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Abstract

Background: Pulmonary embolisms (PE) are life‐threatening medical events,

and early identification of patients experiencing a PE is essential to optimizing

patient outcomes. Current tools for risk stratification of PE patients are limited

and unable to predict PE events before their occurrence.

Objective: We developed a machine learning algorithm (MLA) designed to

identify patients at risk of PE before the clinical detection of onset in an

inpatient population.

Materials and Methods: Three machine learning (ML) models were devel-

oped on electronic health record data from 63,798 medical and surgical in-

patients in a large US medical center. These models included logistic

regression, neural network, and gradient boosted tree (XGBoost) models. All

models used only routinely collected demographic, clinical, and laboratory

information as inputs. All were evaluated for their ability to predict PE at the

first time patient vital signs and lab measures required for the MLA to run

were available. Performance was assessed with regard to the area under the

receiver operating characteristic (AUROC), sensitivity, and specificity.

Results: The model trained using XGBoost demonstrated the strongest per-

formance for predicting PEs. The XGBoost model obtained an AUROC of 0.85,

a sensitivity of 81%, and a specificity of 70%. The neural network and logistic

regression models obtained AUROCs of 0.74 and 0.67, sensitivity of 81% and

81%, and specificity of 44% and 35%, respectively.

Conclusions: This algorithm may improve patient outcomes through earlier

recognition and prediction of PE, enabling earlier diagnosis and treatment

of PE.
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INTRODUCTION

A pulmonary embolism (PE) is an obstruction of a blood
vessel in the branching arteries of the lung.1 The ob-
struction is usually caused by the embolization of a distal
blood clot (or thrombus) originating in a deep vein. A PE
is a life‐threatening condition associated with high
morbidity and mortality; mortality rates are estimated to
be 30% in untreated PE and 8% in treated PE.2 Re-
cognition of PE is made difficult by a significant overlap
between symptoms of PE and symptoms of other condi-
tions, such as acute coronary syndrome, heart failure,
pneumonia, and exacerbation of chronic obstructive
pulmonary disease (COPD).3 Clinical signs and symp-
toms of PE are considered to be limited in terms of both
sensitivity and specificity.1 Accurate prediction of in-
patient PE remains an unmet need.

This study describes the development of machine
learning algorithms (MLAs) to predict PE in hospi-
talized patients. Predictions may then be used to ei-
ther hasten identification of a PE which has occurred
but has not yet been detected or to predict the future
development of PE during a patient's hospital stay.
Identification of patients likely to experience a PE
would enable increased monitoring of high‐risk pa-
tients and earlier diagnosis. In addition, high‐risk
patients with no contraindications could begin
anticoagulants earlier in the disease course or pro-
phylactically, potentially reducing the need for
higher‐risk procedures such as catheter‐directed
thrombolysis.4 This tool is designed to enable earlier
PE diagnosis and more timely intervention, and pro-
vide clinicians with the opportunity to improve
patient outcomes.

METHODS

Data processing

Data used for model development were extracted from
the electronic health record (EHR) system at a large,
tertiary medical center in the western United States. Data
were extracted from medical and surgical patients ad-
mitted to the hospital between May 2011 and November
2017. This data set contained patient data including de-
mographics, lab results, vital sign measurements, medi-
cation usage, and patient diagnoses.

Data were collected passively and were deidentified
in compliance with the Health Insurance Portability and
Accountability Act. Because this study was performed on
deidentified data, and therefore, constitutes a nonhuman
subject study as per the definition of human subjects

research put forth in 45 Code of Federal Regulations 46,
it was exempt from Institutional Review Board approval.

Cohort definition and algorithm run time

We included all patients who had at least one recorded
measure of all vital signs present in the chart (systolic
and diastolic blood pressure, heart rate, respiratory rate,
and temperature), at least one of the laboratory mea-
surements used in the models (Table S1) present in the
chart, and who were 40 years or older. The age criterion
was included to minimize the probability of false alerts.
The risk of PE increases significantly with age and is a
less likely diagnosis in young adult patients.5

The algorithm was designed to use only the first 3 h of
data after any vital or lab measurement was recorded
during a patient's hospital stay. Any data collected after
the 3‐h mark were excluded. All patients meeting the
gold standard definition of PE before the algorithm was
able to generate predictions (i.e., before all required
measurements were present in the chart) were excluded,
therefore, no patients with a known prevalent PE were
included in the study cohort.

