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Introduction

Critically ill patients encompass an enormously heterogeneous population and, as
such, therapeutic interventions, including drug therapy, can produce multiple out-
comes in different patient subgroups. For example, researchers not only look for an
‘average effect’ of a drug on a typical patient, but also seek to understand individual
variability. The presence of variability impacts significantly on the success of clinical
trials and failure to identify this variability can result in the clinical trial being
under-powdered to detect a treatment effect. For clinicians, failure to recognize vari-
ability can result in unintended toxicity or excessive harm in certain patients. Hence,
understanding variability is critically important in both research and clinical prac-
tice.

Nowhere is the relevance of patient variability more evident than in sepsis. Over
the last two decades, numerous clinical trials have been conducted, all producing
mixed results. It has been commonly observed that various patient populations
responded differently to the same drug, ranging from marginal beneficial effect in
some subgroups, to nil effect or increased toxicity in others.

Investigators have attempted to address the heterogeneity issue by stratifying
patients into groups who have different baseline mortality risk. Theoretically, identi-
fying those patients who are most likely to respond to treatment will ensure maxi-
mal benefits and minimal harms. In the case of recombinant activated protein C
(drotecogin alfa (activated)), such subgroups have been identified [1, 2]. For many
other drugs, no particular subgroups were found, although investigators have long
suspected patient heterogeneity was the reason for failure in these trials [3].

There is now an increased recognition that our failure to give the right treatment
to the right patient reflects our current limitations in identifying and measuring het-
erogeneity in critically ill patients [4, 5]. In this chapter, we will redefine heterogene-
ity in sepsis patients using a simple conceptual model. We then review findings from
recent studies that provide new insights into the sources of heterogeneity in these
patients.

How to Identify and Measure Heterogeneity

Current methods to define patient heterogeneity in sepsis are grossly inadequate.
Traditional criteria such as age, clinical settings or disease severity are commonly
used to enlist patients into clinical trials. However, these are crude measures of the
inherent heterogeneity of a very complex syndrome in a diverse patient population.
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Although simple physiological parameters (e.g., systemic inflammatory response
syndrome [SIRS] criteria), organ level indices (e.g., circulatory failure), or a combi-
nation of both (e.g., APACHE score) have been proved to be helpful in epidemiologi-
cal studies, they are too non-specific as criteria to stratify patients in clinical trials.
With the exception of recombinant activated protein C and anti-tumor necrosis fac-
tor (TNF) therapy, attempts to select patients based on disease severity or baseline
mortality risk have consistently failed, as evidenced from analyses of clinical trials
on anti-coagulant therapy, anti-inflammatory drugs, or low-dose corticosteroids [11,
12]. Investigators can also measure a vast array of physiological parameters and
serum cytokines in sepsis patients. However, we do not know how these measure-
ments relate to the observed heterogeneity, nor do we know how they can be used
to predict a patient’s possible response to a new drug. Consequently, there is cur-
rently no agreed upon method to identify and measure heterogeneity in sepsis

patients.

Sources of Heterogeneity in Sepsis Patients

The sources of heterogeneity are multiple and manifest at different levels. Study and
patient level variables (e.g., trial design, disease severity) are easy to discern, as this
information is readily available from published reports of clinical trials. Our current
understanding of heterogeneity derives mainly from these variables [8]. While the
data from these variables is useful, they represent only the tip of an iceberg (Fig. 1).
The iceberg model provides a qualitative overview of the sources of heterogeneity.
The complexity of the data increases progressively downwards in this model (Fig. 1).
Data on organ and cellular level variables demonstrate a diverse range of complex
behavior exhibited by different organs (e.g., liver vs. kidney) [9] and different cells

1. Study level Trial design, clinical settings, treatment duration

2. Patient level / Age, gender, disease severity

|
3.0rgan level ,"l \ Heart, lung, kidney
| \
4, Cellular level Neutrophils, lymphocytes, endothelium
5. Molecular level ,'I | Receptors, cytokines, microbial products

6. Genomic level | | Polymorphisms, gene-expression, proteomics

Fig. 1. The iceberg model to conceptualize the sources of heterogeneity in sepsis trials. Variables on the
upper levels of the model are easier to discern and study. Complexity of the data increases towards the
lower levels, with most variables yet to be discovered or understood at the genomic level.
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(e.g., leukocytes vs. endothelium) [10]. Data from molecular level studies are even
more complex, with over 50 mediators found to be involved at multiple points dur-
ing the host response to sepsis [11].

