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Abstract

Objective

To study the feasibility of use of radiomic features extracted from axillary lymph nodes for

diagnosis of their metastatic status in patients with breast cancer.

Materials and methods

A total of 176 axillary lymph nodes of patients with breast cancer, consisting of 87 metastatic

axillary lymph nodes (ALNM) and 89 negative axillary lymph nodes proven by surgery, were

retrospectively reviewed from the database of our cancer center. For each selected axillary

lymph node, 106 radiomic features based on preoperative pharmacokinetic modeling

dynamic contrast enhanced magnetic resonance imaging (PK-DCE-MRI) and 5 conven-

tional image features were obtained. The least absolute shrinkage and selection operator

(LASSO) regression was used to select useful radiomic features. Logistic regression was

used to develop diagnostic models for ALNM. Delong test was used to compare the diag-

nostic performance of different models.

Results

The 106 radiomic features were reduced to 4 ALNM diagnosis–related features by LASSO.

Four diagnostic models including conventional model, pharmacokinetic model, radiomic

model, and a combined model (integrating the Rad-score in the radiomic model with the con-

ventional image features) were developed and validated. Delong test showed that the com-

bined model had the best diagnostic performance: area under the curve (AUC), 0.972 (95%

CI [0.947–0.997]) in the training cohort and 0.979 (95% CI [0.952–1]) in the validation

cohort. The diagnostic performance of the combined model and the radiomic model were

better than that of pharmacokinetic model and conventional model (P<0.05).
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Conclusion

Radiomic features extracted from PK-DCE-MRI images of axillary lymph nodes showed

promising application for diagnosis of ALNM in patients with breast cancer.

Introduction

Breast cancer is the most common malignant cancer in women worldwide as well as in China,

and has a high mortality rate [1, 2]. Lymphatic metastasis is the first step in the transition of

breast cancer patients to metastatic state, and axillary lymphatic node metastasis is an important

predictor of breast cancer recurrence [3]. Therefore, pre-treatment diagnosis of metastatic axil-

lary lymph node (ALNM) is crucial for prognostic assessment and treatment decision-making

[4–7]. Currently, lymphadenectomy and/or biopsy is the gold standard for differentiating

ALNM from normal lymph nodes; however, these are invasive procedures associated with low

repeatability and potential complications [5, 8]. Therefore, development of alternative noninva-

sive and repeatable methods for preoperative identification of ALNM is a key imperative.

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is widely used for

preoperative evaluation of axillary lymph node status in patients with breast cancer and shows

superior performance than other techniques [9, 10]. The traditional DCE-MRI diagnostic cri-

teria for ALNM are based on visual assessment of morphological features [11]. Radiomics pro-

vides an innovative quantitative method to predict ALNM in patients with breast cancer [7,

12–19].

Radiomics refers to the science of converting medical images to high-throughput and mine-

able quantitative features by data characterisation algorithms [20]. These features, termed

radiomic features, have the potential to decode the invisible disease characteristics, which are

useful for individualized treatment. It is different from the traditional medical images, which

are subject to visual interpretation. Use of modern analytical software and artificial intelligence

technology has helped unravel an increasing number of useful features obtained through

radiomic method, especially in the field of cancer research [21].

Breast cancer is known to be a heterogeneous disease caused by variations in local micro-

environment that are mainly governed by spatial and temporal changes in blood flow. Tumor

heterogeneity may be represented by different contrast-enhancement patterns on DCE-MRI

and amenable to quantitative assessment using radiomic methods based on PK-DCE-MRI

[22–25]. Some recent studies have shown that radiomic features extracted from primary breast

cancer mass may be used to predict metastases in the sentinel lymph node [15, 16] and axillary

lymph nodes [18, 19]. However, to the best of our knowledge, the role of radiomic features

extracted from axillary lymph nodes for diagnosis of their metastatic status is still not studied.

The ALNM of breast cancer, which is similar to the tumor itself, may also exhibit heteroge-

neity; the heterogeneous characteristics on PK-DCE-MRI can be decoded by radiomic

method. Our hypothesis is that the radiomic features extracted from PK-DCE-MRI images of

axillary lymph nodes can help diagnose ALNM in patients with breast cancer.