The gold standard definition of PE was identified by
the presence of an International Classification of Disease,
Ninth Revision, Clinical Modification (ICD‐9) or ICD,
Tenth Revision (ICD‐10) code for PE in the patient chart,
together with the presence of an order for a therapeutic
regimen of anticoagulants in terms of type and dosage,6

order of a thrombolytic medication, or insertion of an
inferior vena cava (IVC) filter. Although ICD‐10 codes
have high sensitivity (~90%) for detecting PE, false po-
sitives may be present.7,8 Therefore, the use of ICD codes
and therapeutic treatment together as the gold standard
enhanced our ability to capture true positive class PE
patients. ICD codes and medication orders used to
identify PE are presented in Table S2. We also included
thrombolytics in our definition of the gold standard, as
these medications may be urgently ordered for PE pa-
tients who are hemodynamically unstable.9 We note that
we included a broader list of thrombolytics than are
currently approved by the Food and Drug Administration
or recommended for use in treating acute PE to account
for variability in real‐world clinical practice and to en-
sure that patients experiencing a PE were unlikely to be
missed by our gold standard definition of PE. Treatment
with therapeutic anticoagulants, thrombolytics, or IVC
filter placement was also used to determine the onset
time of the clinical detection of PE, as ICD codes are not
reliably assigned a time‐stamp and so could not be used
to determine which patients to exclude due to diagnosis
of PE before the time of a prediction by the algorithm. All
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patients who met the PE gold standard during their
hospitalization were considered to be positive for PE. All
other patients were considered to be negative.

MLAs

MLAs were developed to predict the development of PE
at any point during the patient stay. We compared the
performance of models developed using logistic regres-
sion, neural network (using a multilayer perceptron
method), and gradient boosted decision trees (im-
plemented using XGBoost in Python).10,11 For con-
sistency with regard to the inputs, the vitals and lab
measurements from the 3‐h input period were binned
and averaged for every hour. The difference between the
measurements of the first and second hours and second
and third hours were calculated and provided as new
inputs to the model to provide information about the
change in measurements over time. Since logistic re-
gression and neural network models are unable to in-
corporate missing data or not a number (NaN) values,
such values were replaced with the average value for that
feature across the entire data set. The algorithm gener-
ated PE risk predictions the first time all patient vitals
and at least one laboratory measure was present in the
patient chart. The features included in all models are
presented in Table S1.

Before model training, the development data set
was randomly split in a ratio of 80:20, with these par-
titions forming the training and test sets, respectively.
The XGBoost model was trained with 100 estimators
and a maximum depth of four nodes. The learning rate,
gamma, colsample by tree, and L2 regularization
(lambda) values were set to 0.08, 0.2, 0.6, and 3, re-
spectively. The value for the hyperparameter scale_
pos_weight was set to 12.8 which accounted for the
high‐class imbalance in the data set. All of the hy-
perparameters were selected for the XGBoost by per-
forming a cross‐validated grid search. A neural
network model was trained with 1 hidden layer of 100
neurons for a maximum of 300 iterations with ReLU
activation function to introduce nonlinearity. A
learning rate of 0.001 and tolerance for optimization of
0.001 was used for training the neural network. Model
performance on the hold‐out test set was assessed with
regard to area under the receiver operating character-
istic curve (AUROC), sensitivity, specificity, positive
and negative likelihood ratios, and diagnostic odds
ratio. A Shapley additive explanations (SHAP) analy-
sis12 was performed to evaluate the feature importance
used by the best performing model in generating
predictions.

RESULTS

In total, 60,297 patients were included in the experiments
to develop and test the three algorithms, 309 of whom
experienced a PE while hospitalized. On average, pa-
tients experiencing a PE were likely to be older, have a
history of cancer, have experienced past venous throm-
boembolism (VTE), or be diagnosed with pneumonia.
Patient demographic information for the full data set is
presented in Table 1. Demographic information for the
hold‐out test set only is presented in Table S3.