The highest level of complexity, however, lies at the genomic level. Here, a vast
myriad of data is accessible to only a handful of researchers in a few highly special-
ized research institutions. Yet, these data are potentially the richest source of infor-
mation and may help us identify and measure the observed clinical heterogeneity in
sepsis patients. Here, we will highlight some important findings from this rapidly
expanding area of research.

New Insights from Gene-expression Studies

The field of genomic science includes the study of genetic polymorphism, proteo-
mics, and gene-expression profiling (see Table 1 for more details). The emerging
fields of proteomics and genetic polymorphism have been reviewed elsewhere [12,
13]. This chapter will focus on insights obtained from studies of gene-expression
profiling, a field with the most promising potential to assist us understand the
sources of heterogeneity in sepsis.

Over the last 5 years, we have undertaken a large scale, systematic interrogation
of the host response in sepsis at a transcriptional level [14-16]. The microarray
technique is a powerful tool that allows us to sift through a massive amount of the

Table 1. Glossary

Proteomics: A new technology that involves large-scale study of protein composition and function.
Typically, it involves cataloguing all the expressed proteins in a particular cell or tissue type, using

techniques such as two-dimensional gel electrophoresis or mass spectrometry. A single mass spec-

trometry experiment can identify over 2,000 proteins.

Gene-expression profiling: A high-throughput technology that measures the activity of thousands of
genes at once, to create a global picture of cellular function. Cells respond changes in their environ-
ment by making messenger RNA (i.e., gene-expression), which in turn encodes for various proteins
that carry out the appropriate cellular function. A single experiment can measure an entire genome
simultaneously, in some cases over 25,000 genes. This technology therefore provides a more global
picture than proteomics.

Polymorphism: A common biological phenomenon in which phenotype variations arise due to differ-
ence in DNA sequence among individuals. The most frequent type of polymorphism is the single-
nucleotide polymorphism (SNP), which can be a substitution, a deletion, or an insertion of a single
nucleotide. It is thought to be one of the causes of the individual variability in the susceptibility to
infectious disease.

Microarray: The commonest platform used in gene-expression profiling experiments. It is a two-
dimensional grid of DNA genes or gene fragment spots, usually arranged on a glass slide or silicone
wafer. A typical microarray contains 10,000—200,000 microscopic probes. The probes on the microarray
are either a short oligonucleotide or a cDNA. Probe-target hybridization is usually detected and quan-
tified by fluorescence-based detection. This allows the determination of relative abundance of nucleic
acid sequences in the sample.

Network Analysis: An analysis method that seeks to study the relationships and interactions between
various parts of a cell signaling system (metabolic pathways, organelles, cells, and organisms) and to
integrate this information to understand how biological systems function.
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genetic information contained within the human genome (see Table 1 for more
details). We examined the gene-expression profiles of 164 critically ill patients
admitted to the intensive care unit (ICU) of a university-affiliated teaching hospital.
The patient cohort consists of a full range of sepsis syndromes (from sepsis to septic
shock) in a wide variety of clinical settings (medical, surgical and obstetric). Our
findings reveal some interesting insights with regard to transcriptional heterogene-

ity.

Limitation of Current Risk Stratification Methods

Our data shows that there is no difference in the host response between sepsis,
severe sepsis, and septic shock at a transcriptional level. Classification of septic
patients into sepsis, severe sepsis, and septic shock is one of the commonest ways to
stratify patient into different risk groups and is supported by a large amount of data
from epidemiological studies [17]. However, the use of these criteria has failed to
identify treatment-responsive groups in most clinical trials. Fundamental questions
have therefore been raised on the effectiveness of such criteria to define the complex
range of heterogeneity found in septic patients [18]. Our data provide the first geno-
mic evidence that the grouping of patients based on such criteria is too limited to
represent the full spectrum of heterogeneity in sepsis patients. A more precise defi-
nition of the subgroups in sepsis is needed, perhaps by using not just simple clinical
variables (e.g., heart rate or creatine values), but also more sophisticated methods
such as genomic studies.