Materials and methods

Subjects

The Medical Ethics Committee of the Sichuan Cancer Hospital & Institute approved this

study. The requirement for informed consent of subjects was waived off. We retrospectively
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reviewed our database to select consecutive women with proven breast cancer by surgical

pathology and who underwent DCE-MRI examination before surgery between August 2015

and June 2019. The exclusion criteria were: patients who had received neo-adjuvant chemo-

therapy; patients for whom quantitative parameters could not be acquired due to data-process-

ing errors.

To ensure that axillary lymph nodes included in radiomic analyses were pathologically met-

astatic nodes, cases recruited to the ALNM group were required to qualify the following two

conditions. First, at least 3 metastatic axillary lymph nodes were confirmed by pathology after

axillary lymphadenectomy. Second, there was at least one highly suspicious axillary lymph

node on DCE-MRI images in the ipsilateral axilla, which was visible to radiologists. Finally,

two radiologists with 8 and 6 years of experience in the interpretation of breast MRI, respec-

tively, reviewed the surgical pathology reports and MRI images together, and selected only one

largest and highly suspicious axillary lymph node for each recruited patient for radiomic

analysis.

To ensure that axillary lymph nodes included in radiomic analyses were pathologically neg-

ative for metastasis, cases recruited to the negative axillary lymph nodes group for control

(ALNC) were required to qualify the following conditions. First, all axillary lymph nodes of

the patients with negative sentinel lymph node biopsy were considered negative [13]. Second,

we only chose the largest visible ipsilateral axillary lymph node of these patients for radiomic

analysis.

MRI acquisition

The MRI acquisition (as briefly described below) in this study were not specific to the current

research and have been described extensively in our previous study [26]. All DCE-MRI exami-

nations were performed using a 3.0-T Skyra device (Siemens Healthcare, Erlangen, Germany)

with a dedicated breast coil (16-channel breast array; Siemens Healthcare, Erlangen, Ger-

many). With the patient in a prone position, Axial T2-weighted imaging (T2WI), diffusion-

weighted imaging (DWI) and DCE-MRI sequences were obtained. The DCE-MRI included

T1 mapping and 26 consecutive phases fast dynamic MR acquisition, using the CAIPIRIN-

HA-Dixon-TWIST-VIBE sequence with the temporal resolution 11.8 s/phase and TA 5 min

12 s. Gadodiamide (0.1 mmol/kg; Omniscan, GE Healthcare, Milwaukee, WI) was intrave-

nously administered using a power injector (rate, 2.5 mL/s) at the end of T1 mapping. Then, a

20-mL saline flush was injected (rate, 2.5 mL/s).

Post-processing of MRI images and radiomic analysis

Raw DCE-MRI data were imported into a dedicated post-processing software (Omni-Kinetics,

GE Healthcare, Milwaukee, WI). The enhancement kinetics were analyzed using the reference

region model [27]. With the reference region set to pectoralis major muscle, voxel-wise perfu-

sion maps were automatically generated.

A schematic illustration of the radiomic analysis process is shown in Fig 1; the process con-

sisted of 3D whole lymph node segmentation, features extraction, features selection, model

building, and evaluation.

Whole lymph node segmentation. For extracting the radiomic features of each selected

lymph node, the same two radiologists manually drew the regions of interest (ROIs) that

included the whole lymph node in the early stage of postcontrast image of DCE-MRI. The

radiologist with 8 years of experience performed all definitive measurements. Subsequently, all

ROIs were merged into one 3D volume of interest (VOI).
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Features extraction. A total of 106 radiomic features were extracted and automatically

outputted by the software from the VOI, including 1 total voxel number of VOI, 30 standard

pharmacokinetic parameters with their corresponding histogram features: (1) Ktrans (min−1),

the volume-transfer constant (wash-in rate), which reflects vascular permeability and perfu-

sion; (2) Kep (min−1), the washout-rate constant, which reflects contrast-agent reflux back to

the vessels; (3) Vp, the plasma fraction. The histogram features, i.e., the maximum, minimum,

median, mean, Std, 10%, 25%, 50%, 75%, and 90% values, of each quantitative parameter, and

75 texture features of T1-weighted images of dynamic contrast enhanced-magnetic resonance

imaging (T1 DCE-MRI) (S1 Table), consisting of 12 first-order statistical features, 15 histo-

gram features, 13 Gray-level co-occurrence matrix (GLCM) features, 10 Haralick features, 16

Run length matrix (RLM) features and 9 Morphology metrics features.