Of the three machine learning (ML) models ex-
amined, XGBoost demonstrated the highest performance
in terms of AUROC (Figure 1). XGBoost achieved an
AUROC of 0.85, while the neural network and logistic
regression models achieved AUROC values of 0.74 and
0.67, respectively. At a constant sensitivity of 81% across
models, the XGBoost model also obtained superior spe-
cificity, positive and negative likelihood ratios, and di-
agnostic odds ratio values (Table 2).

The feature importance plot for XGBoost was gener-
ated using the TreeSHAP algorithm (Figure 2). The
SHAP summary plot ranks the most important input
features based on the contribution to the decision‐
making process of the algorithm. Record of recent frac-
ture, history of surgery, and history of deep vein
thrombosis were the top three most important features
for generating accurate predictions of PE at any point
during the patient's stay.

To study the effects of anticoagulant usage before the
algorithm runtime, we also trained an XGBoost model
with an additional boolean input indicating whether a
patient was administered anticoagulants during the
hospital stay before the algorithm run time. However, the
addition of this extra input did not significantly improve
the model's performance.

DISCUSSION

In this study, we demonstrated the ability of ML‐based
models to identify patients at high risk of experiencing a
PE before the event occurred or was clinically detected.
Because PE can rapidly become a life‐threatening event,
early detection or advanced prediction can optimize
care by enabling rapid diagnosis and treatment or pro-
phylaxis. The present study determined that our gra-
dient boosted algorithm is capable of accurately
predicting development of PE before the clinical
detection of onset.

Although several ML models were evaluated for their
ability to predict PE in hospitalized patients, the gradient
boosted decision tree algorithm developed using
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XGBoost performed most accurately, which may be at-
tributed to XGBoost's superior handling of missing data.
It is possible that other neural networks could be more
customized to this prediction task with additional re-
search to outperform the multilayer perceptron model
used in the present study. The accuracy of predictions
made by XGBoost makes the use of this model
advantageous.

A SHAP analysis was used to evaluate the contribu-
tions of individual features to model predictions.12 Sev-
eral features identified as important for model
predictions in the SHAP summary plot of the XGBoost
model (Figure 2) have previously been identified as
provoking factors for provoked PE, or PE precipitated by
identifiable, major risk factors. Major trauma is con-
sidered a risk factor for provoked PE,5 and recent fracture

TABLE 1 Demographic and clinical
characteristics of the study sample used
for training and testing the machine
learning models

Characteristic

Non PE
encounters
(%) n= 60,297

PE
encounters
(%) n= 309

Age 40–49 10542 (17.48) 37 (11.97)

50–59 15090 (25.03) 73 (23.62)

60–69 17540 (29.09) 108 (34.95)

70–79 9994 (16.57) 63 (20.39)

80+ 7131 (11.83) 28 (9.06)

Sex Male 30942 (51.32) 152 (49.19)

Female 29355 (48.68) 157 (50.81)

Ethnicity Hispanic 6933 (11.50) 22 (7.12)

Not Hispanic 53364 (88.50) 287 (92.88)

Race White 34678 (57.51) 193 (62.46)

Black 5645 (9.36) 38 (12.30)

Asian 8832 (14.65) 42 (13.59)

Pacific Islander 843 (1.40) 4 (1.29)

Native American 276 (0.46) 0 (0.00)

Other/unknown 10023 (16.62) 32 (10.36)

Comorbidities HIV/AIDS 1472 (2.44) 9 (2.91)

Renal disease 5205 (8.63) 15 (4.85)

Liver disease 6397 (10.61) 33 (10.68)

Prior organ transplant 6405 (10.62) 19 (6.15)

Diabetes 14059 (23.32) 68 (22.01)

COPD 5037 (8.35) 42 (13.59)

History of cancer 22354 (37.07) 168 (54.37)

Alcohol use disorder 2601 (4.31) 13 (4.21)

