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Abstract: Electromagnetic tracking (EMT) is playing an increasingly important role in surgical
navigation, medical robotics and virtual reality development as a positional and orientation reference.
Though EMT is not restricted by line-of-sight requirements, measurement errors caused by magnetic
distortions in the environment remain the technology’s principal shortcoming. The characterisation,
reduction and compensation of these errors is a broadly researched topic, with many developed
techniques relying on auxiliary tracking hardware including redundant sensor arrays, optical and
inertial tracking systems. This paper describes a novel method of detecting static magnetic distortions
using only the magnetic field transmitting array. An existing transmitter design is modified to enable
simultaneous transmission and reception of the generated magnetic field. A mutual inductance model
is developed for this transmitter design in which deviations from control measurements indicate
the location, magnitude and material of the field distorter to an approximate degree. While not
directly compensating for errors, this work enables users of EMT systems to optimise placement of
the magnetic transmitter by characterising a distorter’s effect within the tracking volume without the
use of additional hardware. The discrimination capabilities of this method may also allow researchers
to apply material-specific compensation techniques to minimise position error in the clinical setting.

Keywords: electromagnetic tracking; magnetics; distortion; robotics; image-guided interventions

1. Introduction

Electromagnetic tracking (EMT) is becoming a central platform technology for image-guided
procedures and interventions in the modern clinical setting [1]. The technology enables precise
navigation deep within the human body by providing real-time position and orientation data
of tracked instruments used by the clinician. When used in combination with patient imaging,
the technology enables navigation within the human body in areas traditionally beyond the reach of
cameras. Tracked instruments are manufactured by integrating a magnetic sensor in a fixed position
within the instrument body. Electromagnetic navigation bronchoscopy (ENB) is the largest clinical
application arising from EMT technology [2,3], although applications such as neurosurgery [4] and
ear-nose-and-throat [5] are seeing increased uptake. Outside of medical use, EMT is commonly used as
a reference device in the development of robotic systems and manipulators. The absence of a camera
provides vastly greater flexibility during experimental data acquisition, where the problem of visual
obstruction due to robotic limbs is eliminated.

EMT operates on the principle of magnetic induction; a conductive loop (sensor) will experience
an induced voltage when placed in a time-varying magnetic field according to Faraday’s law in
Equation (1). The position of the sensor is directly related to this induced voltage signal. If the
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properties of the time-varying magnetic field are precisely known then it is possible to accurately
calculate the position of the sensor based solely on this signal.

v(t) = −dΦ
dt

(1)

The first magnetic tracking system was developed by Polhemus Navigation Systems [6] which
standardised the tracking system topology. An overview of how a typical EMT system operates is
shown in Figure 1.

Figure 1. Generalised operation of an EM tracking system. A control unit is connected to a transmitter
board (TX) and magnetic sensor (RX). The sensor experiences an induced voltage from the transmitter’s
time-varying magnetic field B. The control unit measures this voltage and resolves the sensor position
based on this measurement to yield the position and orientation of the sensor P with respect the origin
O. The orientation component takes the form of a vector, quaternion or transformation. Distorters D in
the region of the TX board distort the magnetic field and result in sensor positioning errors.

All magnetic navigation systems experience error due to distorters in the operating environment [7,8].
Distorters typically take the form of metallic objects which can be either static or moving with respect
to the tracking system transmitter. Tables and surgical instruments make up the majority of distorters
in the clinical setting as they are typically made from either aluminium or stainless steel due to
sterility requirements. These metallic structures, when placed in the vicinity of the tracking system
transmitter, may affect the spatial distribution of the transmitted magnetic field which can cause
significant errors in the reported sensor positions [8,9]. Ferromagnetic distorters (those containing
iron) change the shape of the local magnetic field distribution due to their relatively high magnetic
permeability. Highly conductive non-ferromagnetic distorters such as aluminium produce opposing
magnetic fields by induced eddy-currents. Commercial systems such as the Aurora system (Northern
Digital Inc., Waterloo, ON, Canada), trakSTAR (Ascension Technologies, Shelburne, VT, USA) and
Fastrak (Polhemus, Colchester, VT, USA) have been subject to standardised assessments to determine
the effects of different distorter types [10,11]. Some of these tracking systems contain compensation
techniques, although these methods remain proprietary and do not provide any localisation of the
distorter location.

Compensation for the effects of metallic distorters has become a popular topic among researchers
working on integrating EMT into the clinical setting. Intrinsic compensation techniques include
manipulation of the underlying magnetics through the use of magnetic shielding [12] and novel field
modulation methods [13,14] which act to nullify the effect of local metallic objects. Other techniques
rely on the use of redundant position measurements in order to characterise and map the nature of
the distortion while simultaneously compensating for positioning error: EMT-only techniques utilise
multiple magnetic sensors in fixed relative orientation combination with simultaneous localisation and
mapping (SLAM) to effectively reduce error by as much as 67% [15]. Optical tracking systems have also
been used in combination with EMT to provide a position reference for sensor fusion algorithms [16].
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While many of these compensation techniques are effective in reducing error from distorters,
characterisation of the distortions themselves typically requires that an undistorted sample of tracking
system positions be obtained and analysed in order to determine the degree of distortion present.
This provides distortion information purely from the perspective of the magnetic sensor and not
from that of the transmitter. It is also a relatively time-consuming process as a cloud of points needs
to be acquired with respect to either a relative [15] or optical ground truth [16]. Procedural tables,
trolleys and other medical equipment are the biggest distortion sources in the clinical setting, and their
proximity to the transmitter board has a large impact on overall system accuracy [12]. This paper
proposes a novel distortion detection scheme which utilises only the EMT transmitter. The design
is based on an existing transmitter design for the open-source Anser EMT tracking system [17,18].
The modified design allows calculation of distortion error from the perspective of the transmitter
based on measurements of the mutual inductance between constituent transmitter coils. Amplitude
and phase measurements from the resulting signal waveforms allow discrimination between different
materials. The calculations can be performed autonomously allowing EM tracking systems to detect
the presence, material type and approximate location of distortions without the need for position
acquisition or undistorted control data.