Host Response in Sepsis is More Complex Than Previously Thought

Investigators have delivered a huge amount of molecular information on sepsis at an
unprecedented level of complexity. This is well demonstrated by a seminal study by
Calvano et al., in which volunteers were given endotoxin and their gene-expression
profiles measured [19]. A total of 3,714 genes were found to have their expression
intensity altered by the endotoxin challenge. This is an impressively large number
because it represents over 14 % of the protein-coding genes. When these genes were
followed at 2, 4, 6, 9 and 24 hours, more complex changes were exhibited. In addi-
tion, the authors performed network analysis (see Table 1 for more details) and
reported a further discovery of a vast interconnecting network of cellular activities.
For example, by honing in on just one gene alone (i.e., nuclear factor kappa B), the
authors unveiled a total of 619 interactions between 150 genes. With over three
thousand genes showing simultaneous changes, the number of potential interactions
is immeasurable. The immense complexity of these data provides an exciting oppor-
tunity to develop a potentially more powerful method to classify sepsis patients into
clinically relevant and molecularly precise subgroups.

There Is Strong Evidence of Heterogeneity at the Genomic Level

Patient subgroups can be identified using gene-expression studies, but first there is
a need to explore all the genomic variability within any defined population of sepsis
patients. To this end, we recently undertook a review of all the gene-expression stud-
ies that had identified genomic markers of sepsis [14-16, 20-22]. We performed a
pair-wise comparison of all the signature genes between each study. Our analysis of
these studies reveals two important findings (Fig. 2).
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First, there are over 400 signature genes that were identified as putative genomic
markers of human sepsis. The vast majority of these genes have never been studied
in the past. These data sets contain valuable sources of information and could
potentially lead to the discovery of novel pathways which may help researchers
explain heterogeneity. In fact, many of these genes are subsequently identified to be
those involved in nucleosome assembly, signal transduction, transcription/transla-
tion regulation, and control of protein complex assembly.

The second finding is that there is minimal overlapping in the lists of signature
genes among studies. The genomic markers of sepsis seem to vary from one patient
population to another. This finding persists even after the analysis is restricted to
studies that had comparable study design, disease spectrum, or clinical settings.
This finding indicates that the spectrum of heterogeneity at a transcriptional level is
large. It is likely that the current studies revealed only a very small portion of this
enormous variability.

Genomic Heterogeneity

To explore genomic heterogeneity further in the context of biological pathways, we
recently conducted network analysis (see Table 1 for more details) using our micro-
array datasets. We examined all the relevant biological pathways implicated in sep-
sis, including those involved in immunity and inflammatory responses. We then
compared our findings to other gene-expression studies that used similar analysis
techniques [19, 23, 24]. These analyses addressed two important questions: 1) what
give rise to genomic heterogeneity; 2) where are the main sources of variability?

What Gives Rise To Genomic Heterogeneity?

Our analyses suggest that the vast connectivity of the molecular signaling system
gives rise to heterogeneity. Traditionally, cellular function is conceptualized as indi-
vidual components working in a linear fashion to produce a series of predictable
biological effect. However, network analysis data suggest a far more complex picture.
It shows that cellular functions are governed by vast gene regulatory networks.
While there are main hubs in these networks, there are also extensive collateral sub-
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networks that will provide alternative routes. This is akin to the airline network,
where travelers can arrive at the same destination via complex re-routing or the use
of alternative airlines. Consequently, there is a large amount of redundancy in its
signaling system. To complicate matters further, there are conflicting feedback loops
acting on each hub. For any given biological signal, multiple outcomes are possible
depending on a variety of factors, such as the temporal pattern of each feedback
loop and summation of individual stimuli. Cellular function is therefore a result of
an integrative process. Such a system gives rise to a huge potential for variability
and, hence, heterogeneity.

Main Sources of Genomic Variability

Given the enormity and the complexity of the data, investigators need to hone into
the main sources of the variability. Our data, along with those from other studies
[19, 23, 24], allow us to narrow our focus down to four gene regulatory networks
(Fig. 3).
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Fig. 3. Four gene regulatory networks (JAK, STAT, NF-x8 and p38 MAPK). BCL2: B-cell CLL/lymphoma 2;
CREB: cAMP responsive element binding protein; DUSP: dual specificity phosphatase; FADD: Fas-associated
death domain protein; IFNGR: interferon gamma receptor; I«B: inhibitor of kappa-B; IL-R: interleukin-1
receptor; IRAK: interleukin-1 receptor-associated kinase; JAK: Janus kinase; LPS: lipopolysaccharide; MAPK:
mitogen activated protein kinase; MyD88: myeloid differentiation primary response gene 88; NF-kB:
nuclear factor kappa-B; SOCS: suppressor of cytokine signaling; STAT: transducer and activator of transcrip-
tion protein; TLR: Toll-like receptor; TNF: tumor necrosis factor; TNFRSF1B: TNF receptor superfamily, mem-
ber 1B; TRADD: TNF receptor-associated death domain protein; TRAF2: TNF receptor-associated factor-2.
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All four networks have been implicated in the immune response to sepsis. Although
other molecular networks have also been implicated, these four networks are the
most consistent findings reported by the gene-expression studies we surveyed.
While each network has been extensively studied in the past, the gene-expression
studies provide a global overview of all these networks and their individual compo-
nents. They reflect a growing body of data that will help researchers explain hetero-
geneity. However, these data represent only a glimpse of the vast genomic landscape.
We still do not fully understand the complex inter-relationship between these net-
works and the dynamic interaction between components of each pathway. More in-
depth studies focusing on gene regulatory networks are therefore needed in the
future.