Pneumonia 5474 (9.08) 34 (11.00)

Heart failure 7216 (11.97) 60 (19.42)

Myocardial infarction 2161 (3.58) 8 (2.59)

Previous VTE 3369 (5.59) 133 (43.04)

Recent/active pregnancy (within
2 months)

7276 (12.07) 44 (14.24)

Recent surgery (within 1 month) 1794 (2.98) 5 (1.64)

Abbreviations: COPD, chronic obstructive pulmonary disease; HIV/AIDS, human immunodeficiency
virus/acquired immunodeficiency syndrome; PE, pulmonary embolism; VTE, venous thromboembolism.
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may act as a proxy for recent trauma. The SHAP analysis
also identified additional, nonprovoking risk factors
which have been linked to increased risk of PE. Previous
DVT, a known PE risk factor, was one of the five most
important features for PE prediction.13 Further, patient
fluid status impacts hemoconcentration, which has been
linked to increased risk of thromboembolic events.14

Urine output, change in urine output and receipt of a
fluid bolus were among the most important features,
which, in combination, may reflect whether an in-
dividual is dehydrated and hemoconcentrated, or in a
more balanced, net fluid positive situation in which

additional IV fluids are not required. Obesity has also
been associated with increased risk for VTE and PE15;
higher weight was associated with higher risk of a pre-
diction of PE, suggesting that weight as a feature may
have indirectly represented obesity.

The MLA developed in this study offers many ad-
vantages over alternative risk stratification methods.
Unlike many existing rules‐based risk stratification
methods, this algorithm requires no additional clinician
inputs or workflow disruption and automatically screens
a broad inpatient population based only on data taken
from the EHR. Several rules‐based tools have been

FIGURE 1 Receiver operating characteristic (ROC) curves for the XGBoost, neural network, and logistic regression machine learning
models. AUROC, area under the receiver operating characteristic curve; LR, logistic regression; NN, neural network; XGB, XGBoost

TABLE 2 Comparison of
performance metrics of the three
machine learning models

Model AUC Sensitivity Specificity LR+ LR− DOR

XGBoost 85% 81% 77% 3.48 0.25 13.80

Neural network 74% 81% 48% 1.56 0.40 3.89

Logistic regression 67% 81% 45% 1.47 0.43 3.43

Abbreviations: AUROC, area under the receiver operating characteristic curve; DOR, diagnostic odds
ratio; LR, likelihood ratio.
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developed to aid in the stratification of patients with
suspected PE; the two most commonly used risk scores
being the Wells criteria for PE16 and the revised Geneva
score.17 However, these tools were designed for use in
patients who are suspected to have an existing PE, and
were not designed to predict the future occurrence of PE.
Furthermore, these scoring systems have only been va-
lidated in assessing the risk of PE in outpatients and not
for hospitalized patients.18

A performance accuracy meta‐analysis of the Wells
and revised Geneva score for diagnosing PEs reported
that sensitivity ranged from 63% to 79% and 55% to 74%,
respectively.19 The specificity for the Wells score ranged
from 49% to 90% and had an AUROC of 0.78 while the
Geneva score had an AUROC of 0.69. Furthermore, as
the use of the Wells score has been validated in dis-
charged patients, one study investigated its performance
for hospitalized patients suspected of having deep vein
thrombosis and deemed that it was inaccurate, and thus
unsafe for inpatient use.20 Additional risk assessment
tools developed for VTE, as opposed to strictly PE, are
also commonly used. These include the International
Medical Prevention Registry on Venous Thromboembo-
lism (IMPROVE) score, used for determining VTE in

hospitalized patients,21 the Padua Prediction Score (PPS),
which assesses VTE risk in inpatient populations, and
the Caprini Score, designed for use with surgical
patients.22 However, each of these scorings has its lim-
itations. For example, efforts to enhance the accuracy of
VTE identification with the IMPROVE tool have been
achieved by incorporating D‐dimer lab values, which
require laboratory tests that may not be readily
available.23,24 The Padua score has not been extensively
validated, which limits the generalizability of the tool22;
though the Caprini score has been validated, this has
been achieved in specific subpopulations, including sur-
gical patients, patients hospitalized with serious illness,
and recently, those with COVID‐19.25–27 Therefore, this
tool may also lack generalizability. Our MLA has been
developed and evaluated on a broad hospital inpatient
population and demonstrates high accuracy in screening
this population for PE risk.