While this work does not attempt to compensate for position errors, the proposed technique can
potentially be used in tandem with existing compensation methods. The proposed method can allow
EMT users to quickly optimise placement of EMT transmitters such that environmental errors can be
minimised prior to the application of further compensation techniques.

2. Background

2.1. Magnetic Transmitter

All EMT systems use a magnetic transmitter to produce a time-varying magnetic field as shown
in Figure 1. The transmitting field must be spatially unique such that each position in space has a
unique magnetic signature. Most system transmitter designs employ multiple transmitting coils with
each generating a magnetic field at a different frequency to fulfil this requirement. EMT transmitters
come in a number of different arrangements including tri-axial [6], planar coil [19] and planar printed
circuit board (PCB) [17,18] such as shown in Figure 2a. In this paper we alter the role of the magnetic
transmitter design such that each transmitter coil can also behave as a receiver. The theory of how this
operates is described in the next section.

(a) (b)

Figure 2. (a) The Anser electromagnetic tracking system [17]. (b) The arrangement of coils on the Anser
EMT transmitter. This arrangement was originally based on an optimised coil placement by [20].

2.2. Mutual Inductance

Mutual inductance is the electrical property which relates how an electrical current in a conductor
influences the voltage on another conductor. Consider the coil arrangement shown in Figure 3.
The alternating current iP(t) flowing through the primary coil creates a time-varying magnetic field.
The resulting magnetic flux Φ(t) interacts with a secondary coil in the vicinity and causes a voltage
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vS(t) to be induced on it. The extent of this interaction is captured by the mutual inductance coefficient
M in Equation (2) and is the basic principle of an electrical transformer [21].

vS(t) = NS
dΦ(t)

dt
= M

diP(t)
dt

(2)

Figure 3. The interaction between two coupled inductors. A time-varying current iP(t) in the primary
coil establishes a time-varying magnetic flux Φ(t), a portion of which links the secondary winding and
causes a time-varying voltage to be induced at its terminals.

In the case of a EMT transmitter containing multiple coils, the mutual inductances between all
coils can be represented as a matrix M shown in Equation (3). The diagonal entries represent the
self-inductances of each coil. The induced voltages on a particular coil can then be expressed as a
superposition of its self-induced voltage and those induced by every coil in the transmitter according
to Equation (4). Matrix representations of inductances are a commonly used tool in circuit analysis as
they compactly define the interaction between all current-carrying structures within a device, from the
small scales of integrated circuit packages [22] to high powered electrical machine windings [23].

M =


L1 M12 . . . M1N

M21 L2 . . . M2N
...

...
. . .

...
MN1 MN2 . . . LN

 (3)

V =


v1

v2
...

vn

 =


L1 M12 . . . M1N

M21 L2 . . . M2N
...

...
. . .

...
MN1 MN2 . . . LN




di1/dt

di2/dt
...

diN/dt

 = M
dI
dt

(4)

Ideally the induction matrix is symmetric about the diagonal since the definition of mutual
inductance implies that Mαβ = Mβα. If an EMT magnetic transmitter is capable of switching its coils
between transmitter (TX) and receiver (RX) modes of operation, then the mutual inductance between
every coil can be experimentally recovered in matrix form.

2.3. Transmitter Inductance Matrix

The mutual inductance matrix defines how effectively the magnetic flux is coupled from one
circuit to another and is therefore dependent on the intrinsic parameters of the circuits being analysed.
The Anser EMT system transmitter shown in Figure 2 uses eight identical transmitter coil circuits in a
well-known optimised arrangement [20]. According to Equation (2), obtaining the mutual inductance
between two coils requires applying a time-varying current to the primary coil while simultaneously
measuring the induced voltage on the secondary coil. For a tracking system containing N coils there
must be N!/(N−2)! mutual inductance measurements acquired, since two coils are utilised for a single
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inductance measurement. Generalising, the voltage induced on coil α due to a transmitting coil β is
given by Equation (5). This relation can be represented in matrix from in Equation (6).

vαβ(t) = Mαβ

diβ(t)
dt

(5)


0 v12 . . . v1N

v21 0 . . . v2N
...

...
. . .

...
vN1 vN2 . . . 0

 =


0 M12 . . . M1N

M21 0 . . . M2N
...

...
. . .

...
MN1 MN2 . . . 0




di1/dt 0 0 0
0 di2/dt . . . 0
...

