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Strasbourg, Inserm, Interface de Recherche fondamentale et Appliquée en Cancérologie (IRFAC)/Unité Mixte de Recherche
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A pivotal role of thyroid hormones and their nuclear receptors in intestinal development
and homeostasis have been described, whereas their involvement in intestinal
carcinogenesis is still controversial. In this perspective article we briefly summarize the
recent advances in this field and present new data regarding their functional interaction
with one of the most important signaling pathway, such as WNT, regulating intestinal
development and carcinogenesis. These complex interactions unveil new concepts and
will surely be of importance for translational research.
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INTRODUCTION

The role of the Thyroid Hormones (THs) in intestinal development have been established since the
beginning of the 20th century based on the observations on amphibian metamorphosis. Indeed,
during this postnatal developmental process the gastrointestinal tract is dramatically remodeled,
with a first phase of apoptosis followed by a strong increase of cell proliferation correlating with an
increase of circulating THs (1).
THE INTESTINAL EPITHELIUM

The intestinal epithelium is a tissue which combines the absorptive properties of a single layered/
high-surface epithelium with the protective advantages of a constantly renewing barrier. It
comprises six different mature cell types, which are separated into absorptive (enterocytes and M
cells) and secretory (goblet, enteroendocrine, tuft and paneth cells) lineages. The different cell types
allow functions such as the nutrient uptake, metabolic control and immune regulation. Thus, the
intestinal epithelium is a multifunctional dynamic tissue highly dependent on continuous supply of
all cell types in appropriate ratios (2). The epithelial lineages are derived from Intestinal Stem Cells
(ISCs) which are located at or near the base of the intestinal crypts (3). The crypts are invagination
of the intestinal wall, where the ISCs are well protected from the hazards of the digestive process
occurring in the lumen. Within the crypts, self-renewing ISCs give rise to progenitor cells that
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rapidly proliferate and commit into epithelial lineages (2, 3).
These cells are then pushed out of the crypts, they differentiate
while migrating and die by apoptosis at the apex of the villi. This
system efficiently secludes the ISCs and exposes to the hazards of
the digestive tract only postmitotic cells that are programmed to
die (2, 3). Paneth cells represent the exception to this rule, since
they migrate downwards to the base of the crypts where they
reside with a lifespan of approximately 30 days (2).

Homeodomain transcription factors (such as Cdx genes) and
several pathways (including WNT, Hedgehog, Notch, BMP) play
crucial roles in diverse developmental and homeostatic processes
(2, 4). While the molecular basis of their action is well
understood, the complex cross-regulation that occurs between
them and/or with the environment ( i .e. fibroblasts,
myofibroblasts, immune cells, microbiota) still need to be
better defined.
FROM HOMEOSTASIS TO CANCER:
THE CANONICAL WNT PATHWAY IN
THE INTESTINE

Among the signalling pathways mentioned in the previous
paragraph, the WNT pathway is highly conserved and
fundamental for intestinal development, cell proliferation and
differentiation, ISCs maintenance. No other pathway plays such
an important role on the self-renewal/proliferative capability and
cell fate of ISCs (2, 5). Indeed, the Tcf7l2-knockout mice (the
Tcf7l2 gene encodes for TCF4, the transcriptional activator of the
canonical WNT signalling) show a strong impairment in
epithelial renewal and the ISC compartment is entirely absent
(6). Other two papers reported that blocking WNT pathway by
the targeted overexpression of the WNT inhibitor Dickkopf-1 in
the intestinal epithelium, induces in vivo the complete loss of the
proliferative compartment (7, 8). On the other side, van de
Wetering and colleagues concluded that the b-catenin/Tcf4
transcriptional complex constitutes the master switch that
controls proliferation versus differentiation in healthy and
malignant intestinal epithelial cells (9). In the context of
cancer, the WNT signalling pathway is well known for its role
as a key driver of intestinal tumorigenesis. In fact, among the
most frequently mutated genes, the very early event in cell
transformation depends on the uncontrolled activation of the
WNT/b-catenin pathway. This is driven very frequently by loss-
of-function (LOF) mutations of the APC/Apc gene, whose
product in a wild type (WT) context, blocks the functionality
of the b-catenin and thus the activity of the pathway (10, 11).
Other genes participating in this pathway frequently mutated in
cancer include AXIN2/Axin2 (LOF) as well as CTNNB1/Ctnnb1
gain-of-function (GOF), the last encoding for the b-catenin
protein. Specifically, CTNNB1/Ctnnb1 mutations are
responsible for a stabilized oncogenic form of the protein (10,
11). It is important to underline that several signalling pathways
can synergize with and induce WNT pathway activation to
accelerate the early steps of tumorigenesis. Indeed, the Notch
(12), Shh (13), Yap/Taz (14) are examples of signalling pathways
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which trigger APC-dependent tumorigenesis. Finally, we have
demonstrated that THs via their Nuclear Receptor a1 (namely
Thyroid hormone Receptor a1, TRa1) can be included in this
list (15, 16).
TRs IN THE INTESTINAL DEVELOPMENT
AND HOMEOSTASIS