ML methods have been explored for PE prediction in the
past; however, prior work has focused on the ability of ML to
assist with interpreting chest images28–30 or their accom-
panying radiology reports.31–34 Although these methods have
the potential to increase the accuracy and timeliness of de-
finitive PE diagnosis, MLAs for interpretation of radiological

FIGURE 2 SHAP summary plot for the XGBoost model. The x axis of the plot shows the SHAP value for each of the features. The color
of a point is indicative of the feature value, where red is a high value and blue is a low value. The y axis lists feature names in descending
order of importance to the model's decision‐making process. Superscripts in the feature names denote the hour of the patient's stay at which
the measure was recorded. Delta symbols (Δ) are used when a feature captures the hourly change in a measure, with superscripts denoting
the hours under consideration, for example, ΔUrine Output1,2 is the change in urine output measured during the first hour and the second
hour in the 3‐h input period. DVT, deep vein thrombosis; GCS, Glasgow coma scale; SysABP, systolic arterial blood pressure
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imaging cannot be applied to patients who have not yet
undergone a formal diagnostic workup for PE. The method
described in this study adds to the existing literature, by
demonstrating a means through which ML methods can
improve PE prediction and early detection upstream of the
confirmatory diagnostic process. Such prediction may
improve patient outcomes by enabling not only earlier
therapeutic treatment of PE but also prophylactic use of
anticoagulants. Interestingly, a recent study by Nafee et al.
developed MLAs to predict the risk of VTE in hospitalized
patients with certain acute medical illnesses, and these out-
performed the IMPROVE score.35 This study obtained data
from the APEX clinical trial.36 However, certain lab mea-
surements used for the APEX trial may not be routinely
taken, and thus could limit the MLA's use.

Our study has several limitations. First, we evaluated
the MLAs in a retrospective setting and we, therefore,
cannot determine how any algorithm will perform in
novel, prospective settings. Also related to the retro-
spective nature of this study, it is possible that not all
patients' PE statuses were correctly classified by the gold
standard. ICD codes have known limitations for identi-
fying acute conditions, including PE, in chart data.7

However, ICD codes for PE have previously been shown
to identify PE within hospitalization data with sensitiv-
ities and specificities ranging from 88% to over 90%.8 We
attempted to mitigate this limitation by requiring that all
identified PE cases additionally documented accepted
treatments for PE (therapeutic anticoagulant regimens,
thrombolytic medications, or placement of an IVC filter)
during their hospital stay, to increase the diagnostic
specificity. This retrospective study was conducted on
data from a single hospital center. We cannot predict
how this algorithm would perform in patient populations
that have different demographics or a different incidence
of PE, or those who reside in another geographic loca-
tion. It is necessary to evaluate the algorithm on a range
of additional sites to determine its generalizability. The
incorporation of imaging data into the model may
improve its performance and is an area for further in-
vestigation. Evaluation of the MLA in a prospective
clinical setting is required to evaluate any effect on
clinician actions and impact on patient outcomes.

In this study, an MLA capable of accurately predict-
ing which patients will develop a PE during their hos-
pitalization was developed. This gradient boosted
algorithm utilized only routinely collected health data
from inpatient EHR data to predict risk of inpatient de-
velopment of PE. The algorithm described in this study
may be able to improve patient outcomes through earlier
identification of at‐risk patients, allowing for earlier
confirmatory diagnostic testing and treatment of PE.

ACKNOWLEDGMENTS
The authors would like to sincerely thank and ac-
knowledge Anna Siefkas for her writing and revision of
the manuscript. This study received no specific grant
from any funding agency in the public, commercial, or
not‐for‐profit sectors.

CONFLICT OF INTERESTS
All authors associated with Dascena are employees of
Dascena.

