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Inconsistent gender differences in the outcome ofTBI have been reported.The mechanism
is unknown. In a recent male animal study, repeated stress followed byTBI had synergistic
effects on brain gene expression and caused greater behavioral deficits. Because females
are more likely to develop anxiety after stress and because anxiety is mediated by cannabi-
noid receptors (CBRs) (CB1 and CB2), there is a need to compare CB1 and CB2 expression
in stressed males and females. CB1 and CB2 mRNA expression was determined in the
amygdala, hippocampus, prefrontal cortex (PFC), and hypothalamus of adolescent male
and female rats after 3 days of repeated tail-shock stress using qPCR. PFC CB1 and CB2
protein levels were determined usingWestern blot techniques. Both gender and stress had
significant effects on brain CB1 mRNA expression levels. Overall, females showed signifi-
cantly higher CB1 and CB2 mRNA levels in all brain regions than males (p < 0.01). Repeated
stress reduced CB1 mRNA levels in the amygdala, hippocampus, and PFC (p < 0.01, each).
A gender× stress interaction was found in CB1 mRNA level in the hippocampus (p < 0.05),
hypothalamus (p < 0.01), and PFC (p < 0.01). Within-sex one-way ANOVA analysis showed
decreased CB1 mRNA in the hippocampus, hypothalamus, and PFC of stressed females
(p < 0.01, each) but increased CB1 mRNA levels in the hypothalamus of stressed males
(p < 01).There was a gender and stress interaction in prefrontal CB1 receptor protein levels
(p < 0.05), which were decreased in stressed females only (p < 0.05). Prefrontal CB2 pro-
tein levels were decreased in both male and female animals after repeated stress (p < 0.05,
each). High basal levels of CBR expression in young naïve females could protect against
TBI damage whereas stress-induced CBR deficits could predict a poor outcome of TBI in
repeatedly stressed females. Further animal studies could help evaluate this possibility.

Keywords: stress, anxiety, brain cannabinoid receptors, sex dimorphism,TBI outcome

INTRODUCTION
There is a growing body of literature supporting a gender effect
on the acute response and long-term outcomes of TBI, yet the
findings are inconsistent (1–5). Several studies suggest that gen-
der differences in TBI outcome may be age-dependent. In a
recent retrospective mortality study, involving 10,135 prepubes-
cent (0–12 years), and 10,145 pubescent (12–18 years) hospitalized
patients who sustained isolated moderate-to-severe TBI (defined
as a head Abbreviated Injury Scale (AIS) score of 3 or greater). Ley
et al. (6) found a significantly reduced mortality rate in prepubes-
cent patients than in pubescent patients (5.2 vs. 8.6%, p < 0.0001).
Additionally, females in the pubescent but not in the prepubes-
cent age group showed a significantly greater decrease in mortality
than males. Groswasser et al. (7) also reported a significantly bet-
ter predicted-outcome for young females than for males under
the age of 18 with comparable levels of TBI severity. Barr (8)
reported that high school girls with TBI outperform boys of the
same age on selected measures of processing speed and executive

functions. Similar gender specific findings have been reported by
others (9–12). However, other studies demonstrated that older
women took significantly longer time than men to recover from
TBI, after controlling for age, injury severity, mechanism of injury,
and comorbidities (13–15). The mechanism for the inconsistent
gender effect across different age groups is unknown.

Both genetic and epigenetic/environmental factors could be
involved (16–19). Early stress exposure has been recognized as
an important mechanism for neuropsychiatric disorders (20–22).
Stress and stress-related anxiety could also influence TBI outcome
as people who exhibited high levels of acute stress symptoms and
anxiety had poor TBI outcome (23). A significant portion of the
US military personnel returning from Iraq and Afghanistan battle-
fields have experienced persistent somatic pain, as well as comor-
bidity of mild traumatic brain injury (mTBI) and post-traumatic
stress disorder (PTSD) (24–30). In a logistic regressions study
of 2,348 veterans of Operation Enduring Freedom (OEF) and
Operation Iraqi Freedom (OIF) (51% female), Iverson et al. (31)
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reported significant associations between probable TBI, sympto-
matic anxiety, and symptomatic physical health in both genders.
Additionally, TBI is more strongly associated with all health symp-
toms for females and symptomatic anxiety and physical health for
male veterans without probable PTSD (31). To examine the poten-
tial influence of repeated stress on the outcome of TBI, we recently
reported that repeated stress followed by TBI had synergistic effects
on the expression of brain mitochondrial electron transport chain
complex subunits, and caused more severe behavioral deficits in
male animals (females were not examined in that study) (32).