...
. . .

...
0 0 . . . diN/dt

 (6)

If both the source current and induced voltage can be measured, then the mutual inductance
matrix can then be calculated using simple matrix inversion in Equation (7):

M =


�

dij

dt
�


−1

V (7)

2.4. Summary

The eight transmitter coils of the Anser tracking system result in a total of 56 mutual inductance
calculations. Metallic objects in the vicinity of the transmitter will change the measured mutual
inductance due to ferromagnetic and non-ferromagnetic (eddy-current) effects, as they act to distort
shape and strength of the surrounding magnetic field. Detecting these changes in inductance is a
commonly found design in very-low-frequency metal detecting circuits [24,25]. Measuring this change
in inductive coupling is the foundation of this work. Initially we simulate the inductive coupling
between transmitter coils from first principles. The experimental hardware is then discussed in detail
followed by a thorough description of the experimental procedures performed. Finally the measured
inductance error results are correlated with position errors experienced by the tracking system.

3. Transmitter Inductance Simulation

The mutual coupling between each coil of the transmitting field generator shown in Figure 2 was
simulated to investigate whether detection of mutually induced voltages was feasible and to provide
a reference for experimental measurements. For simulation, each transmitter coil of the tracking
system can be considered as a set of individual straight copper traces, with each trace idealised as
a current-carrying filament [26]. The magnetic field (in Tesla) observed at a point r due to a single
current-carrying filament is given by Equation (8), where I is the magnitude of the filament current,
µ0 is the magnetic permeability of free space and a, b and c are vectors relating the location of
the current filament to the observation point r as shown in Figure 4a. The magnetic field due to
each PCB coil can then be modelled as a superposition of fields produced by all constituent current
filaments [26,27] (An implementation of this equation can be found online: https://osf.io/47q8q/).

B(r) =
µ0 I
4π

(
c× a
|c× a|2

)(
a · c
|c| −

a · b
|b|

)
(8)

https://osf.io/47q8q/
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(a)

(b)
Figure 4. (a) Vector diagram showing the vectors in Equation (8). a is a vector representing the
length and direction of a current carrying conductive filament. r is the vector from the origin to
the observation point from which the field due to the filament is measured. Vectors c and b point
from the observer position r to the start and end points of the current filament respectively. (b) 3D
model of the double-sided PCB traces of a single transmitter coil with the origin O located at its centre.
Each straight-line trace can be considered a single current filament.

The magnetic coupling between any two coils can be simulated by integrating the magnetic field
of the primary coil over the area of the secondary coil. Since all transmitting coils are co-planar in the
x-y plane, the total flux produced by a primary coil P intersecting a secondary coil S can be written as
an area integral in Equation (9), where BP is the primary’s magnetic field strength at location (x, y)
and dAS is a differential area element of the secondary coil.

ΦS =
∫

AS

BP(x, y) · dAS (9)

The equation for the magnetic field is highly non-linear and must be numerically integrated
as discrete a sum over the length l and width w of the secondary coil. The total flux linkage λS is
computed by scaling the result by the number of secondary coil turns N as shown in Equation (10).

λS = NSΦS ' NS ∑
l

∑
w

BP(x, y) · ∆x∆y (10)

In this work, numerical computation of the integrals was performed using Matlab (MathWorks,
Natick, MA, USA). Consistent with the experimental design described previously [18], the coil
integration area was approximated as 25 uniform turns of the mean coil side length of 66.75 mm.
Full coil dimensions are shown in Table 1. Acceleration of the calculations was performed using
the parfor language feature of the Parallel Computing toolbox in Matlab. Through rearrangement of
Equation (2) the mutual inductance between two coils α and β be calculated in Equation (11).

Mαβ =
NαΦα

Iβ
(11)

where Nα and Φα are the turn count and magnetic flux of the secondary coil and Iβ is the current flowing
in the primary coil. The resulting mutual inductance matrix shown in Figure 5. The colour-coding
of the entries reveals that there are only four observed unique mutual inductance values for the
transmitter (ignoring the 10 nH difference between 1.31 µH and 1.32 µH entries, which is attributed to
modelling error). These unique entries are a consequence of the square symmetry in the transmitter
design. Referring to Figure 2b it can be expected that adjacent coils will experience the highest mutual
inductance values, while the furthest separated coils will experience the lowest values. For example,
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coils 1 and 2 have a mutual inductance, indicated by M12, of 1.32 µH, while coils 1 and 8 have a
comparatively low mutual inductance M18 of 6 nH. Taking each entry Mαβ one can calculate the
predicted induced voltage due to a sinusoidal time-varying current i(t). Assuming a peak coil current
I of 160 mA [18] at a frequency of 20 kHz, Equation (12) provides the induced peak voltage for a given
mutual inductance Mαβ:

vαβ = Mαβ

diβ

dt
= ωIMαβ (12)

where ω = 2π f , the angular frequency of the primary coil current. Figure 6 shows the matrix
of predicted voltages for the different inductances shown in Figure 5. On the order of millivolts,
these induced voltages are well within acceptable sensing ranges enabling reliable measurements to be
taken. The measurement hardware used to experimentally measure these voltages is discussed next.