ETHICS STATEMENT
The data in this study were collected passively and dei-
dentified in compliance with the Health Insurance
Portability and Accountability Act and therefore did not
require Institutional Review Board approval.

AUTHOR CONTRIBUTIONS
Data analysis and revision of the manuscript: Logan
Ryan. Data analysis and revision of the manuscript: Jen-
ish Maharjan. Study conception and design: Samson
Mataraso. Revision of manuscript: Gina Barnes. Revision
of manuscript: Jana Hoffman. Study conception and re-
vision of the manuscript: Qingqing Mao. Study conception:
Jacob Calvert and Ritankar Das.

ORCID
Gina Barnes http://orcid.org/0000-0002-8093-0245

REFERENCES
1. Pulmonary embolism. Nat Rev Dis Primer. 2018;4:18031.
2. Beckman MG, Hooper WC, Critchley SE, Ortel TL. Venous

thromboembolism: a public health concern. Am J Prev Med.
2010;38:S495–501.

3. Bĕlohlávek J, Dytrych V, Linhart A. Pulmonary embolism,
part I: epidemiology, risk factors and risk stratification, pa-
thophysiology, clinical presentation, diagnosis and non-
thrombotic pulmonary embolism. Exp Clin Cardiol. 2013;18:
129–38.

4. Rivera‐Lebron B, McDaniel M, Ahrar K, Alrifai A,
Dudzinski DM, Fanola C, Blais D, Janicke D, Melamed R,
Mohrien K, Rozycki E, Ross CB, Klein AJ, Rali P, Teman NR,
Yarboro L, Ichinose E, Sharma AM, Bartos JA, Elder M,
Keeling B, Palevsky H, Naydenov S, Sen P, Amoroso N,
Rodriguez‐Lopez JM, Davis GA, Rosovsky R, Rosenfield K,
Kabrhel C, Horowitz J, Giri JS, Tapson V, Channick R.
PERT C Diagnosis, treatment and follow up of acute pul-
monary embolism: Consensus Practice from the PERT Con-
sortium. Clin Appl Thromb Off J Int Acad Clin Appl Thromb.
2019;25:1076029619853037.

5. Duffett L, Castellucci LA, Forgie MA. Pulmonary embolism:
update on management and controversies. BMJ. 2020;370:
m2177.

6. Kearon C, Akl EA, Comerota AJ, Prandoni P, Bounameaux H,
Goldhaber SZ, Nelson ME, Wells PS, Gould MK, Dentali F,

PULMONARY CIRCULATION | 7 of 9

http://orcid.org/0000-0002-8093-0245


Crowther M, Kahn SR. Antithrombotic therapy for VTE dis-
ease: Antithrombotic Therapy and Prevention of Thrombosis,
9th ed: American College of Chest Physicians Evidence‐Based
Clinical Practice Guidelines. Chest. 2012;141:e419S–96S.

7. Burles K, Innes G, Senior K, Lang E, McRae A. Limitations of
pulmonary embolism ICD‐10 codes in emergency department
administrative data: let the buyer beware. BMC Med Res
Methodol. 2017;17:89.

8. Casez P, Labarère J, Sevestre M‐A, Haddouche M, Courtois X,
Mercier S, Lewandowski E, Fauconnier J, François P,
Bosson JL. ICD‐10 hospital discharge diagnosis codes were
sensitive for identifying pulmonary embolism but not deep
vein thrombosis. J Clin Epidemiol. 2010;63:790–7.

9. Martin C, Sobolewski K, Bridgeman P, Boutsikaris D. Systemic
Thrombolysis for pulmonary embolism: a review. Pharm Ther.
2016;41:770–5.

10. Python Package Introduction—xgboost 1.4.0‐SNAPSHOT
documentation [cited 2021 Jan 19]. Available from: https://
xgboost.readthedocs.io/en/latest/python/python_intro.html

11. Chen T, Guestrin C. XGBoost: A Scalable Tree Boosting Sys-
tem. In: Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. San
Francisco California USA: ACM. p. 785–94.