It is not clear if stress could have an equal influence on the
outcome of TBI in males and females, although a greater impact
of stress on the psychological outcome of females is well known.
Our recent animal model studies of PTSD have shown that brain
cannabinoid receptors (CBRs) are more rapidly depleted in the
cerebella and brain stems of stressed female adolescent rats than
in males (32, 33). Other studies suggest that endocannabinoids
(eCBs) and CBR activity are involved in the functional recovery of
animal experiencing repeated stress and TBI (32–37).

From the results of these studies and other evidence, we hypoth-
esized that CBR-mediated activity may be a critical mechanism
linking PTSD and TBI and is responsible for gender difference
in PTSD and TBI. We are intent on investigating neuroprotective
factors in male and female rats to evaluate how this may relate to
recovery following TBI. While actual TBI procedure was not part
of the current study design, the findings may translate to issues
regarding TBI and co-occurring stress as evidenced in diagnoses
such as PTSD.

Anandamide and 2-arachidonoylglycerol (2-AG) are the main
components of brain eCBs. eCBs are synthesized upon demand
through enzymatic cleavage of membrane lipid precursors and
immediately released into the synaptic space. Anandamide has a
higher affinity for the CB1 than for CB2 receptors (38), which are
highly expressed in the hippocampus, striatum, cerebellum, and
cortex (39). 2-AG has a low affinity for CB1 but is more abundant
than anandamide (>200-fold) in the brain.

Endocannabinoids are synthesized upon demand through
enzymatic cleavage of membrane lipid precursors and are imme-
diately released into the synaptic space. They induce complex
neuroprotective, anxiolytic, and modulator effects on brain struc-
ture and function via the activation of CBRs (mainly CB1 and
CB2). Anandamide and 2-arachidonoylglycerol (2-AG) are the
main brain eCBs and can alleviate blood–brain barrier dysfunc-
tion, brain edema, lesion volume, neuronal death, and improve
behavioral performance in rodent models of TBI through multi-
ple mechanisms (40–45). Anandamide has a higher affinity for
CB1 receptors than for CB2 receptors (38), which are highly
expressed in the hippocampus, striatum, cerebellum, and cortex
(39). 2-AG, on the other hand, has a low affinity for CB1 but is
more abundant than anandamide (by >200-fold) in the brain.
The neuroprotective effects of eCBs in TBI could also be medi-
ated by CB1 receptor activation, which can inhibit anxiety, stress
response, and the retention of aversive memories (46). Animals
lacking CB1 receptors show hypersensitivity to stressful stimuli,
increased anxiety-like behaviors, and higher mortality (reduced
lifespan) (47–50). CB2 receptors are primarily expressed in periph-
eral immune cells; however, recent studies show that they are also

expressed in microglia, dendritic cells, brain endothelial cells, and
the subgroups of neurons in several brain regions (51–55).

Evidence supporting a role of eCBs in TBI-induced injury
and/or neuroprotection includes the significantly elevated lev-
els of 2-AG following TBI (41). When administered to mice
with TBI, 2-AG decreased brain edema, inflammation and infarct
volume, and improved clinical recovery (42–44). 2-AG also sup-
pressed inflammation, tumor necrosis factor-a (TNF-a), and reac-
tive oxygen species (ROS) in LPS-stimulated macrophages and
LPS-stimulated mice (56).

In this study, we examined CB1 and CB2 receptor expression
after repeated tail-shock stress in the amygdala, hypothalamus,
hippocampus, and prefrontal cortex (PFC) of adolescent male and
female rats to determine how the base-line CBR can be affected by
chronic stress. These brain regions play key roles in stress response
and emotional memory. Adolescent animals were studied because
they are more sensitive to stress than adult, a trait that could have
a significant influence on disease development in adulthood (57–
60). Furthermore, a gender difference in TBI outcome has been
shown for pubescent animals, but not for prepubescent ones (6).