Features selection and radiomic model building. First, the training and validation cases

were separated at a ratio of 7 to 3. We employed the least absolute shrinkage and selection

operator (LASSO) technique and leave-one-out cross-validation (LOOCV) method to select

and rank the optimal radiomic features from the primary date set in the training cohort. Tun-

ning minimum criteria selection in the LASSO model used 10-fold cross validation via mini-

mum criteria in the study. Then we used logistic regression to build a pharmacokinetic model

(PK-model) based on pharmacokinetic parameters with their corresponding histogram fea-

tures and a radiomic model based on radiomic features. The Radiomics score (Rad-score) was

calculated for each patient according the coefficients of the radiomic model, which was defined

as a radiomic signature. The performance was then validated in the validation cohort.

Conventional model building. For conventional model building, some conventional

image features of every selected node (including the long and short axis length, short-long axis

ratio, fatty hilum status on T2WI sequence, signal intensity on diffusion weighted imaging

(DWI), and heterogenous enhancement feature on DCE-MRI sequences) were assessed by the

same two radiologists. We used univariate analyses to compare these features between ALNM

and ALNC (Table 1). We used logistic regression to build a conventional model based on these

Fig 1. General radiomic workflow in the study.

https://doi.org/10.1371/journal.pone.0247074.g001
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candidate features with p < 0.05 in the univariate analyses. The performance was then vali-

dated in the validation cohort.

Combined model building. Integrating the Rad-score in the radiomic model with the

conventional image features, the combined model was built using the multivariable logistic

regression method. The performance of the combined model was validated in the validation

cohort.

Comparison of models. Receiver operating characteristic (ROC) curve analysis was used

to evaluate the diagnostic performance of the above models in diagnosing ALNM. The Delong
test was used to compare the diagnostic performance of the conventional model, radiomic

model, and the combined model according to the area under the curve (AUC) values.

Establishment of nomogram. To provide an individualized tool for ALNM diagnosis, a

nomogram based on the combined model was plotted. The calibration of the nomogram was

assessed using calibration curve, accompanied with the Hosmer–Lemeshow test. Harrell’s C-

index was measured to quantify the discriminative ability of the nomogram.

Clinical use. Decision curve analysis was conducted to determine the clinical usefulness

of the nomogram by quantifying the net benefits at different threshold probabilities in the vali-

dation dataset.

Statistical analysis

R statistical software (version 3.6.1) was used for statistical analyses. P values < 0.05 were con-

sidered indicative of statistical significance.

Results

Patients and axillary nodes in the study

Finally, a total of 176 axillary lymph nodes (87 ALNM breast cancer patients [mean age, 50.7

years; range, 28–78] and 89 ALNC breast cancer patients [mean age, 50.0 years; range, 30–76]

were selected for radiomic analyses.

Radiomic features selection and radiomic signature building

The 106 radiomic features of each selected axillary lymph node were reduced to 4 ALNM diag-

nosis–related features by LASSO (Fig 2). They were all texture features of T1 DCE-MRI,

including Haralick Correlation, Difference Variance, DifferenceEntropy and LongRunEmpha-

sis. A radiomic signature containing these features was constructed. The diagnostic

Table 1. Difference of conventional image features between ALNM and ALNC.

Features ALNC (N = 89) ALNM (N = 87) p value

long axis length (mm, mean±SD) 8.73 ±3.15 17.92 ±10.43 0.000

short axis length (mm, mean±SD) 5.23 ±1.98 12.30 ±8.34 0.000

short-long axis ratio 1.78 ±0.61 1.52 ±0.36 0.001

fatty hilum status no 39 71 0.000

yes 50 16

signal intensity on DWI low 18 6 0.010

high 71 81

heterogenous enhancement feature no 76 19 0.000

yes 13 68

Note: ALNC, Axillary lymph nodes for control; ALNM, Metastatic axillary lymph nodes; DWI, Diffusion weighted imaging

https://doi.org/10.1371/journal.pone.0247074.t001
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performance of the radiomic signature was excellent. The optimal cutoff value of 0.38 was

associated with an AUC of 0.971 (95% CI [0.947–0.995]) in the training cohort and 0.966 (95%

CI [0.925–1]) in the validation cohort. The accuracy in the training and validation cohorts was

91.8% and 90.7%, respectively. The sensitivity of the radiomic signature in the training and val-

idation cohorts was 90% and 92.6%, respectively; the specificity was good (93.5% in the train-

ing cohort and 88.9% in the validation cohort.