12. Lundberg S, Lee S‐I. A Unified approach to interpreting model
predictions. ArXiv170507874 Cs Stat. 2017 [cited 2021 May
3]. Available from: http://arxiv.org/abs/1705.07874

13. Moheimani F, Jackson DE. Venous thromboembolism: clas-
sification, risk factors, diagnosis, and management. ISRN
Hematol. 2011;2011:124610.

14. Braekkan SK, Mathiesen EB, Njolstad I, Wilsgaard T,
Hansen JB. Hematocrit and risk of venous thromboembolism
in a general population. the Tromsø study. Haematologica.
2010;95:270–5.

15. Stein PD, Beemath A, Olson RE. Obesity as a risk factor in
venous thromboembolism. Am J Med. 2005;118:978–80.

16. Wells PS, Anderson DR, Rodger M, Stiell I, Dreyer JF,
Barnes D, Forgie M, Kovacs G, Ward J, Kovacs MJ. Excluding
pulmonary embolism at the bedside without diagnostic ima-
ging: management of patients with suspected pulmonary
embolism presenting to the emergency department by using a
simple clinical model and d‐dimer. Ann Intern Med. 2001;135:
98–107.

17. Le Gal G, Righini M, Roy P‐M, Sanchez O, Aujesky D,
Bounameaux H, Perrier A. Prediction of pulmonary embolism
in the emergency department: the revised Geneva score. Ann
Intern Med. 2006;144:165–71.

18. Douma RA. Performance of 4 clinical decision rules in the
diagnostic management of acute pulmonary embolism: a
prospective cohort study. Ann Intern Med. 2011;154:709‐18.

19. Shen J‐H, Chen H‐L, Chen J‐R, Xing JL, Gu P, Zhu BF. Com-
parison of the Wells score with the revised Geneva score for as-
sessing suspected pulmonary embolism: a systematic review and
meta‐analysis. J Thromb Thrombolysis. 2016;41:482–92.

20. Ageno W. The Wells rule is not accurate in hospitalized pa-
tients. Nat Rev Cardiol. 2015;12:449–50.

21. Spyropoulos AC, Anderson FA J.r, FitzGerald G, Decousus H,
Pini M, Chong BH, Zotz RB, Bergmann JF, Tapson V,
Froehlich JB, Monreal M, Merli GJ, Pavanello R, Turpie A,
Nakamura M, Piovella F, Kakkar AK, Spencer FA.

IMPROVE I Predictive and associative models to identify
hospitalized medical patients at risk for VTE. Chest. 2011;140:
706–14.

22. Zhou H, Hu Y, Li X, Wang L, Wang M, Xiao J, Yi Q. As-
sessment of the risk of venous thromboembolism in medical
inpatients using the Padua Prediction Score and Caprini Risk
Assessment Model. J Atheroscler Thromb. 2018;25:1091–104.

23. Gibson CM, Spyropoulos AC, Cohen AT, Hull RD,
Goldhaber SZ, Yusen RD, Hernandez AF, Korjian S,
Daaboul Y, Gold A, Harrington RA, Chi G. The IMPROVEDD
VTE Risk Score: incorporation of D‐Dimer into the IMPROVE
Score to improve venous thromboembolism risk stratification.
TH Open. 2017;01:e56–65.

24. Spyropoulos AC, Lipardi C, Xu J, Peluso C, Spiro TE,
De Sanctis Y, Barnathan ES, Raskob GE. Modified IMPROVE
VTE Risk Score and elevated D‐Dimer identify a high venous
thromboembolism risk in acutely ill medical population for
extended thromboprophylaxis. TH Open Companion
J Thromb Haemost. 2020;4:e59–65.

25. Tsaplin S, Schastlivtsev I, Zhuravlev S, Barinov V, Lobastov K,
Caprini JA. The original and modified Caprini score equally pre-
dicts venous thromboembolism in COVID‐19 patients. J Vasc Surg
Venous Lymphat Disord. 2021;9(6):1371–81.

26. Fu Y, Liu Y, Chen S, Jin Y, Jiang H. The combination of
Caprini risk assessment scale and thrombotic biomarkers to
evaluate the risk of venous thromboembolism in critically ill
patients. Medicine (Baltimore). 2018;97:e13232.