MATERIALS AND METHODS
ANIMALS
Male and female Sprague–Dawley rats (n= 16, each) (Taconic
Farms, Germantown, NY, USA) weighing 120–150 g (5–6 weeks
old) were used in this study. Animals of the same sex were housed
two per cage and raised at room temperature (22± 2°C) on a
12 h light–dark schedule (lights on 1800 h). Animals had ad libi-
tum access to food and water. All experimental procedures were
approved by the Institutional Animal Care and Use Committee
of the Uniformed Services University of the Health Sciences, and
were carried out in accordance with the NIH Guidelines for the
Care and Use of Laboratory Animals.

STRESS PROTOCOL
Animals were left undisturbed for 7-day after arrival. The stress
procedure consisted of a 2-h per day session of immobilization and
tail-shocks over three consecutive days as reported previously (61).
In brief, half of the animals (eight per sex group) were restrained
in individual Plexiglas tube and given 40 electric shocks (2 mA,
3 s duration) at varying intervals (140–180 s). The control ani-
mals were handled daily for the same time period but were not
subjected to the immobilization and tail-shock stress procedures.
All animals were returned to their home cages immediately after
exposure to the stress or control conditions.

TISSUE DISSECTION
Following the last stress session on day 3, both the control animals
and the stressed animals were decapitated after light anesthesia
with halothane. The brains were rapidly removed. A Vibratome
(Technical Products International, St. Louis, MO, USA) was used
to cut 1.6 mm-thick transverse slices containing the whole amyg-
dala region (Bregma−3.60 to−2.00 mm) from tissue blocks. The
basolateral complex, composed mainly of the lateral and basolat-
eral nuclei, was dissected from this slice laterally, as outlined, by the
white matter tract of the external capsule (corpus callosum) and
medially by the white matter tract of the longitudinal association

Frontiers in Neurology | Neurotrauma August 2014 | Volume 5 | Article 161 | 2

http://www.frontiersin.org/Neurotrauma
http://www.frontiersin.org/Neurotrauma/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Xing et al. Cannabinoid receptors in stressed brain

bundle. This transverse slice (Bregma −3.60 to −2.00 mm) also
contained the hippocampal dentate gyrus and CA1–CA3 regions
as well as part of the hypothalamus. The PFC was similarly dis-
sected. All tissue samples were immediately stored in pre-cooled
isopentane (−40°C).

REVERSE TRANSCRIPTION AND QUANTITATIVE REAL-TIME PCR
Dissected brain tissue samples were homogenized and total RNA
was extracted using an RNeasy kit (Qiagen, Germany) accord-
ing to the manufacturer’s protocol. One microgram of total RNA
was reverse transcribed into first-strand cDNA using the RETRO-
script reverse transcriptase kit (Ambion, TX, USA) according to
the manufacturer’s recommendations.

Fifty nanograms of the reverse transcribed RNA from the RT-
reaction was used as the template for quantitative real-time PCR
reaction with a final PCR reaction volume of 25 µl and a final
concentration of the 5′ and 3′ PCR primers at 100 nM each.
CB1 (TTTCCCACTCATTGACGAGAC, GTGAGCCTTCCAGA
GAATGT) and CB2 (AAAGCACACCAACATGTAGCC, GGAACC
AGCATATGAGCAGAA) qPCR primers were designed using
Primer3 software (MIT, MA, USA) with the size of amplified cDNA
ranging between 90 and 150 bp (34). Quantification of CB1 and
CB2 mRNA expression was performed (in triplicate) using a two-
step PCR reaction procedure on an iQ5 Real-Time PCR System
(BioRad, CA, USA) using the SYBR Green SuperMix (BioRad,
CA, USA). After initial denaturation at 95°C for 3 min, 40 cycles of
primer annealing and elongation were conducted at 60°C for 45 s,
followed by denaturation at 95°C for 10 s. Fluorescent emission
data were captured, and mRNA levels were quantified using the
threshold cycle value (Ct).

