the mean squared difference between the values at points s1 

and s2 separated by a distance d, which shows distance-dependent decay (or lack thereof) in 

a feature in the context of spatial interactions.

4.5 | Moran’s I

Moran’s spatial autocorrelation measure is defined as

I = N
W

i jwij(xi − x)(xj − x)

i (xi − x)2

where N is the total number of spatial units indexed with i and j; x is the random variable, in 

this case, a phenotype score for tissue microenvironment in the spatial units; x is the mean of 

x; wij is a matrix of spatial weights and wii = 0; and W is the sum of all wij.

4.6 | Spatial PCA and multivariate regression

Since spatially proximal entities are correlated, it may not be fair to consider individual 

observations (e.g., spatial units) as independent and use simple PCA and regression. 

Therefore, we used sPCA to assess phenotypic variation among the spatial barcodes using 

principal component analysis after taking into consideration the neighborhood graphs. 

Similarly, we used regression with a spatial lag model (lagsarlm), as implemented in the 

spatialreg R package, to perform multivariate regression.
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FIGURE 1. 
(A) A schematic representation showing a collection of tissue from a patient and spatial 

transcriptomics on a tissue section to profile the transcriptome of multiple spatially 

annotated units simultaneously. Based on the spatial annotation of the units, a neighborhood 

graph can be constructed. (B) A flowchart showing inference on cell type and pathway 

scores from spatial transcriptomic data using gene signatures. (C) Tumor cell abundance 

score from spatial transcriptomics data for the pancreatic ductal adenocarcinoma specimens. 

The variograms indicate the decay in correlation in tumor cell estimate score over distance 
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in terms of the spatial units in the tumor microenvironment. (D) Multivariate spatial analysis 

showing joint variation in spatial localization of the cell types in the four samples. The 

spatial principal component analysis (sPCA) plot shows the loading of different cell types 

along the first two principal axes. Moran’s I indicate the extent of spatial autocorrelation 

coefficients of the cell types.
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FIGURE 2. 
Copy number profiles estimated from spatial gene expression data for four pancreatic tumor 

samples. Hierarchical clustering of cells in each of the pancreatic tumor samples based on 

copy number profiles estimated using InferCNV, with each row corresponding to a cell, 

ordered by cell types, and clustered within each cell type by copy number patterns. Dashed 

rectangle reflects tumor-specific patterns and the zoomed-in dendrogram shows main tumor 

subclones, with visualization of spatial localization of the subclones and corresponding 

tumor abundance areas
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FIGURE 3. 
(A) Multivariate spatial analysis showing joint variation in spatial localization of the 

pathways associated with cancer hallmarks in the four samples. The spatial principal 

component analysis (sPCA) plot shows the loading of different pathway scores along the 

first two principal axes. Moran’s I indicate the extent of spatial autocorrelation coefficients 

of the pathways. (B) Representative pathways with high loadings are spatially presented for 

the tumor samples with a correlation plot for pathways associated with cancer hallmarks. 

The intensity of the black color indicates proportionally higher pathway-level activity (C) 
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Pathway activity was modeled as a function of the estimated abundance of the cell types 

in the spatial transcriptomic data using multivariate regression with a spatial lag to account 

for spatial autocorrelation. Heatmap showing p-value associated with coefficients for the cell 

types in all pancreatic tumor samples. Rho and residual variance values are indicated in 

Table S4
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