Building of diagnostic models

The conventional model based on conventional image features, PK-model based on pharma-

cokinetic parameters with their corresponding histogram features, radiomic model based on

all radiomic features, and the combined model integrating radiomic features with conven-

tional image features were built. The diagnostic performance of these models is shown in

Table 2. The combined model showed the best diagnostic performance; the optimal cutoff

value of 0.671 was associated with an AUC of 0.972 (95% CI [0.947–0.997]) in the training

cohort and 0.979 (95% CI [0.952–1]) in the validation cohort. The accuracy in the training and

validation cohorts was 92.6% and 92.6%, respectively. The sensitivity of the radiomic signature

in the training and validation cohorts was 91.7% and 96.3%, respectively; the specificity was

good (93.5% in the training cohort and 88.9% in the validation cohort).

Comparison of models and development of nomogram

The diagnostic performance of combined model and radiomic model was better than that of

the conventional model (Delong test, p<0.05). However, the diagnostic performance of the

combined model was not better than that of the radiomic model (p>0.05). The ROC curves of

the four models are shown in Fig 3. We developed a nomogram based on the radiomic signa-

ture and conventional image features (Fig 4). The calibration curve for the nomogram was

Fig 2. LASSO regression for radiomic feature selection. (A) Selection of the parameter (λ) in the LASSO model by 10-fold

cross-validation based on minimum criteria. The y-axis indicates binomial deviances. The lower x-axis indicates the log(λ).

Red dots indicate the average deviance values for each model with a given λ, and vertical bars through the red dots show the

upper and lower values of the deviances. The dotted vertical lines define the optimal values of λ, where the model provides the

best fit to the data. (B) A coefficient profile plot was produced against the log (l) sequence. Vertical line was drawn at the value

selected using 10-fold cross-validation, where optimal λ resulted in non-zero coefficients.

https://doi.org/10.1371/journal.pone.0247074.g002
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tested by Hosmer-Lemeshow test, which yielded a non-significant result (χ2 = 3, p>0.05)

showing good calibration (Fig 5).

Clinical use

The decision curve analyses for the nomogram and conventional model are presented in Fig 6.

The results showed that the net benefit of using the radiomics nomogram for diagnosis of

ALNM was greater than that of the conventional model.

Discussion

The results of this study, though preliminary in scope, reveal that the radiomic features

extracted from preoperative PK-DCE-MRI of axillary lymph nodes can be used to diagnose

ALNM in patients with breast cancer. In addition, in this study, the texture features depicting

heterogeneity were found more helpful than pharmacokinetic quantitative and their histogram

features for diagnosis of metastatic axillary nodes.

Use of radiomics analysis for diagnosis and prognostic assessment in the context of breast

cancer is a contemporary research hotspot. Most of the studies have focused on discriminating

malignant from benign breast tumors [28–30] or on predicting the chemotherapeutic response

Table 2. Diagnostic performance of all models for detection of metastatic axillary lymph node.

Training Validation

AUC (95% confidence interval) ACC Specificity Sensitivity AUC (95% confidence interval) ACC Specificity Sensitivity

Radiomic model 0.971 (0.947–0.995) 0.918 0.935 0.9 0.966 (0.925–1) 0.907 0.889 0.926

Conventional model 0.929 (0.881–0.977) 0.877 0.871 0.883 0.988 (0.968–1) 0.926 0.889 0.963

PK model 0.945 (0.908–0.981) 0.877 0.855 0.9 0.942 (0.88–1) 0.87 0.815 0.926

Combined model 0.972 (0.947–0.997) 0.926 0.935 0.917 0.979 (0.952–1) 0.926 0.889 0.963

Note: AUC, area under the curve; ACC, accuracy; PK-model, pharmacokinetic model.

https://doi.org/10.1371/journal.pone.0247074.t002

Fig 3. Receiver operating characteristic (ROC) curves of conventional model, pharmacokinetic model (PK-model),

radiomic model, and the combined model for diagnosis of metastatic axillary lymph nodes in the training (A) and

validation (B) group at a ratio of 7 to 3.

https://doi.org/10.1371/journal.pone.0247074.g003
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[31, 32]. Some recent studies have investigated the feasibility of differentiating ALNM by

radiomic features, most of these studies were focused on the predictive value of radiomic fea-

tures extracted from primary breast tumors [17–19]. The radiomic features of breast tumors

Fig 4. Nomogram for diagnosis of metastatic axillary nodes. The values for each variable correspond to a point at

the top of the graph, and the sum of the points for all the variables corresponds to a total point; a line drawn from the

total points to the bottom line shows the probability of axillary lymph nodes metastasis. Heterogenous enhancement

feature (HEF) is a conventional image feature.

https://doi.org/10.1371/journal.pone.0247074.g004

Fig 5. Calibration curve of the nomogram for the training (red) and validation (blue) cohorts at a ratio of 7 to 3.