Mutual inductance (µH), M =

Mα1 Mα2 Mα3 Mα4 Mα5 Mα6 Mα7 Mα8



− 1.32 0.18 1.31 0.18 0.18 0.18 0.006 M1β

1.32 − 1.31 1.32 1.32 0.18 0.48 0.18 M2β

0.18 1.31 − 0.18 1.31 0.006 0.18 0.18 M3β

1.31 1.32 0.18 − 0.48 1.31 1.32 0.18 M4β

0.18 1.32 1.31 0.48 − 0.18 1.32 1.31 M5β

0.18 0.18 0.006 1.31 0.18 − 1.31 0.18 M6β

0.18 0.48 0.18 1.32 1.32 1.31 − 1.32 M7β

0.006 0.18 0.18 0.18 1.31 0.18 1.32 − M8β

Figure 5. Simulated mutual inductance matrix for the eight coil PCB transmitter of the Anser EMT
system. The entries have units of microhenries (µH). Self-inductances of each coil are omitted.
Precision of entries have been truncated with similar values colour-coded for clarity. Each coil area was
subdivided into 4 million area elements for the integration process.

Induced Voltage (mV), V =

vα1 vα2 vα3 vα4 vα5 vα6 vα7 vα8



− 26.5 3.62 26.3 3.62 3.62 3.62 0.12 v1β

26.5 − 26.3 26.5 26.5 3.62 9.66 3.62 v2β

3.62 26.3 − 3.62 26.3 0.12 3.62 3.62 v3β

26.3 26.5 3.62 − 9.66 26.3 26.5 3.62 v4β

3.62 26.5 26.3 9.66 − 3.62 26.5 26.3 v5β

3.62 3.62 0.12 26.3 3.62 − 26.3 3.62 v6β

3.62 9.66 3.62 26.5 26.5 26.3 − 26.5 v7β

0.12 3.62 3.62 3.62 26.3 3.62 26.5 − v8β

Figure 6. Simulated induced peak-voltage matrix for the eight coil PCB transmitter of the Anser EMT
system based on the results in Figure 5. Precision of entries have been truncated with similar values
colour-coded for clarity. The entries have units of millivolts (mV).

4. Experimental Setup

4.1. Modified Transmitter Design

The tracking system field generator consists of a planar transmitter coil array fabricated on a
single PCB as shown in Figure 2. The high process accuracy ensures experimental repeatability and
similar self-inductance values on each coil winding. The properties of each coil are shown in Table 1.
This transmitter design was modified with additional circuitry to enable the transmitter’s mutual
inductance to be experimentally calculated. Each coil circuit was modified to allow independent
switching between modes of transmission (TX) and reception (RX). By selectively controlling each coil
in this manner the mutual inductances of the transmitter can be experimentally acquired.

The ADG1436 analog switch (Analog Devices, Norwood, MA, USA) was used to enable the
switching functionality. This switch was chosen due to its small PCB footprint, high current carrying
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capacity and low Ron resistance. The switch is controlled using a logic signal controlled by a
microcontroller. In TX mode the switch connects the coil to the driver circuit of the tracking system.
In RX mode the switch routes the induced coil signal to an instrumentation amplifier for conditioning
and amplification. The INA163 (Texas Instruments, Dallas, TX, USA) was selected for amplification
due to its high input impedance and low noise characteristics. The gain of the amplifier was set to 81
using a resistor with 1% tolerance, resulting in a maximum gain deviation of ±1.6 using the amplifiers
gain Equation (13). A simplified circuit diagram of the switching circuit can be found in Figure 7a.
The switch implementation for a single transmitter coil is shown in Figure 7b.

G = 1 +
6000
RG

(13)

(a)
(b)

Figure 7. (a) Simplified circuit diagram of the coil switching circuit. The ADG1436 behaves as a
double-pole double throw (DPDT) switch enabling the coil to switch between TX and RX modes. Sin is
the logic signal used to control the switch position. In TX mode, the switch connects the driving source
vd(t) to the coil to produce a stable time-varying magnetic field. In RX mode the INA163 is connected to
the coil and is used to amplify the induced voltage signal to produce vs(t). (b) Layout of the switching
circuit on the PCB.

Table 1. Properties of EMT transmitter coils.

Property Value Unit

Length (Max.) 70 mm
Width (Max.) 70 mm

Turns 25 -
Inductance 70 µH

Resistance (coil) 1.5 Ω

Resistance (switch) 3 Ω

Resistance (Total) 4.5 Ω

Trace Width 1.6 mm
Trace Spacing 0.25 mm

4.2. Distorter Selection

A broad selection of metallic objects were chosen in order to investigate the effects of different
materials on the mutual inductance of the transmitter. Both ferrous and non-ferrous metal objects of
various dimensions were chosen in order to simulate different scenarios in which distortion error may
occur. A photograph of the tested distorters is shown in Figure 8a with the details of each distorter
found in Table 2. Each object was fixed in a known position beneath the transmitter board for each
measurement. The distance between the distorter under test and transmitter board was varied in fixed
z-axis increments using Duplo bricks (The Lego Group, Billund, Denmark), with each brick measuring
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19.2 mm in height as shown in Figure 9. The tight 10 µm manufacturing tolerance of Duplo [28]
ensures repeatability of the experiments while allowing accurate adjustment of the transmitter height
displacement. Locations of the distorters with respect to the transmitter x-y plane can be seen in
Figure 8b. Large distorters span the length of the transmitter board and therefore lie underneath more
than one labelled location. For example, the steel slab (c) spans lengthways from locations B to D while
the sheet distorters span the entire area of the transmitter.

