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Abstract
Background. Angiomatous and microcytic meningiomas are classified as rare subtypes of grade I meningiomas 
by World Health Organization (WHO). They typically exhibit distinct histopathological features as indicated by their 
WHO titles; however, these angiomatous and microcystic features are often intermixed. Recently, angiomatous 
meningiomas were reported to show characteristic chromosomal polysomies unlike the other WHO grade 
I meningiomas. In the present study, we hypothesize that microcystic meningiomas share similar cytogenetic ab-
normalities with angiomatous meningioma.
Methods. We performed copy number analysis using single nucleotide polymorphism (SNP) arrays for three 
angiomatous and eight microcystic meningiomas. Of these, three angiomatous and three microcystic meningiomas 
were also analyzed by whole exome sequencing and RNA sequencing.
Results. We first analyzed three angiomatous and three microcystic meningiomas for which both frozen tissues 
and peripheral blood were accessible. Copy number analysis confirmed previously reported multiple polysomies 
in angiomatous meningiomas, which were entirely replicated in microcystic meningiomas when analyzed on dif-
ferent analytical platforms with five additional samples prepared from formalin-fixed paraffin-embedded tumors. 
Polysomy of chromosome 5 was found in all cases, along with chromosome 6, 12, 17, 18, and 20 in more than half 
of the cases including both angiomatous and microcystic meningiomas. Furthermore, next generation sequencing 
did not reveal any distinctive somatic point mutations or differences in gene expression characterizing either 
angiomatous or microcystic meningiomas, indicating a common genetic mechanism underlying tumorigenesis.
Conclusions. Angiomatous and microcystic meningiomas have substantially similar genetic profiles represented 
by the characteristic patterns of multiple polysomies originating from chromosome 5 amplification.

Key Points

• Angiomatous and microcystic meningiomas are hyperdiploid meningiomas.

• Angiomatous and microcystic meningiomas largely share their genetic profiles.

• Chromosome 5 polysomy is a biomarker of angiomatous/microcystic meningiomas.

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
mailto:akagawa.hiroyuki@twmu.ac.jp?subject=
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Meningiomas are the most frequently diagnosed pri-
mary brain tumors that account for one-third of all pri-
mary brain tumors.1,2 Most meningiomas (80%) are 
histologically classified as benign (grade I),3 which are 
further subdivided into nine distinct histological vari-
ants according to the current World Health Organization 
(WHO) classifications for meningiomas.4,5 Among these 
WHO grade I  variants, angiomatous and microcystic 
meningiomas are distinguished based on the tumor 
mass consisting either of numerous blood vessels or del-
icate processes encompassing microcysts, respectively. 
However, these angiomatous and microcystic features 
are often intermixed, making it difficult to determine a 
definitive pathological diagnosis.5 Such histopatholog-
ical intermixing also presents a neuroimaging feature 
resembling high-grade meningiomas based on predispo-
sition to peritumoral brain edema, although angiomatous 
and microcystic meningiomas do not exhibit aggressive 
behavior.4–6

Recently, angiomatous meningioma was reported to 
have multiple chromosomal polysomies represented 
by chromosome 5 amplification, in contrast to most of 
the other meningiomas having a normal diploid or kar-
yotype with monosomy 22q.7 In the present study, we 
hypothesized that microcystic meningioma shares cyto-
genetic profile similar to angiomatous meningioma. We 
performed genetic analyses to compare molecular pro-
files of these closely related but different subtypes of 
meningiomas.