Further Questions on an Existing Sepsis Model

Our analysis of the gene-expression studies also revealed two unexpected findings
with regard to the role of the immune response. First, there is a noticeable absence
of the activation of pro-inflammatory genes. According to the currently accepted
model of sepsis, the host response is a biphasic process in which an initial hyper-
inflammatory phase is followed by a later, anti-inflammatory phase that manifests as
functional immune suppression [25]. This has not been supported by data from the
gene-expression studies we surveyed, where investigators rarely reported the activa-
tion of well-known inflammatory genes, such as TNF, interleukin (IL)-1, IL-2, IL-6,
or IL-10. Second, the gene-expression studies suggest that immune suppression is
present in both the early and late phases of sepsis. Again, this is in contrast to the
established model of sepsis where immune suppression is thought to occur later. In
fact, it is now well established that the simplistic strategy of treating early sepsis as
a pro-inflammatory phenomenon has been proven ineffective.

Put together, these data suggest that the established model of sepsis is too sim-
plistic to account for the wide range of immune abnormalities observed in sepsis
patients. The insight that both hyper-immune and hypo-immune status can occur
early in sepsis further reinforces our notion that the pathogenesis of sepsis is much
more complex and heterogeneous than we previously thought.

There are important therapeutic implications of the above findings. First, sepsis
has long been defined as a pro-inflammatory or hypo-inflammatory syndrome. Such
a dichotomization ignores the complexity of sepsis and leads to simplistic strategies
such as neutralizing elevated cytokines or replacing a compound when its serum
level is low. Second, septic patients have been treated as an immunologically homo-
geneous group. However, there are likely to be many heterogeneous immune pheno-
types. Giving drugs without sufficient information about the patient’s underlying
immunological status can result in benefit in some phenotypes but harm in others.

With an increased recognition of immunological heterogeneity, some authors are
now advocating that the immune status needs to be accurately assessed before
patients are recruited into clinical trials [26]. However, currently available biomarker
assays capture only a fraction of all known immune abberations in sepsis. For exam-
ple, serum measurements of inflammatory cytokines (e.g. IL-1, IL-6, or TNF-) are
widely used. But a far greater number of molecules have been observed to be abnor-
mally elevated in septic patients. Functional testing of immune cells (e.g., cell prolif-
eration or human-leukocyte antigen [HLA]-DR expression) has also been used, but
it measures only a few pathways and hence provides only a partial view of the over-
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all immunological status. Here, we propose that a gene-expression profiling tech-
nique is better suited to assess global immune dysfunction in sepsis.

Functional Mapping of Sepsis Genome to Monitor Inmune Function

Gene-expression profiling can be used to characterize the immunological status of
septic patients on a genome-wide scale. This is because there are advantages of this
technique over conventional biomarker assays. First, gene-expression profiling can
handle much larger volumes of data, often measuring thousands of genes simulta-
neously. This capability is unmatched by conventional assays. Second, many cellular
dysfunctions are often unmeasurable by normal assays, because their expression is
downregulated or their expressed proteins are below the dynamic range of detec-
tion. These dysfunctions can be easily detected by gene-expression profiling.

We undertook gene-expression analysis of thirty-five critically ill patients (sepsis
= 25, control = 10). Circulating mononuclear cells were used because these cells play
a major role in the immune response in sepsis. We then compared the gene-expres-
sion profile of the sepsis and control patients. The analysis was performed on over
130 biological pathways, including those known to be involved in immunological
functions. Some of the important findings are presented in Table 2.