(a) (b)
Figure 8. (a) Photograph of the metallic distorters used in the experiment. The properties of each
distorter are shown in Table 2. (b) Illustrated top-down view of the transmitter board showing the
locations of the distorters used in experiments.

Table 2. List of distorters used in the experiment.

Label Distorter Type Name Material L (mm) W (mm) H (mm) Locations

(a) Small Alu. Section Aluminium 70 70 48 A, B, C
(b) Small Steel Block Mild Steel 60 70 50 B, D
(c) Medium Steel Slab Mild Steel 250 75 23 B-to-D, E-to-F
(d) Medium Alu. Cylinder Aluminium 140 63 - B-to-D, E-to-F
(e) Sheet Mu Sheet. Mu Metal 300 300 1 Full coverage
(f) Sheet Steel Sheet Mild Steel 265 250 1 Full coverage
(g) Sheet Alu. Sheet Aluminium 195 195 6 Full coverage

Figure 9. Side-view diagram of the modified transmitter board. The Duplo bricks allow adjustment
of the displacement between the transmitter and distorter in increments of 19.2 mm. The Perspex
board height is also adjustable, although this was kept at a constant height during the position error
experiments. The experimental setup was placed on an all-wood table.

4.3. Acquisition Hardware

A photograph of the experimental setup is shown in Figure 10. An Anser EMT system unit was
used to drive a constant amplitude alternating current through the transmitting coils. The embedded
Teensy 3.2 microcontroller (PJRC, Sherwood, OR, USA) was used to automate the switching the
coils between TX and RX modes for the acquisition process. A National Instruments USB-6216 data
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acquisition unit was used to record the vs(t) signal of each RX coil, while simultaneously monitoring
the TX coil current. The current signal was set to a frequency of 20 kHz for all measurements. The DAQ
was configured with a sampling rate of 50 kHz. 5000 samples were used for each individual signal
measurement. A minimum signal-to-noise ratio (SNR) of 80dB was observed in the worst case where
the furthest separated coil pairs (e.g., Coils 1 and 8) are transmitting and receiving respectively.

(a)
(b)

Figure 10. (a) Block diagram of the experimental setup. (b) Photograph of the experimental setup
of the modified transmitter board connected to the Anser EMT system. (1) The modified transmitter
board with extra connections to enable coil switching. (2) The National Instruments DAQ connected to
the instrumentation amplifier outputs of the transmitter. (3) The Anser EMT tracking system unit with
embedded Teensy 3.2 controller. (4) 6 mm Perspex planar board used for sensor position acquisitions.

5. Acquisition Methods

5.1. Mutual Inductance Measurement

Switching the EMT system transmitting coils between TX and RX modes was performed iteratively
in order to measure the induced voltages on each coil with respect to every other coil. The algorithm
as outlined in Algorithm 1 was applied to each distorter location in Table 2 at differing heights in
multiples of 19.2 mm as shown in Figure 9. The minimum heights in each case were limited by the size
and shape of each distorter, with the lowest minimum height of one Duplo brick (19.2 mm) applied
only to the sheet distorters (e)–(g). Distorters (a)–(d) required a minimum of three bricks of separation
to avoid touching the transmitter. The output of the algorithm is a matrix of voltage amplitudes and
phases corresponding to a particular distorter location and height. The phase information indicates
the angle between the transmitter (primary) coil current and induced (secondary) voltage waveforms.
The algorithm was performed using Matlab and the Data Acquisition Toolbox. Total acquisition
time was approximately 10 s for each distorter configuration. The mutual inductance matrix for
the transmitter can then be calculated from the experimentally recorded voltage matrix V using
Equation (7).
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Algorithm 1: Coil switching and acquisition procedure. Acquisition is skipped if indices α = β

since this matrix entry represents a coil’s self-inductance.

Result: Matrices V and φ, where entry V(α,β) is the voltage on coil α due to coil β, and φ(α,β)
is the voltage phase angle of coil α relative to the current in coil β.

1 begin
2 T = no. of transmitter coils;
3 V = zeros(T, T);
4 φ = zeros(T, T);
5 for α← 1 to T do
6 RXCoil← α;
7 for β← 1 to T do
8 if α == β then
9 skip iteration since self inductance is not calculated;

10 end
11 else
12 TXCoil← β;
13 V(α,β)← DemodulateSignalAmplitude(RXCoil);
14 φ(α,β)← PhaseAngle(RXCoil) - PhaseAngle(TXCoil);
15 end
16 end
17 end
18 end

5.2. Position Acquisition

Position measurements were also acquired in the presence of each distorter in order to correlate
the inductive and phase measurements with the position error experienced by the tracking system.
This test requires that all transmitter coils are operating in TX mode with each transmitter coil emitting
a unique frequency between 20 kHz and 30 kHz [17,18]. The planar Perspex board shown in Figure 10
was set at a fixed height above the transmitter. The positions were acquired by moving a commercial
magnetic sensor (Model No. 610099, Northern Digital Inc., Waterloo, ON, Canada) in a ‘scribbling’
motion on the perspex board to acquire a planar array of x-y data points at a fixed z-displacement
above the transmitting field generator. This was repeated for each distorter at the various distorter
positions described in Table 2. 1000 random position coordinates were recorded for each measurement.
A control acquisition with no distorter present was also acquired.