Methods

Materials

A total of 25 surgically resected cases of meningiomas in 
our hospital were studied (Table 1). All tumor specimens 
were submitted to the department of surgical pathology in 
Tokyo Women’s Medical University. Histopathological di-
agnosis was performed according to the WHO guidelines 
and double-checked by experienced neuropathologists in 
collaboration with the central laboratory in Tokyo Medical 

University Hachioji Medical Center.4,5 If the tumor con-
tains both angiomatous and microcystic features, it was 
diagnosed as angiomatous meningioma when vascular 
components accounted for over 50% of the tumor spec-
imen with reference to the criteria specified by the WHO 
from 2007.4 There was no detectable difference in clinical 
courses between three angiomatous, eight microcystic, 
and the other 14 typical grade I cases. Of these 25 cases, 
three angiomatous and three microcystic cases with access 
to both frozen tissues and peripheral blood samples were 
subjected to single nucleotide polymorphism (SNP) array, 
whole exome sequencing (WES), and RNA sequencing 
(RNA-seq) analysis. The remaining 19 samples were from 
seven archival formalin-fixed paraffin-embedded (FFPE) 
tissues including five microcystic cases and 12 frozen tis-
sues from nonangiomatous/microcystic cases (Table 1). 
These additional samples were used for SNP array anal-
ysis. Genomic DNA and total RNA were extracted using 
standard protocols. This study was approved by the ethics 
committee of Tokyo Women’s Medical University (Approval 
number: 251C). Relevant informed consent was obtained 
from subjects.

Copy Number Analysis Using SNP Array

Genomic DNA samples from six frozen meningiomas and 
their complementary peripheral leucocytes were hybrid-
ized to the Affymetrix Genome Wide Human SNP Array 6.0 
(Thermo Fisher Scientific, Waltham, MA). The signal inten-
sity data were processed simultaneously with that of the 
HapMap individuals (ftp://ftp.ncbi.nlm.nih.gov/hapmap/
raw_data/hapmap3_affy6.0/) using Affymetrix Power 
Tools (Thermo Fisher Scientific) and the PennCNV-affy 
package.8,9 ASCAT 2 was used to calculate somatic copy 
number profiles from the processed data of B allele fre-
quency (BAF) and Log R ratio (LRR).10 Control Affymetrix 
SNP array data consisting of 45 nonangiomatous/
microcystic grade I meningiomas was obtained from the 
previous study by Tabernero et  al.,11 which was publicly 
available in the ArrayExpress database (E-GEOD-42624, 
https://www.ebi.ac.uk/arrayexpress/), and analyzed using 
the same methods.

Importance of the Study

Current diagnosis of neoplasms incorporates 
molecular genetic features with the traditional 
histopathological information. In this study, we 
hypothesized that microcystic meningiomas 
share the previously reported cytogenetic ab-
normalities with angiomatous meningiomas, 
because of their frequently observed histo-
pathological intermixing. We performed com-
prehensive genetic analyses in these closely 
related but different subtypes of meningiomas. 
The results confirmed that the character-
istic multiple polysomies represented by 

chromosome 5 amplification in angiomatous 
meningiomas were entirely replicated in 
microcystic meningiomas. Furthermore, whole 
exome and RNA sequencing demonstrated 
no somatic point mutations or differences in 
gene expression discriminating angiomatous 
or microcystic subtypes, indicating a common 
genetic mechanism underlying tumorigenesis. 
Chromosome 5 amplification was found in all 
of the angiomatous/microcystic cases, thereby 
constituting a potential diagnostic marker and 
a future therapeutic target.

ftp://ftp.ncbi.nlm.nih.gov/hapmap/raw_data/hapmap3_affy6.0/
ftp://ftp.ncbi.nlm.nih.gov/hapmap/raw_data/hapmap3_affy6.0/
https://www.ebi.ac.uk/arrayexpress/
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Genomic DNA samples from additional 19 meningiomas 
without complementary normal tissues were hybrid-
ized to the Infinium Asian Screening Array (Illumina, San 
Diego, CA) to independently verify the results obtained 
from the Affymetrix array. Processing of the signal in-
tensities and extraction of BAF and LRR data were per-
formed using GenomeStudio 2.0 (Illumina). ASCAT 2 with 
an option inferring the germline genotypes and GPHMM 
version 1.3 were used to calculate somatic copy number 
profiles.10,12

