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Various calcium ion (Ca 2 + ) nanomodulators are designed
for multimodal cancer treatment with the mechanism
of intramitochondrial Ca 2 + overload-induced multilevel
mitochondrial destruction. This perspective briefly introduces
the development of Ca 2 + nanomodulators in cancer therapy
based on two recent studies published by our research
group. 

Taking advantage of accurate drug delivery and reduced
side effects, subcellular organelle-targeted nanoformulations
have attracted more and more attention from cancer
therapists. As an essential organelle of mammalian cells,
mitochondria play a crucial role in energy conversion,
tricarboxylic acid cycle, apoptosis, oxidative stress, calcium
ion (Ca 2 + ) storage, and so on. Among these, Ca 2 + storage is
an indispensable work. As one of the key second messengers
in the cells, Ca 2 + participates in a wide range of physiological
processes, such as the control of biomembrane permeability
and cell excitability, cell metabolism, maintenance of cell
morphology, cell cycle regulation, and so froth, and is the hub
of a variety of cell signal transmission pathways. Typically,
bound calcium and free Ca 2 + are keeping in a dynamic
balance. Once the free Ca 2 + increases sharply under some
conditions, the balance of intramitochondrial Ca 2 + is broken,
leading to cell apoptosis. However, the Ca 2 + signaling pathway
in cancer cells is easily changed by certain drugs, making them
more sensitive to the increase of Ca 2 + concentration than
that of normal cells. Hence, intramitochondrial Ca 2 + overload,
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which disrupts mitochondrial Ca 2 + homeostasis, may be an
effective strategy for precision cancer therapy [1 ,2] . 

We recently developed a multichannel Ca 2 +

nanomodulator ( PEG CaNM CUR + CDDP ) to boost Ca 2 + overload-
mediated mitochondrial dysfunction in cancer treatment, as
shown in Scheme 1 A [3] . A Ca 2 + enhancer curcumin (CUR),
which increased mitochondrial Ca 2 + level and inhibited
Ca 2 + efflux, and a mitochondrial dysfunction drug cisplatin
(CDDP), which induced mitochondrial damage, were co-
encapsulated into PEG CaNM CUR + CDDP . Comparing to other
reported a2 + nanomodulators, PEGCaNMCUR + CDDP have
the following advantages: (a) Simple synthesis steps and
high drug loading efficiency, (b) tumor microenvironment-
triggered gradual release behavior with enhanced therapeutic
efficacy and reduced systemic toxicity, (c) realized multilevel
mitochondrial damage, and (d) excellent fluorescence and PA
imaging capacities. 

After intravenous injection, the monodisperse spherical
nanoparticle PEG CaNM CUR + CDDP successfully accumulated into
the human MCF-7 breast cancer xenograft model through
the enhanced permeability and retention (EPR) effect after
detachment of poly(ethylene glycol) (PEG) and enhanced cell
uptake. A mass of released Ca 2 + with the assistance of CUR
and CDDP achieved multilevel mitochondrial dysfunction. The
decreased mitochondrial membrane potential and number
of mitochondria, the severest destruction of mitochondrial
morphology, the lowest intracellular adenosine triphosphate
rsity. 
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Scheme 1 – Various calcium nanomodulators for mitochondria-targeted multimodel cancer therapy. 
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ATP) level, and the highest expression of apoptosis proteins 
ere revealed in the PEG CaNM CUR + CDDP group, and all the 

esults indicated that PEG CaNM CUR + CDDP was an efficient Ca 2 + 

anomodulator for enhanced cancer treatment. 
Although Ca 2 + nanomodulators have been developed 

or tumor treatment through activating mitochondrial 
poptosis pathways via mitochondria Ca 2 + overload, the 
pecific mechanism has not been proven. For the first 
ime, the RNA obtained from 