Fold change in mRNA expression was calculated using the fol-
lowing equation: Fold= 2(Ct control−Ct stress). To compensate for
potential variations in input RNA amounts and the efficiency
of reverse transcription, data for CB1 and CB2 mRNA of each
sample were additionally normalized by reference to the data
obtained from house keeping genes β-actin (GenBank acces-
sion no. X62085) determined from the same sample. The fold
change in the compensated mRNA expression data was calculated
using the equation: fold change= 2−∆∆Ct, where ∆Ct= target
gene Ct− housekeeping gene (β-actin) Ct, and ∆∆Ct is ∆Ct
control−∆Ct stress (or fold change)= 2(∆Ct control−∆Ct stress).

WESTERN BLOT
Prefrontal cortex tissues from the stressed and control animals
were homogenized and sonicated for 40 s in the T-Per tissue
lysis buffer for western blot analysis (Pierce, IL, USA). Amyg-
dala, hypothalamus, and hippocampus tissue proteins were not
examined due to the limited amount of these tissues that were
dissected. Protein concentrations were determined using a Brad-
ford assay (BioRad, CA, USA). Aliquots of 20 µg proteins were
separated by electrophoresis on NuPage gels (10%) and trans-
ferred to a polyvinylidene difluoride membrane before being
incubated with the primary antibodies of CB1, phosphorylated-
CB1, glycosylated-CB1, and CB2, diluted at 1:500 each (Santa
Cruz Biotechnologies, CA, USA). The membranes were rinsed
in a 0.01 M Tris-buffered saline solution (pH 7.4) containing
0.1% Triton X-100 for 30 min, blocked in 5% non-fat dry milk

for 30 min and incubated overnight at 4°C with the primary
antibody in a Tris-buffered saline solution containing 3% non-
fat dry milk. Membranes were washed three-times with the
Tris-buffered saline solution and incubated overnight at 4°C
with a horseradish peroxidase-conjugated secondary antibody
in the Tris-buffered saline solution containing 3% non-fat dry
milk. Immunoreactive bands were visualized using horseradish
peroxidase-conjugated anti-rabbit antibodies in a 1:3000 ratio,
and ECL Western blotting detection reagents (GE Healthcare Bio-
Sciences Corp., Piscataway, NJ, USA). The western blots were
captured with a digital camera and the intensities quantified with
NIH Image 1.62.

STATISTICS
Data regarding the effects of gender and stress on CB1 and CB2

receptors for individual brain regions were analyzed using two-
way ANOVA analyses. Because of the significant gender and stress
interactions found in brain CB1 receptor expression, within-sex
one-way ANOVA analyses were also conducted. A p-value of <0.05
was considered statistically significant.

RESULTS
Two-way ANOVA analyses revealed significant gender and stress
effects on CB1 mRNA levels in the amygdala, hippocampus, and
the PFC (p < 0.01, each). Overall, female animals exhibited higher
basal levels of CB1 mRNA expression in the amygdala, hippocam-
pus, and the PFC than male animals (p < 0.01, each) (Figure 1;
Table 1). Stressed animals exhibited reduced CB1 mRNA levels in
the amygdala, hippocampus, and the PFC when compared to those
brain regions of the control animals (p < 0.01, each) (Figure 1).
However, in the hypothalamus there was no significant difference
between the CB1 mRNA levels in the stress and control groups
(p > 0.05). A significant interaction between gender and stress on
CB1 mRNA levels was found in the hippocampus (p < 0.05), hypo-
thalamus (p < 0.01), and PFC (p < 0.01). Within-sex one-way
ANOVA revealed decreased CB1 mRNA levels in the hippocampus,
hypothalamus, and PFC of female animals (p < 0.01, each) but
increased CB1 mRNA level in the hypothalamus of male animals
after the stress (p < 0.05) (Figures 1A–D).

Base-line CB2 mRNA levels were significantly higher in the
hippocampus, hypothalamus, and PFC of female animals than in
male animals (p < 0.01, each) (Figures 2A–D). CB2 mRNA levels,
however, remained unchanged following stress.