GISTIC 2.0 was used to visualize the copy number pro-
files and to identify regions of the genome that are signifi-
cantly amplified or deleted across a set of samples.13

Whole Exome Sequencing

Exome capture was performed using SureSelect Human 
All Exon V5 kit following manufacturer instructions 
(Agilent Technologies Inc., Santa Clara, CA). Enriched 
exome libraries were sequenced using 100 bp paired end 
reads on a HiSeq 2500 sequencer (Illumina). After quality 
based read trimming, sequence reads were aligned to the 
human reference genome GRCh37/hg19 using BWA,14 
and duplicate reads marked using the Picard program 
(http://broadinstitute.github.io/picard/). Base substitu-
tions and indels were detected using MuTect2.15 COSMIC 
(https://cancer.sanger.ac.uk/cosmic), dbSNP (https://
www.ncbi.nlm.nih.gov/snp/), and a panel of normal 
variants (https://gemdbj.ncc.go.jp/omics/docs/others.
html) were used as inputs to MuTect2. Detected somatic 
mutations were annotated using ANNOVAR,16 CADD,17 
and FATHMM-Cancer.18 These were subsequently val-
idated using Sanger method, certified by the following 
criteria: (i) MuTect2 filter qualification; (ii) Splice site, 
nonsynonymous, and exonic indel mutations; (iii) var-
iant allele frequencies in tumor samples greater than 0.1; 
(iv) uncommon variants in general populations; and (v) 
absence in 16 control exomes using the same exon cap-
ture kit and analyzed at the same sequencing center. The 
Sanger validations were performed via standard PCR-
based amplification, followed by BigDye Terminator cycle 
sequencing on a 3130xl Genetic Analyzer (Thermo Fisher 
Scientific).

RNA Sequencing

Libraries were prepared using the TruSeq RNA Sample 
Preparation Kit v2 (Illumina) according to manufacturer 
instructions. Each library was paired end sequenced (2 × 
75 bp) by using the TruSeq SBS Kit v4-HS, on a HiSeq2500 
sequencer (Illumina). RNA-seq transcript data were ana-
lyzed using the combination of TopHat2 and Cufflinks.19 We 
annotated the assembled transcripts to the UCSC annota-
tion (hg19) obtained from the Illumina iGenomes website 
(http://jp.support.illumina.com/sequencing/sequencing_
software/igenome.html?langsel=/jp/) and used Cufflinks 
to estimate fragments per kilobase of exon model per mil-
lion mapped fragments (FPKM). Cufflinks outputs were 
thoroughly explored and visualized using CummeRbund 
(http://compbio.mit.edu/cummeRbund/index.html).

Results

We performed comprehensive genetic analyses of three 
angiomatous and three microcystic meningiomas with ac-
cess to both frozen tissues and peripheral blood samples 
(Table 1). Although partial histopathological intermixing 
was observed in two angiomatous (AG559 and AG825) 
and one microcystic (MC409) meningiomas (Figure 1), 
our histopathological diagnosis was clearly supported by 
low-density appearance of microcystic meningiomas on 
computed tomography similar to reported characteristics 
in the literature (Figure 2).20,21