PEG CaNM CUR + CDDP -treated 

CF-7 cells was sequenced. The results showed that the 
ositive correlated genes of the PEG CaNM CUR + CDDP group 

ere mainly in the terms like “positive regulation of cell 
eath”, “cellular carbohydrate metabolic process”, and 

anion transport”, while negative correlated genes were 
rimarily in some biological processes like “mitochondrial 
ene expression”, “mitochondrial transport”, and “negative 
egulation of cell cycle”. Therefore, PEG CaNM CUR + CDDP could 

ctivate mitochondrial apoptosis pathways via mitochondria 
a 2 + overload. In addition, this nanoplatform possessed 

xcellent fluorescence and PA imaging capacities. Hence, the 
ultifunctional Ca 2 + nanomodulator PEG CaNM CUR + CDDP is a 

romising organelle-targeted theranostics nanoplatform for 
ancer treatment. 

The successful application of these Ca 2 + nanomodulators 
n cancer chemotherapy pushed us to explore whether they 
an activate antitumor immune or not. Immunogenic cell 
eath (ICD), which can activate antitumor immune responses 

4 ,5] , received plenty of focus in cancer immunotherapy [6 ,7] .
ence, in our published study [ 8 ], an acid-sensitive PEG- 
ecorated Ca 2 + nanomodulator ( PEG CaCUR) immunogenic cell 
eath (ICD)-inducing properties, as shown in Scheme 1 B.
ifferent from 

PEG CaNM CUR + CDDP , PEG CaCUR was synthesized 

ithout PDA and CDDP. After being combined with ultrasound 

US), an exogenous physical stimulus, which could upregulate 
he intracellular Ca 2 + concentration, PEG CaCUR + US led to an 

nhanced Ca nanomodulator. 
The monodisperse, spherical, and amorphous 

anoparticles PEG CaCUR released a mass of Ca 2 + and CUR 

t intracellular low pH conditions to caused mitochondrial 
ysfunction through inducing mitochondrial Ca 2 + overload,
eatured by lower mitochondrial membrane potential, fewer 

itochondria, and more severe destruction of mitochondrial 
orphology. 
For detecting the ICD-inducing properties of PEG CaCUR,

he levels of calreticulin (CRT), high-mobility group box 1 
HMGB1), and adenosine triphosphate (ATP) were detected.
nterestingly, the cells treated with 

PEG CaCUR showed CRT 

xposure and elevated release of HMGB1 and ATP. However,
ore cell-surface CRT exposure and higher extracellular 
MGB1 and ATP levels were found in the PEG CaCUR + US group.
ll these results verified that mitochondrial Ca 2 + overload 

ould induce significant ICD, which we could further improve.
hen, we proved that reactive oxygen species (ROS) generated 

y the mitochondrial Ca 2 + overload contributed to the happen 

f ICD, and more ROS generation in the PEG CaCUR + US group 

voked enhanced ICD efficacy. After six-time treatments,
EG CaCUR exhibited a moderate immune activation effect. As 
xpected, PEG CaCUR + US activated more efficient antitumor 
mmune responses, resulting in effectively suppressing tumor 
rowth and metastasis. 
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Although these two Ca 2 + nanomodulators exhibited
excellent efficacy of tumor therapy, some issues should be
further dissolved in the future. The content of Ca 2 + in
PEG CaNM CUR + CDDP and 

PEG CaCUR were lower compared with
the extracellular fluid. Except for the generation of free Ca 2 +

in the cells and inhibition of efflux, inducing a large influx of
extracellular Ca 2 + is an effective way to cause mitochondrial
Ca 2 + overload. Hence, it’s urgent to develop a new Ca 2 +

nanomodulator with multifunction for more efficient Ca 2 + 

accumulation in mitochondria. In addition, expanding the
application range of Ca 2 + nanomodulator is meaningful. 

In summary, the developed Ca 2 + nanomodulators could
efficiently inhibit the progression of cancers by inducing
significant mitochondrial Ca2 + overload with multimodal
imaging, which could cause the increased level of intracellular
ROS and robust ICD, indicating their great potential for the
theranostics of cancers in clinic. 
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