Two-way ANOVA analyses showed no significant gender or
stress effects on total CB1 proteins, phosphorylated (p-CB1),
or glycosylated-CB1 (g-CB1) proteins in the PFC (Figure 3;
Table 2). There were, however, significant gender-by-stress inter-
actions in total proteins and glycosylated-CB1 proteins (p < 0.05,
each). Within-sex one-way ANOVA analyses showed significantly
decreased total CB1 protein levels (p < 0.05) and glycosylated-CB1

protein levels (p < 0.05) in the PFC of stressed female rats but not
in stressed males.

Two-way ANOVA analyses showed that prefrontal CB2 protein
levels were greater in males than in females (p < 0.01) and were sig-
nificantly suppressed in both sexes after repeated stress (p < 0.05).
There was no significant gender-by-stress interaction in prefrontal
CB2 protein levels.
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FIGURE 1 |Two-way ANOVA show significant effects of gender
and stress. Female adolescent rats show a greater baseline of CB1

mRNA expression in the amygdala, hippocampus, hypothalamus and
prefrontal cortex than the males (p < 0.01, each). Three days repeated
tail-shock stress significantly down-regulated CB1 mRNA levels in rat

amygdala (A), hippocampus (B), prefrontal cortex (C) and
hypothalamus (D), especially in the female rats. Black column: control;
gray column, stressed group, a, p < 0.01, male vs. female; b, p < 0.01:
control group vs. stress group; *p < 0.05; **p < 0.01, control vs.
stress within sex comparison.

Table 1 | Relative fold change (mean ± SD) in CB1 and CB2 mRNA expression levels in the amygdala, hippocampus, prefrontal cortex (PFC) and

hypothalamus of male and female adolescent rats after 3 days repeated (2 h/day) tail-shock stress.

Amygdala Hippocampus PFC Hypothalamus

Baseline 3d Stress Fold

change

Baseline 3d Stress Fold

change

Baseline 3d Stress Fold

change

Baseline 3d Stress Fold

change

CB1 mRNA

Male (n=16) 1±0.17 0.74±0.1 0.74 1±0.1 0.9±0.1 0.9 1±0.1 0.96±0.03 0.96 1±0.11 1.65±0.18 1.65*

Female (n=16) 1.8±0.1 1.30±0.14 0.69** 7.9±0.26 5.3±0.4 0.66** 7.6±0.8 4.0±1.1 0.5* 6.6±0.8 5.4±0.4 0.81*

CB2 mRNA

Male (n=16) 1.0±0.19 1.1±0.25 1.1 1±0.2 0.69±0.1 0.69 1±0.4 0.8±0.2 0.8 1±0.1 1.5±0.5 1.5

Female (n=16) 1.7±0.53 1.26±0.37 0.59 2.5±0.27 2.1±0.75 0.83 3.4±0.25 17.0±8 4.9 6.0±1.3 7.1±0.8 1.2

The baseline mRNA level of control male group in each region was used as the arbitrary reference (=1) for the males and females. *p < 0.05; **p < 0.01, control vs.

stress within sex comparison.
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FIGURE 2 |Two-way ANOVA show that female rats exhibited greater
CB2 mRNA expression in the amygdala (A) (p < 0.1), hippocampus (B)
(p < 0.01), prefrontal cortex (C) (p < 0.01) and hypothalamus (D)
(p < 0.01) than male rats. Within-sex one-way ANOVA show that CB2

mRNA levels were significantly increased in the prefrontal cortex of
female rats after the stress exposure (p < 0.05). Black column: control;
gray column, stressed group, a, p < 0.01, male control vs. female control;
*p < 0.05; **p < 0.01, control vs. stress within sex comparison.

DISCUSSION
A recent retrospective mortality study of TBI, involving more than
20,200 prepubescent and pubescent patients with moderate-to-
severe TBI, showed that mortality rates were significantly lower in
the prepubescent patients than in pubescent patients (p < 0.0001)
(6). Within the pubescent group, it was further found that females
had a significantly lower mortality rate than males. The mech-
anism underlying the age-dependent gender differences in TBI
outcome is unknown. Besides a potential role of female sex hor-
mones that may have protected the pubescent females, our studies
as well as others suggest that brain CBR-mediated activity could
play a critical role in the age-related gender difference in TBI out-
come through at least two mechanisms: anxiolytic activity and
neuroprotection.