Copy number analysis using SNP array (Affymetrix 
Genome-Wide Human SNP Array 6.0) confirmed pre-
viously reported multiple polysomies in angiomatous 
meningiomas,7 which was also replicated in microcystic 
meningiomas (Figure 3). Similar to the previous report,7 
polysomies of chromosome 5 and 6 were found in all 
six cases, along with chromosome 12, 17, 18, and 20 in 
more than half of the cases including both angiomatous 
and microcystic meningiomas (Supplementary Table 1). 
Angiomatous or microcystic specific copy number alter-
ation was not observed in both chromosomal arm-level 
and focal gene-level analyses using GISTIC 2.0.13 These 
characteristic chromosomal polysomies were not ob-
served in the control Affymetrix SNP array data from 45 
other WHO grade I meningiomas in the ArrayExpress data-
base (E-GEOD-42624, https://www.ebi.ac.uk/arrayexpress/) 
(Figure 3).11 Half of these 45 control meningiomas showed 
chromosome 22q deletion, reflecting its highest inci-
dence among grade I meningiomas.2,11 Two out of the six 
angiomatous/microcystic meningiomas (33.3%) showed 
chromosome 22q deletion (AG559 and MC488); however, 
whole exome sequencing (WES) revealed no somatic mu-
tations in NF2, supporting a different genetic etiology from 
many other grade I meningiomas associated with biallelic 
inactivation of NF2.22 Direct Sanger sequencing con-
firmed a total of 61 somatic mutations from the WES data 
(Supplementary Table 2). The major driver genes for non-
NF2 meningioma (TRAF7, KLF4, AKT1, SMO, and POLR2A) 
were not mutated, except for AG559 harboring the recur-
rent p.S561N mutation in TRAF7 (COSM1578117).22,23 There 
were no genes that were commonly mutated in two or 
more of the angiomatous/microcystic meningiomas. RNA 
sequencing (RNA-seq) further supported the findings in the 
SNP array-based copy number analysis and WES, which 
showed no detectable genomic abnormality discriminating 
angiomatous and microcystic meningiomas. Density and 
box plots showing the distribution of RNA-seq read counts 
(FPKM) equally overlapped one another (Supplementary 
Figure 1). Hierarchical clustering was inconsistent with 
the present histopathological diagnosis, forming the 
closest cluster with the angiomatous AG559 and the 
microcystic MC488 meningiomas (Supplementary Figure 
1). Correlation coefficients of the most distant (MC505 and 
MC488) and nearest (AG559 and MC488) samples in the hi-
erarchical clusters reached nearly one: R2 = 0.95 and 0.98, 
respectively (Supplementary Figure 2). This line of evi-
dences indicates a substantially similar molecular profile 
of microcystic and angiomatous meningiomas.

http://broadinstitute.github.io/picard/
https://cancer.sanger.ac.uk/cosmic
https://www.ncbi.nlm.nih.gov/snp/
https://www.ncbi.nlm.nih.gov/snp/
https://gemdbj.ncc.go.jp/omics/docs/others.html
https://gemdbj.ncc.go.jp/omics/docs/others.html
http://jp.support.illumina.com/sequencing/sequencing_software/igenome.html?langsel=/jp/
http://jp.support.illumina.com/sequencing/sequencing_software/igenome.html?langsel=/jp/
http://compbio.mit.edu/cummeRbund/index.html
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdz028#supplementary-data
https://www.ebi.ac.uk/arrayexpress/
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdz028#supplementary-data
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdz028#supplementary-data
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdz028#supplementary-data
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdz028#supplementary-data
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdz028#supplementary-data
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdz028#supplementary-data
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To further confirm the characteristic multiple polysomies 
identified in microcystic meningiomas, we added the 
SNP array based copy number analysis using different 
types of analytical platforms (Methods). Six microcystic 
meningiomas whose DNA samples were prepared from 
FFPE tissues were analyzed using an Illumina BeadChip 
array (Infinium Asian Screening Array), including MC409 
as a positive control (Supplementary Figure 3). Fourteen 
nonangiomatous/microcystic control samples were from 

two FFPE tissues and 12 frozen tissues (Table 1). Copy-
number calculations for these additional meningiomas 
were performed without data from matched normal 
tissues, which would allow for less cumbersome and 
cost-effective molecular diagnostics. Although lower res-
olution due to DNA damage common in FFPE samples, 
the result of MC409 was entirely replicated as that in the 
former analysis, and the other microcystic meningiomas 
also exhibited identical patterns of multiple polysomies 

  
AG559AG517 AG825

MC488MC409 MC505
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D E F
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Figure. 1 Histopathological images of six cases of angiomatous and microcystic meningiomas. Hematoxylin and eosin stained sections of 
angiomatous (a–c) and microcystic (d–f) meningiomas. Representative images providing bases for histopathological diagnosis are shown. Partial 
histopathological intermixture is observed in (b) AG559, (c) AG825, and (d) MC409 (lower panels).
  

https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdz028#supplementary-data
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represented by chromosome 5 amplification, which were 
not observed in the 14 nonangiomatous/microcystic control 
meningiomas (Figure 4).