6. Results

6.1. Mutual Inductance Matrix

The mutual inductance matrix calculation was carried with no distorter present in order to verify
the results of the simulation provided by Figure 5. The experimental mutual inductance matrix
was calculated using the measured voltages in Equation (7) with the results shown in Figure 11.
The symmetry of this matrix matches closely with that of the simulated results. Four unique mutual
inductance values can also be identified using the colour-coding scheme used previously.
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Mutual inductance (µH), M =

Mα1 Mα2 Mα3 Mα4 Mα5 Mα6 Mα7 Mα8



− 1.04 0.10 1.08 0.12 0.13 0.12 0.03 M1β

1.06 − 1.06 0.97 1.00 0.11 0.30 0.10 M2β

0.10 1.05 − 0.10 1.11 0.04 0.12 0.11 M3β

1.08 0.98 0.10 − 0.30 1.03 0.99 0.10 M4β

0.11 0.98 1.08 0.30 − 0.10 0.98 1.00 M5β

0.10 0.10 0.03 1.00 0.10 − 1.04 0.10 M6β

0.10 0.28 0.10 0.97 0.98 1.03 − 1.04 M7β

0.03 0.10 0.10 0.10 1.01 0.11 1.05 − M8β

Figure 11. Experimentally calculated mutual inductance matrix for the eight coil magnetic transmitter
of the Anser EMT system. The entries have units of microhenries (µH). The diagonal entries are left
blank as the system is not built for calculating self-inductances. Results have been truncated and
colour-coded for clarity.

The simulated and experimental results compare favourably, with corresponding matrix entries
experiencing very similar inductance values. The absolute accuracy of the measurement is not critical
due to the nature of the inductance error calculation, as only changes in inductance are considered
when calculating the error.

6.2. Inductance Error

The presence of a conductive or magnetic distorter near the system transmitter board will cause
the mutual inductance between the coils to deviate from the control measurement. The magnitude of
the change is related to the severity of the distortion. This deviation from the control can be captured
by calculating the mutual inductance error matrix Me in Equation (14).

Me = Mdistort −Mcontrol (14)

where Mdistort is the measured mutual inductance matrix with a metallic distorter present and Mcontrol
is the measured inductance matrix with no distorter present. Normalising this error with respect to
the control measurement in Equation (15) gives the element-wise percentage mutual inductance error
with respect to the control.

Me% = (Me/Mcontrol)× 100% (15)

The resulting matrix allocates a percentage inductance error to each mutual inductance
measurement. The mutual inductance mean error (ME) per coil can be calculated by taking the
column summation of Me% in Equation (16). The ME was used as opposed to the mean absolute
error (MAE) so that net average increases and decreases in mutual inductance can be distinguished.
Calculating the row summation is also correct since inductance matrices are symmetric by nature.
The resulting ME vector allocates each coil a signed mean percentage inductance error.

Mean Error % =


∑8

β=1 Me%1β

...
∑8

β=1 Me%8β

 /8 (16)

The inductance error of each coil was plotted against the distance of the distorter from the
transmitter for each distorter location. These locations are denoted in each plot using Figure 8b
as a reference. Mean error plots for sheet metal and aluminium section distorters are shown in
Figures 12 and 13.
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Figure 12. Mutual inductance error for planar sheet distorters. The Mu-metal sheet is the only material
to consistently increase the mutual inductance of the transmitter coils.

Figure 13. Mutual inductance error for the small aluminium block distorter in locations A, B and C.
It can be seen that the location of the distorter decreases the mutual inductance of the coils in
closest proximity.

Results for the other remaining distorters can be found in Figures A1–A5 in Appendix A.

6.3. Phase Response

The demodulation process used to acquire the induced voltage signal magnitudes also yields the
phase angle between the transmitter coil current and the corresponding mutually induced voltage
waveforms. The phase angle θ between these current and voltage waveforms is ideally π/2 radians in
the absence of distorters. This phase angle, similar to the inductance, will deviate depending on the
magnitude of the distortion and the material of the distorting object. Subtracting the phase angle of
the control measurement from the distortion measurement in Equation (17) yields a matrix of phase
differences for each mutual inductance entry.

φe = θdistort − θcontrol (17)

where θdistort is a matrix of calculated phase angles between the driving coil current and mutually
induced voltages when a distorter is present and θcontrol are the corresponding phase angles with no
distorter present. The mean coil phase error φe is then calculated in Equation (18).

Mean Phase Error (◦) =


∑8

j=1 φe1j
...

∑8
j=1 φe8j

 /8 (18)

The phase error of each coil was plotted against the distance of the distorter from the
transmitter for each distorter location. These locations are denoted in each plot using Figure 8b
as a reference. Mean phase error plots for sheet metal and aluminium section distorters are shown in
Figures 14 and 15.
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Figure 14. Phase error for the planar sheet distorters. The aluminium sheet contributes a small positive
phase shift, while both steel and mu-metal sheets contribute large negative phase shifts when in close
proximity to the transmitter.