In our study, female adolescent animals showed higher base-
line CB1 and CB2 mRNA expression levels in the amygdala,

hippocampus, hypothalamus, and PFC than the male adolescents
(Figures 1 and 2; Table 1). That difference, however, disappeared
rapidly after the repeated stress induced a larger reduction in CB1

mRNA levels in the female brain. Furthermore, although repeated
stress down-regulated CB1 mRNA expression in the hypothalamus
of female rats, caused the up-regulation of CB1 mRNA expression
in the hypothalamus of male rats. This divergent result is consis-
tent with the selective inhibition of hypothalamic neuronal activity
by CB1 agonists in female but not in male guinea pigs (62), and
the observation of a greater elevation of corticosterone in females
than in males after stress (63). A reduction in CB1 protein and
glycosylated-CB1 protein levels was also found in the PFC of the
stressed female rats whereas a trend of increased CB1 protein was
found in the male animals.

The higher base-line CB1 mRNA expression in the adolescent
female rat brain when compared to their male counterparts is
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FIGURE 3 | Upper panel: representative western blots of total CB1 and
CB2 receptor proteins; glycosylated (g-CB1) and phosphorylated (p-CB1)
CB1 proteins in rat prefrontal cortex tissue homogenates. Lower panel:
two-way ANOVA of the western blot showing a trend level of stress× sex
interaction in total CB1 proteins (A); phosphorylated CB1 proteins (p-CB1)
(B) and; glycosylated-CB1 proteins (C). A within-sex one-way ANOVA showed

significantly reduced total CB1 proteins and glycosylated-CB1 proteins in
female prefrontal cortex (mean±SD); CB2 protein levels were significantly
reduced in the prefrontal cortex of both female and male rats after repeated
stress (D). The mean value of the male control group was used as the
arbitrary reference=1, *p < 0.05, control vs. stress within sex comparison,
black column, control group; blank column, stressed group.

consistent with the reports of greater CB1 mRNA expression in
the white blood cells of female humans (64, 65), higher eCBs
content in the brains of female rats (66) and increased CB1

mRNA expression in the cerebella and brainstems of female rats
(34). Because, CB1 activity is neuroprotective and a lack of CB1

activity in CB1 knockout animals is linked with increased mortal-
ity (67), our findings support the notion that greater base-line
CB1 expression in female adolescent brains may underlie the
reduced mortality in pubescent compared to the females with
moderate-to-severe TBI when compared with adolescent males
of the same TBI severity (6). While it is not yet known why

such female-specific neuroprotection is present only in the pubes-
cent but not in the pre- or post-pubescent populations, recent
studies suggest that chronic stress when combined with high
levels of stress hormone production but lower levels of female
sex hormones production may deplete brain CBRs more rapidly,
which could result in a large eCB/CBR deficit in the affected
females.

To support this, Reich et al. (68) reported a lower level of CB1

expression in the hippocampus of socially isolated adult female
rats than in their male counterparts. It should be noted that Reich
et al.’s study differs from this study in many aspects including:
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Table 2 | Relative fold change (mean ± SD) in CB1 and CB2 protein expression levels in the prefrontal cortex of male adolescent rats after 3 days

repeated inescapable repeated tail-shock stress and female.

CB1 protein p-CB1 protein Glycosyl-CB1 CB2 protein

Baseline 3d Stress Fold

change

Baseline 3d Stress Fold

change

Baseline 3d Stress Fold

change

Baseline 3d Stress

change

Fold

change

Male (n=16) 1±0.11 1.09±0.05 1.09 1±0.03 0.94±0.02 0.94 1±0.16 1.16±0.07 1.16 1±0.1 0.85±0.05 0.85*

Female (n=16) 1.04±0.03 0.9±0.03 0.87* 1.03±0.1 1.02±0.05 0.98 1.02±0.08 0.88±0.05 0.87* 0.74±0.1 0.55±0.11 0.74*

The baseline CB protein value of the control male group was used as the arbitrary reference (=1) for the males and females. *p < 0.05, control vs. stress within sex

comparison.