Discussion

Microcystic meningioma is a rare histopathological 
subtype accounting for only 1.6% of all intracranial 
meningiomas.20,21 A previous study indicated distinct pat-
terns of hyperdiploidy in this type of meningiomas; Ketter 
et al.24 identified 16 hyperdiploid meningiomas from 677 
consecutive surgical cases using conventional and fluo-
rescence in situ hybridization-based karyotyping tech-
niques, six of which were WHO grade I  meningiomas 
having microcystic features. However, until the present 
study, there was no report of genetic analyses using DNA 
microarrays and next-generation sequencing that focused 
on microcystic meningiomas. Copy-number analysis con-
firmed nonrandom patterns of chromosomal polysomies, 
which were totally identical to that previously reported in 
angiomatous meningiomas.7 Chromosome 5, 6, 12, 17, 18, 
and 20 were frequently amplified, among which amplifica-
tion of chromosome 5 was found in all of the angiomatous/
microcystic cases.7 In contrast, chromosomal deletions 
frequently observed in meningiomas at high risk of re-
currence, such as 1p, 4p, 6q, 10q, 18q, and 14 losses, were 
not observed in the present angiomatous/microcystic 
cases,25,26 except for MC505 showing monosomy 14 

(Figure  3). Careful follow-up is required for cases with 
these high-risk deletions, such as ASA12 (Figure 4). Next 
generation sequencing (WES and RNA-seq) further demon-
strated no somatic point mutations or differences in gene 
expression that characterize angiomatous or microcystic 
meningiomas, indicating a common genetic mechanism in 
tumorigenesis.

Chromosome instability (CIN), including the mul-
tiple polysomies observed in angiomatous/microcystic 
meningiomas, is one of the major hallmarks of tumor 
cells; however, the exact mechanisms inducing CIN are 
not fully understood. Several explanations have been 
postulated, such as telomere dysfunction and epigenetic 
alterations.27,28

CIN due to telomere fusion is triggered when telomere 
attrition reaches critical shortening and induces cell apop-
tosis. However, in many cancer cells, the telomerase re-
verse transcriptase (TERT) gene on chromosome 5p15.33 
is upregulated through the promoter hotspot mutations 
(C228T and C250T) or gene amplification, which lead to 
both sustained cell proliferation and clonal chromosomal 
alterations.29,30 In recent studies, TERT promoter muta-
tions were also detected in meningiomas, particularly 
in higher-grade meningiomas, and were reported to be 
poor prognostic factors.5,31 Therefore, it was initially hy-
pothesized that TERT activation due to chromosome 5 
amplification was potentially responsible for the cytoge-
netic character of angiomatous/microcystic meningiomas. 
However, RNA-seq showed no detectable expression 
of TERT (FPKM = 0 in all six tumors), reflecting that the 

  
A B C D E FAG517 AG559 AG825 MC409 MC488 MC505

Figure. 2 Radiological images of six cases of angiomatous and microcystic meningiomas. (a–c) are angiomatous, and (d–f) are microcystic 
meningiomas. T2-weighted magnetic resonance imaging (MRI) of (b–e) shows high-intensity peritumoral edema (upper panels). All tumors show 
gadolinium enhancement on T1-weighted MRI (middle panels). Microcystic meningiomas (d–f) show low density in computed tomography (lower 
panels).
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present angiomatous/microcystic cases did not demon-
strate aggressive behaviors.