27. CroninM, Dengler N, Krauss ES, Segal A, Wei N, Daly M,Mota F,
Caprini JA. Completion of the Updated Caprini Risk Assessment
Model (2013 Version). Clin Appl Thromb. 2013;25:
1076029619838052. https://doi.org/10.1177/1076029619838052

28. Zhang C, Sun M, Wei Y, Zhang H, Xie S, Liu T. Automatic
segmentation of arterial tree from 3D computed tomographic
pulmonary angiography (CTPA) scans. Comput Assist Surg.
2019;24:79–86.

29. Liu W, Liu M, Guo X, Zhang P, Zhang L, Zhang R, Kang H,
Zhai Z, Tao X, Wan J, Xie S. Evaluation of acute pulmonary
embolism and clot burden on CTPA with deep learning. Eur
Radiol. 2020;30:3567–75.

30. Banerjee I, Sofela M, Yang J, Chen JH, Shah NH, Ball R,
Mushlin AI, Desai M, Bledsoe J, Amrhein T, Rubin DL,
Zamanian R, Lungren MP. Development and Performance of
the Pulmonary Embolism Result Forecast Model (PERFORM)
for computed tomography clinical decision support. JAMA
Netw Open. 2019;2, 198719:e198719.

31. Banerjee I, Ling Y, Chen MC, Hasan SA, Langlotz CP,
Moradzadeh N, Chapman B, Amrhein T, Mong D, Rubin DL,
Farri O, Lungren MP. Comparative Effectiveness of Con-
volutional Neural Network (CNN) and Recurrent Neural
Network (RNN) Architectures for Radiology Text Report
Classification. Artif Intell Med. 2019;97:79–88.

32. Banerjee I, Chen MC, Lungren MP, Rubin DL. Radiology re-
port annotation using intelligent word embeddings: applied to
multi‐institutional chest CT cohort. J Biomed Inform. 2018;77:
11–20.

33. Chen MC, Ball RL, Yang L, Moradzadeh N, Chapman BE,
Larson DB, Langlotz CP, Amrhein TJ, Lungren MP. Deep
learning to classify radiology free‐text reports. Radiology.
2018;286:845–52.

8 of 9 | RYAN ET AL.

https://xgboost.readthedocs.io/en/latest/python/python_intro.html
https://xgboost.readthedocs.io/en/latest/python/python_intro.html
http://arxiv.org/abs/1705.07874
https://doi.org/10.1177/1076029619838052


34. Weikert T, Nesic I, Cyriac J, Bremerich J, Sauter AW,
Sommer G, Stieltjes B. Towards automated generation of cu-
rated datasets in radiology: application of natural language
processing to unstructured reports exemplified on CT for
pulmonary embolism. Eur J Radiol. 2020;125:108862.

35. Nafee T, Gibson CM, Travis R, Yee MK, Kerneis M, Chi G,
AlKhalfan F, Hernandez AF, Hull RD, Cohen AT,
Harrington RA, Goldhaber SZ. Machine learning to predict
venous thrombosis in acutely ill medical patients. Res Pract
Thromb Haemost. 2020;4:230–7.

36. Cohen AT, Harrington R, Goldhaber SZ, Hull R, Gibson CM,
Hernandez AF, Kitt MM, Lorenz TJ. The design and rationale
for the Acute Medically Ill Venous Thromboembolism Pre-
vention with Extended Duration Betrixaban (APEX) study.
Am Heart J. 2014;167:335–41.

SUPPORTING INFORMATION
Additional supporting information may be found in the
online version of the article at the publisher’s website.

How to cite this article: Ryan L, Maharjan J,
Mataraso S, Barnes G, Hoffman J, Mao Q, Calvert
J, Das R, Predicting pulmonary embolism among
hospitalized patients with machine learning
algorithms. Pulmonary Circulation. 2022;12:e12013.
https://doi.org/10.1002/pul2.12013

PULMONARY CIRCULATION | 9 of 9

https://doi.org/10.1002/pul2.12013