(1) differences in stress paradigms (i.e., 3 days of repeated intense
stress in our study vs. 3 weeks of chronic mild heterotypic stres-
sors); (2) controls (naïve normal controls in this study vs. socially
isolated controls); (3) feeding regimes (ad libitum feeding in this
study vs. a frequent 14 h food/water deprivation); (4) housing
environments (same sex pair-housing in this study vs. trio-housing
with frequent wet cage rotation); (5) study times (acute phase
of stress in this study vs. 3 weeks after chronic stress), and (6)
hormone statuses (adolescent in our study vs. adult).

Increased crowding of unisex housing has been found to be
stressful for female rats but anxiolytic for males and the opposite
is true under isolated rearing (69). The unisex pair-housing in our
study may be more stressful for the females than for the males
and thus potentiating a greater loss of base-line CB1 receptors in
the females after repeated stress. In contrast, chronic mild het-
erotypic stressors were more stressful for male rats but anxiolytic
for females reared in isolation (69).

Gender-related differences in fasting-induced lipid catabolism
also exist. It has been reported that females mobilize more fat
reserve and thus catabolize more lipophilic eCBs than males dur-
ing short-term fasting (70, 71). Animals in this study were fed
ad libitum without fasting whereas the stressed animals in the
Reich’s study experienced multiple episodes of food and water
deprivation (>6 times in 14 h) that may have potentiated greater
eCB release and CB1 receptor depletion in the stressed adult female
brain of that study.

In this study, repeated stress caused a divergent pattern of pre-
frontal CB1 receptor expression between the males and females.
Adolescent female rats displayed a significant reduction in pre-
frontal CB1 receptor expression. However, prefrontal CB1 receptor
expression followed a positive trend in adolescent male rats, which
became significant seven afterwards (33), reinforcing the find-
ings of the divergent CB1 gene expression patterns after stress.
This increased CB11 expression in male PFC is consistent with
the increased mitochondrial electron transport chain complex
subunit expression in the PFC of stressed male animals (32).
Because of the known anxiolytic and analgesic effects of eCBs
and CB11 activation, the more-rapid loss of CB1 in stressed ado-
lescent female brains is consistent with the clinical observations of
a greater prevalence and higher severity of anxiety symptoms such
as increased sensitivity to fear signals, emotional disturbance, and
pain in females after chronic stress exposure (72–76).

Ley et al. (6) showed that human prepubescent, regardless of
sex, are better protected against TBI-caused mortality than human

pubescent (and possibly the adults as well). Although the mecha-
nism is unknown, developmental studies have shown that the level
of CB11 expression in the human PFC is highest after birth but
declines rapidly during the postnatal and prepubescent periods
and with age (77). Thus, potentially high levels of CB11 expres-
sion and activity during the prepubescent periods of development
may have provided equally strong neuroprotection against TBI-
induced brain damage and mortality in both naive prepubescent
males and females (6). While developmentally regulated decline
in brain CB11 expression and CB11-associated neuroprotection
may be partially compensated by increased sex hormone in naïve
pubescent and young adult females, this compensation may be
adversely affected in stressed females.

The mechanisms for the poor reported long-term poor out-
come of TBI in the older female population could be more complex
(78). Again, deficient brain CB1 activity, due to chronic stress, ele-
vated stress hormone levels, and reduced sex hormone levels could
all play a role in the female brain, leaving it more vulnerable to TBI
damage.

It is possible that the neuroprotective effects of sex steroids
in TBI (79) may act partially by upregulating brain eCB activ-
ity and CB receptor expression (77). Sex hormones during the
estrous cycle have been linked with brain CB1 receptor den-
sity, which is reduced in the limbic forebrain and hypothala-
mus after ovariectomy and castration but can be restored after
estradiol, progesterone, and testosterone administration in intact
and ovariectomized/castrated rats (80–84). High levels of stress-
induced corticosteroid secretion and base-line corticosteroids as
well as slow clearance of corticosteroids could lead to reduced CB1

receptor levels in stressed females (85, 86). Chronic exposure to
high level of corticosterone, CB1 agonists, and cannabinoids have
been reported to downregulate CB1 receptor density, CB1 receptor
binding, and CB1 mRNA expression in various brain regions of
male and female animals (87–91).