Table 2. Biological pathways implicated in sepsis

BioCarta Pathway Pathway description Number p-value
of genes

1 h_crebPathway Transcription factor CREB and its extracellular 9 1e-05
signals

2 h_egfr_smrtePathway MAPK inactivation of SMRT co-repressor 8 1e-05

3 h_hcmvPathway Human cytomegalovirus and MAPK pathways 8 1e-05

4 h_hdacPathway Control of skeletal myogenesis by HDAC & 12 1e-05
calcium/calmodulin-dependent kinase (CaMK)

5 h_mapkPathway MAPK signaling pathway 28 1e-05

6 h_p38mapkPathway p38 MAPK signaling pathway 23 1e-05

7 h_tollPathway Toll-like receptor pathway 13 1e-05

8 h_dspPathway Regulation of MAPK pathways through dual 6 9.11e-05
specificity phosphatases

9 h_SARSpathway SARS coronavirus protease 7 9.63e-05

10 h_stressPathway TNF/stress related signaling 7 9.67e-05

11 h_talllPathway TACI and BCMA stimulation of B cell immune 7 9.84e-05
responses.

12 h_fMLPpathway fMLP induced chemokine gene expression in 1 0.0001511
HMC-1 cells

13 h_biopeptidesPathway  Bioactive peptide induced signaling pathway 13 0.0001688

14 h_41bbPathway The 4-1BB-dependent immune response 7 0.000176
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Table 2. (cont.)

BioCarta Pathway Pathway description Number p-value
of genes

15 h_pyk2Pathway Links between Pyk2 and MAPKs 9 0.0003106

16 h_nfatPathway NFAT and hypertrophy of the heart (Transcription 12 0.0003726
in the broken heart)

17 h_eif4Pathway Regulation of elF4e and p70 S6 kinase 15 0.0006778

18 h_Ccr5Pathway Pertussis toxin-insensitive CCR5 signaling in 9 0.001729
macrophage

19 h_keratinocytePathway  Keratinocyte differentiation 15 0.0021693

20 h_arenrf2Pathway Oxidative stress induced gene expression Via Nrf2 11 0.0022934

21 h_GATA3pathway GATA3 participate in activating the Th2 cytokine 10 0.0026139
gene expression

22 h_ranklPathway Bone remodeling 5 0.0040675

23 h_IL12Pathway IL12 and Stat4 dependent signaling pathway in 17 0.0041499
Th1 development

24 h_ifnaPathway IFN alpha signaling pathway 8 0.0043606

25 h_egfPathway EGF signaling pathway 8 0.0179649

26 h_gleevecpathway Inhibition of cellular proliferation by gleevec 7 0.0537086

27 h_ifngPathway IFN gamma signaling pathway 6 0.0820155

28 h_tcraPathway Lck and Fyn tyrosine kinases in initiation of TC(R 23 0.1777127
activation

29 h_asbcellPathway Antigen dependent B cell activation 9 0.2645085

30 h_bbcellPathway Bystander B cell activation 9 0.2645085

As expected, well known pathways such as Toll-like receptor (TLR) or TNF signaling
are confirmed to be involved in sepsis. However, our analysis also discovered a large
number of pathways, many of which have not been studied previously with regard to
their involvement in sepsis. This analysis demonstrates that it is feasible to assay
immunological dysfunction on a global scale and to yield highly valuable biological
information regarding the roles of both established and unknown pathways. Based
on the data above, we hypothesize that a comprehensive architecture of the gene reg-
ulatory network of immune response in sepsis can be constructed using gene-
expression data. Such a database should include transcriptional information on: 1)
all functional pathways; 2) all possible interactions between genes and molecules; 3)
how the system functions as a whole in response to perturbations (e.g., to trauma,
ischemia, or infectious stimuli); 4) mathematical modeling which will help investiga-
tors predict the existence of hidden interactions or feedback loops.
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Conclusion

Based on the review above, we would argue for a greater appreciation of the com-
plexity of the immune status in sepsis. Current models of sepsis are limited in their
ability to account for the huge range of heterogeneity in sepsis patients. New data
show that immunological dysfunction gives rise to much of the observed variability.
We, therefore, propose that functional mapping of immunological aberrations by
gene-expression studies holds the key to the understanding, measuring, and moni-
toring of heterogeneity in sepsis patients. Such a database will allow future research-
ers to better understand the variability of drug response. In the long term, it will
help clinicians design drug treatment based on individual variability; this is the ulti-
mate goal of individualized medicine.
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