Figure 15. Phase difference plots for small aluminium block distorter in locations A, B and C.

The phase plots for the remaining distorters can be found in Figures A6–A10 in Appendix B.

6.4. Position Error

The planar position acquisitions provided point clouds in the x-y plane of the transmitter at a
fixed z-displacement. For a given distorter configuration, the mean z-axis error ez with respect to the
control was calculated by subtracting the mean z value of the control, z̄control , from the distorted cloud
positions zi and averaging over N points in Equation (19). The absolute error was not taken in order to
preserve the sign of the error. The standard deviation of each distorted point cloud was calculated
with respect to its own mean z̄distort using Equation (20).

ez =
1
N

N

∑
i=0

(zi − z̄control) (19)

σz =
1
N

√√√√ N

∑
i=0

(zi − z̄distort)
2 (20)

The plots for both sheet and aluminium distorters are shown in Figures 16 and 17. High values
of σz indicate large variances in the error when the distorter is near the transmitter board. This error
variance is visualised in the example point cloud plot in Figure 18 with and without the 1 mm steel
sheet, where its presence causes a large deviations in position when compared to the control where no
distorter is present.
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Figure 16. Mean error and standard deviation for sheet metal distorters.

Figure 17. Mean error and standard deviation for aluminium section distorter in locations A, B and C.

Figure 18. Point clouds a scribble test position acquisition for the 1 mm steel sheet placed 57 mm
below the transmitter PCB. The point cloud with steel present has a mean height of z̄steel of 129.5 mm
and large standard deviation of σzsteel = 7.46 mm. The control point cloud is also shown for reference
(z̄control = 118.5 mm, σzcontrol = 0.37 mm).

Position error plots for the remaining tested distorters can be found in Figures A11–A15 in
Appendix C.

7. Discussion

Comparing the data of both inductance matrix and position experiments highlights a number of
useful relationships between the properties of the distorters and the transmitter coils.
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7.1. Error vs. Distance

There is an excellent correspondence between the measured inductive and positional error
in relation to the distorter’s distance from the transmitter. In all cases it can be clearly seen that
placing a distorter nearer to the transmitter will increase both the inductance and positional errors.
This is intuitively correct as a distorter’s interaction with the transmitter’s magnetic field will become
increasingly significant the closer it is placed to the field source. Steel and aluminium distorters
tend to give rise to negative z-position error, in which the distorter negatively impacts the mutual
inductance of the transmitter, although it can be seen in Figure 12 that a slight positive inductance
contribution is evident for z-positions greater than 50 mm. The mu-metal sheet contributes positively
to the transmitter’s mutual inductance for all z-positions. These results strongly agree with [12] in
which the SNR of the tracking system sensor is increased when a mu-metal shield is used.

7.2. Phase Angle vs. Material

A significant relationship can be found between the experimentally calculated phase angle and
the material of the distorter. All steel distorters exhibited negative phase angles in these experiments,
while the aluminium distorters experienced all positive phase angles. The mu-metal sheet distorter
introduced very significant negative phase compared to the steel sheet, with a total phase angle
of approximately −140◦. Clearly the phase angle and permeability of the material have a positive
correlation and can be used to determine whether the distorter is ferromagnetic or purely conductive
in nature. These results compare favourably with those of [24] which showed that purely conductive
materials introduce opposing phase to that of ferrous materials.

7.3. Inductance & Phase Error vs. Distorter Location

A strong correlation was shown between the location of a distorter and the error that it produces.
This is particularly relevant to the small steel and aluminium distorters. In the case of the aluminium
section and steel block distorters, the transmitter coils that are in closest proximity experience the
highest inductance (and phase) errors. This holds for the larger steel slab and aluminium cylinder
distorters, although the relationship becomes less significant with increasing distance from the
transmitter. In particular, Figure 13 shows that the highest inductance errors for a distorter in position
A are experienced by coils 1, 2 and 4 which are directly above the distorter as shown in Figure 8b.
From these observations we can say that there is a correlation between the location of the distorter
and the location of the coil(s) experiencing the highest inductance error. This relationship may be
useful when initially placing the system transmitter in order to minimise position errors from local
distorters. Further to this, the relationship may also enable EMT users to create quantitative measures
of tracking confidence in the presence of distorters based on their location, in which specific portions
or sub-volumes of the full EMT tracking volume are assigned a confidence score derived from the
nearest transmitter coil’s inductance error. It should be noted that the analysis presented in this paper
is most effective when distortions are of a static nature, as the method assumes the environment does
not change during the inductance measurement procedure.

8. Conclusions

This paper presented a novel electromagnetic tracking system transmitter capable of characterising
the nature of distortions in close proximity without the use of a standalone magnetic sensor. A mutual
inductance model for the system transmitter was developed, followed by an experimental amplitude
and phase analysis of the system transmitter coils. The results allow the user to distinguish the
size, severity and material (ferromagnetic or non-ferrous conductor) of the distorting objects in
close proximity to the system transmitter. The presented analyses can be readily applied to other
electromagnetic tracking transmitter designs if induced voltages can be measured on all constituent
transmitter coils. Achieving material discrimination in this manner may allow researchers to craft
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error compensation methods which are specifically designed for a particular distorter configuration.
Future work will see the these analyses integrated in a software toolkit for the Anser EMT system,
allowing optimal placement of transmitters to minimise the effect of environmental distorters in the
clinical setting.