The X-axis represents the probability that nomogram diagnosed the axillary lymph nodes metastasis, while Y-axis

represents the actual rate of axillary lymph nodes metastasis.

https://doi.org/10.1371/journal.pone.0247074.g005
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may be used to predict the ALNM; however, these can not be directly used to diagnose ALNM.

Therefore, we designed this study to assess the feasibility of use of radiomic features extracted

from axillary lymph nodes for diagnosis of their metastasis status. Our results show that the

diagnostic performance of radiomic model for detecting ALNM was better than that of the

conventional model. Although not better than radiomic model, the combined model showed

the best diagnostic performance among the four models. The accuracy was improved from

0.877 of conventional model to 0.926 of the combined model. These results implied that the

radiomic features of axillary lymph node itself are promising bio-markers for helping diagnos-

ing its metastasis status. Besides, all the 4 top-rank radiomic features for discrimination

between positive and negative axillary nodes by LASSO regression were texture features of T1

DCE-MRI. This suggests that the texture features have a more prominent discriminative per-

formance than the pharmacokinetic parameters and their corresponding histogram features.

These findings are consistent with those a previous study by Schacht et al in which kinetic fea-

tures showed poorer performance in distinguishing between positive and negative lymph

nodes [13]; this was attributable to the fact that some normal axillary lymph nodes may also

exhibit patterns of rapid uptake and washout kinetics. The results implied that heterogeneity

may be the most important characteristic of ALNM in breast cancer, which is difficult to inter-

pret on visual examination of conventional images; however, it can be depicted by radiomic

methods through whole-tumor and voxel-wise quantitative analysis based on PK-DCE-MRI.

This is concordant with our hypothesis that ALNM are spatially more heterogeneous than the

negative ones. The heterogeneous characteristics of axillary lymph nodes could be comprehen-

sively decoded through radiomic methods on the basis of PK-DCE-MRI in vivo; this could be

Fig 6. Decision curve analysis of the nomogram of combined model and conventional model. The y-axis measures

the net benefit. The red line represents the nomogram of the combined model. The blue line represents the

conventional model. The thin grey line represents the assumption that all patients have axillary lymph nodes

metastases. The black line represents the assumption that none of the patients have axillary lymph nodes metastases.

https://doi.org/10.1371/journal.pone.0247074.g006
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used as an effective supplement to traditional medical images for diagnosis of ALNM of breast

cancer in future.

This study had certain limitations. First, the effect of selection bias on our results cannot be

ruled out, as it is difficult to accurately match the selected axillary lymph nodes for radiomic

analyses visible on DCE-MRI with the metastatic nodes proven by resection and biopsy. To

minimize this bias, we only recruited patients for whom at least 3 axillary lymph nodes metas-

tases were confirmed by pathology after axillary lymphadenectomy; subsequently, we selected

only one of the most likely axillary lymph nodes in the ipsilateral axilla as ALNM. Second, the

semi-automatic features extraction approach may cause some inter-observer variability. With

advances in software and algorithms, the detection and segmentation method should be com-

bined with computer vision algorithms for automated specification of the VOI beyond human

perception. Such approaches may theoretically be easily implemented in clinical workflow.

Finally, although our results were based on high-field strength MRI and the CDT-VIBE

sequence protocol, which has high temporal and spatial resolution essential for PK-DCE-MRI,

this was only a single-center study. Thus, our findings need to be verified in a multi-center

study with different imaging equipments and protocols.

Conclusions

Based on the preliminary results of our study, it may be inferred that the ALNM of breast can-

cer are more heterogeneous than the negative nodes. Radiomic methods can be used to decode

the heterogeneity of axillary lymph nodes. Our findings provide impetus for further radiomic

research to develop a non-invasive tool for diagnosis of metastatic lymph node and individual-

ized treatment.
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