Telomere dysfunction is also implicated in defective 
DNA double-strand break repair.32 For example, the 
MRE11 gene encoding a double-strand break repair nu-
clease, which was mutated in the microcystic MC488 me-
ningioma (Supplementary Table 1), plays a central role in 
double-strand break repair and maintenance of telomere 
integrity via the MRE11/RAD50/NBS1 complex.33 Not only 
somatic mutations,34,35 but also germline mutations for 
cancer predisposition were reported in this gene.36,37 In 
fact, the p.L473S mutation of MRE11 (rs771843497) de-
tected in MC488 was reported as a germline mutation in 
a patient with hereditary breast cancer according to the 

ClinVar database (https://www.ncbi.nlm.nih.gov/clinvar/). 
Further investigation is needed because the biological 
and clinical significance of the p.L473S mutation has not 
been determined.37 However, given the nonmalignant na-
ture and the absence of recurrently mutated cancer driver 
genes among angiomatous/microcystic meningiomas,7 it 
was suggested that dosage-balanced genes associated 
with the frequently amplified chromosomes might confer 
the tumorigenesis of these hyperdiploid meningiomas 
rather than somatic driver mutations.7,24 In this theory, 
pathogenic hyperdiploidy disrupts stoichiometric bal-
ance of gene products forming active multiprotein com-
plexes and pathways associated with cell proliferation 
signals.38,39
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Figure. 3 Copy number profiles calculated using Affymetrix SNP array data. GISTIC 2.012 visualizes copy number profiles across the dataset of 51 
meningiomas. Of these, 13 including the present six angiomatous/microcystic meningiomas were analyzed by Genome-Wide Human SNP Array 6.0 
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Hyperdiploid meningiomas represented by 
angiomatous meningiomas were reported to have char-
acteristic changes in DNA methylation,40 which were 
also known to contribute to CIN.41 Sahm et al.40 reported 
that meningiomas with good postoperative prognosis 
were clearly subdivided into three classes according to 
their DNA methylation profiles: the first class denoted 
as MC-ben-1 was represented by meningiomas with NF2 
loss; the second MC-ben-2 by non-NF2 meningiomas 
harboring TRAF7, KLF4, AKT1, or SMO mutations; and 
the third MC-ben-3 by multiple chromosomal gains, 
most frequently affecting chromosome 5, which in-
clude microcystic as well as angiomatous meningiomas. 
Their analysis further demonstrated that the assignment 
to these MC-ben-1 to -3 classes had higher power for 

predicting good postoperative prognosis than the WHO 
grading.40 Although a cause-effect relationship between 
such DNA methylation changes and hyperdiploidy needs 
to be clarified, integrated diagnosis using genetic and epi-
genetic examinations will become increasingly important 
for clinical decision making in surgical strategies and ad-
ditional therapeutic options.25,26,40

The present study has a few limitations. The number of the 
samples was limited because of the rarity of angiomatous/
microcystic subtypes. Further replication studies with larger 
sample sizes are required, especially in transcriptome or 
methylome analysis. Single-cell RNA sequencing, for ex-
ample, might uncover angiomatous or microcystic specific ge-
netic characteristics that could not be detected by the present 
bulk tumor analysis. In addition to the comparison between 
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angiomatous and mycrocystic subtypes, comparing them with 
nonhyperdiploid meningiomas is left for future work.

In conclusion, the present study indicated that angiomatous 
and microcystic meningiomas have substantially similar ge-
netic profiles represented by the characteristic patterns of 
multiple polysomies originating from chromosome 5 am-
plification. Although the mechanism underlying such chro-
mosomal aberrations and divergent morphological features 
needs to be further investigated, polysomy of chromosome 5 
can be a promising biomarker providing a novel genetic clas-
sification for this angiomatous/microcystic type of menin-
gioma. Dosage-imbalanced genes associated with frequently 
amplified chromosomes may be potential therapeutic targets 
for the angiomatous/microcystic meningioma in the future.
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