Author Contributions: Conceptualization, H.A.J.; Methodology, H.A.J.; Software, H.A.J.; Validation, H.A.J.;
Formal Analysis, H.A.J.; Investigation, H.A.J.; Resources, P.C.-M. and H.A.J.; Data Curation, H.A.J.;
Writing—Original Draft Preparation, H.A.J.; Writing—Review & Editing, P.C.-M. and H.A.J.; Visualization,
H.A.J.; Supervision, P.C.-M.; Project Administration, P.C.-M.; Funding Acquisition, P.C.-M.

Funding: This research was funded by Science Foundation Ireland (SFI) grant number TIDA17/4897 and Eureka
Eurostars grant number 11581.

Acknowledgments: This work is supported by Science Foundation Ireland Technology Innovation and
Development Award TIDA17/4897 and by the Eureka Eurostars project number 11581, entitled ‘Mariana:
Image-guided catheter navigation in the outer airways.’

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Inductance Error Plots

The inductance error plots for the sheet and aluminium section distorters were shown in the
main article. These plots are repeated here with the remaining mutual inductance error plots for
the distorters in Table 2. In nearly all cases the mean mutual inductance error calculated using
Equation (16) decreases with decreasing distance between the distorter and transmitter. It can also be
seen that the smaller distorters cause the highest percentage error in the transmitter coils that are in
closest proximity.

Figure A1. Mutual inductance error plots for planar sheet distorters spanning the area of all transmitter
coils. The mu-metal sheet contributes positively to the overall inductance of the transmitter over
all distances.
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Figure A2. Mutual inductance error plots for small steel block distorter in locations B and D, with the
corresponding coils 4 and 5 respectively experiencing the largest mutual inductance error.

Figure A3. Mutual inductance error for small aluminium block distorter in locations A, B and C.
The distorter placed at locations A and B experience the largest errors in their nearest respective coils,
1 and 4. The centrally placed distorter at location C causes the central transmitter coils 2, 4, 5 and 7 to
experience the largest mutual inductance error.
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Figure A4. Mutual inductance error plots for large aluminium cylinder in locations E to F and B
to D. The cylinder spans the length of the transmitter board. The highest mutual inductance errors
correspond to the positions of the distorter.

Figure A5. Mutual inductance error plots for steel slab in locations B to D and E to F. The effect is
similar to that of the aluminium cylinder, with the highest error experienced by the coils in closest
proximity to the distorter.

Appendix B. Phase Angle Plots

The phase angle error plots for the sheet and aluminium section distorters were shown in the
main article. These plots are repeated here with the remaining phase error plots for the distorters in
Table 2 calculated using Equations (17) and (18). The resulting angle allows for a clear differentiation
between materials. Aluminium distorters cause a positive phase error in all cases, while steel distorters
cause negative phase error.
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Figure A6. Phase error for planar sheet distorters. The aluminium sheet causes a small positive phase
error of approximately 10◦ when placed very close to the transmitter, but quickly returns to zero with
increasing distance. The steel sheet initially causes very large negative phase errors when close to the
transmitter but return to zero at approximately 120 mm from the transmitter. The mu-metal sheet phase
error is an exaggerated version of that of the steel sheet, with maximum errors of approximately 140◦.

Figure A7. Phase error plots for small steel block distorter in locations B and D. The largest errors are
experienced by coils 4 and 5 in closest proximity to locations B and D respectively. Negative phase
error is experienced in both locations.
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Figure A8. Phase error plots for small aluminium block distorter in locations A, B and C. The largest
phase errors are experienced by the in closest proximity to locations A, B and C. Positive phase error is
experienced in all cases.

Figure A9. Phase error plots for large aluminium cylinder in locations E to F and B to D. The cylinder
spans the length of the transmitter board. The highest phase errors correspond to the positions of the
distorter. Positive phase error is experienced in each case.
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Figure A10. Phase error plots for steel slab in locations B to D and E to F. Negative phase is experienced
in each case, with the highest phase error experienced by the coils in closest proximity to the distorter.

Appendix C. Position Error

The position error plots for the sheet and aluminium section distorters were shown in the main
article. These plots are repeated here with the remaining position error plots for the distorters in
Table 2. Equations (19) and (20) were used to extract the mean error ez and standard deviation σz from
each planar point cloud. The resulting errors show how the different distorters effect the tracking
performance of the Anser EMT system.

Figure A11. Position error plots for sheet metal distorters. Aluminium causes the most severe position
error and highest standard deviation. A cross-over point is visible at approximately 100 mm in which
the errors are minimised, before increasing for distances >100 mm.
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Figure A12. Position error plots for steel block, locations B and D.

Figure A13. Position error plots for aluminium section in locations A, B and C. Location B causes the
highest positioning error and standard deviation as the aluminium section is placed directly below
transmitter coil 4.

Figure A14. Position error plots for aluminium, cylinder, locations B and D and E to F.
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Figure A15. Position error plots for steel slab, locations B and D and E to F.
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