It is noted that although a reduction in prefrontal CB1 and CB2

mRNA expression was not immediately observed in the male ani-
mals after 3 days of repeated stress, the expression was significantly
decreased in the stressed male animals 7 days following the stress
(33), suggesting a delayed pattern of CBR reduction in male ado-
lescents after repeated stress when compared to the females. Other
studies showed that 10 days of mild chronic stress (30 min restraint
stress per day) upregulated CB1 binding in the PFC of adolescent
and adult male rats that was resolved after 40 days recovery period.
Furthermore, adolescents exposed to stress were found to have a
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sustained downregulation of prefrontocortical CB1 receptors in
adulthood (92).

CB1 receptor activation in the forebrain and amygdala is anx-
iolytic (46, 93, 94). The loss of CB1-mediated anxiolytic and
neuroprotective activity in these brain regions of both female and
males could predict enhanced amygdala-mediated fear memory,
especially in the females due to a greater propensity for CB1 reduc-
tion. Indeed, loss or inhibition of CB1 receptors in the amygdala,
hippocampus, and PFC have been associated with the impaired
ability to extinguish fear memories (50, 95, 96). PFC is known to
exert a powerful inhibitory effect on amygdala activity and on fear
extinction (97, 98) and it has been observed that the amygdala and
hippocampus interact to mediate emotional memories (99).

Stress-induced reduction of brain CB1 and CB2 protein expres-
sion may also contribute to a more vulnerable brain structure and
function (100–111) through multiple mechanisms in response
to TBI, including increased microglia activation, inflammation
and apoptosis, impaired blood–brain barrier integrity, compro-
mised neuroprotection, and neuroregeneration in response to
TBI (42, 112, 113). Activation of CB1 and CB2 receptors may
minimize brain damage and promote tissue repair after TBI
through the attenuation of injury-stimulated inducible nitric
oxide (iNOS) and ROS in microglia (114), promoting neural
progenitor (NP) proliferation, and neurosphere generation (115–
118). These actions are abrogated when there is a deficit of brain
CB1 receptors (119–121). Altered expression levels of brain and
peripheral CB1 and CB2 receptors could also underlie changes in
energy metabolism and body weight loss, both of which are com-
mon phenomena resulting from TBI, due to their direct influence
on feeding, glucose uptake, fatty acid synthesis and triglyceride
accumulation, energy expenditure, and metabolic homeostasis
(122–127).

It is tempting to speculate that brain CBR deficit, associated
with stress, age, gender, and anxiety/agitation, could play a cen-
tral role in the individual variations in the outcome of TBI (128).
While TBI is not part of the current study, the findings of stress-
induced CBR deficits may translate to issues regarding TBI and
co-occurring stress as evidenced in diagnoses of comorbidity of
PTSD and mTBI in military personnel returned from Iraq and
Afghanistan war zone that could advance our understanding of
the neuroprotection of the consequences of TBI. Strategies to
reduce gender and stress-related brain CBR deficit and agents to
restore CBR activity could become potentially effective therapies
for TBI. Indeed, treatment with synthetic 2-AG resulted in atten-
uated edema formation, infarct volume, and blood–brain barrier
permeability in a mouse model of TBI, an effect dose-dependently
attenuated by a CB1 antagonist (41). And partial inhibition of
2-AG degradation, improved motor coordination, and working
memory performance in mice model of TBI (37). Selective and
highly potent cannabinoid CB1 and CB2 receptor agonist showed
a pronounced neuroprotective effect in a rat TBI model (129). A
potent and CB1 and CB2 receptor agonist, when applied before,
during, and after transient occlusion of the middle cerebral artery,
significantly and dose-dependently reduced cortical lesion sizes
and motor deficits (130).

In summary, we found a higher basal value of CBRs in the
forebrain of adolescent female animals, which was significantly

reduced after repeated stress. Because of the known anxiolytic
and neuroprotective effect of eCB and CBR activities, this high
base-line CBR may provide a neuroprotective mechanism for the
improved outcome of prepubescent and pubescent females with
TBI. The stress-induced reduction of CBR may underlie the poor
long-term outcome of older female TBI patients who may also
be experiencing postmenopause-related reductions in reproduc-
tive hormones. As brain eCBs and CBR activity is implicated in
age and gender-dependent difference in the outcome of TBI and
PTSD, further studies in this direction are required.
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