The action of THs in the nucleus depends on the ability of TRs to
bind the hormone T3, which is then considered as the active
hormone and the cellular effector of THs. TRs activate or repress
the transcription of target genes by binding to specific DNA
sequences called thyroid hormone response elements (TREs)
(17). During the amphibian metamorphosis different TRs are
distinctly involved. Indeed, the Thyroid hormone Receptor a
(TRa) is expressed at low level in the tadpole pre-metamorphic
intestine whereas the Thyroid hormone Receptor b (TRb) is
strongly increased after the surge in the TH level and they both
play a fundamental role during the gut remodeling process (18).
Moving to mammals, the generation of specific murine models
helped to elucidate the function of THs in multiple organs and
tissues including the intestinal epithelium (19). In mammals, the
postnatal maturation consists of an increase in mucosal growth
coupled to a burst in cell proliferation (19). Interestingly, THs
level increases significantly in rodents at the weaning period (20),
when the intestine undergoes this structural and functional
reshaping. This increase has been also correlated with the
mucosal growth and the onset of adult-type digestive enzymes
expression in the enterocytes (21). Detailed analyses in murine
models helped to define the different specific actions of TRa1 in
intestinal epithelium progenitor/stem cell physiology. First, their
proliferation strongly correlates with T3 levels and TRa1
expression (21, 22). Second, the activity of the ISCs at
homeostasis and the regenerative properties of the epithelium
after g-ray irradiation are strongly affected by the lack of TRa1
expression (23, 24). Third, the targeted overexpression of TRa1
in the intestinal epithelium (vil-TRa1 mice) results in crypt
hyperplasia and enhanced proliferation up to adenoma
development (15).
THs-TRs AND COLORECTAL CANCERS:
STILL MORE WORK NEEDED

Epidemiologic studies attempted to define a correlation between
altered THs status in patients and cancer development (25).
Generally speaking, there is still a lack of consensus since both a
stimulating/blocking action of THs or mutated TRs have been
described in several tumor types (25–28). Accordingly,
hypothyroidism is a beneficial factor for ocular melanoma and
mammary cancer (29) whereas it represents an aggravating risk in
the case of hepatocarcinomas (26). Nevertheless, an increased risk
for colon, lung, prostate, and breast cancer with increased THs has
been demonstrated, even suggesting a TH-dose effect on cancer
occurrence (30). The ambiguity from epidemiological studies on
December 2021 | Volume 12 | Article 725708
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THs and colorectal cancer (CRC) may arise from important
missing information on: (i) mutational status of oncogenes
(APC, KRAS, TP53) when hypo- or hyper-thyroidism appears,
(ii) combination of mutations and/or expression of key genes and/
or activation or repression of signalling pathways in different cell
types influencing the biology of the cancer cells, (iii) local
availability of the hormone (31) which is not directly correlated
with the circulating levels of the THs but it is dependent on the
levels of the TH-activating/inactivating enzymes and transporters
(32). Indeed, the deiodinases selenoenzymes such as Dio2 (which
converts T4 into T3), Dio3 (which converts T4 and T3 into revT3
and T2) appear important actors of THs activity (32). A complex
interplay between Dio2 (i.e., high T3), Dio3 (i.e. low T3) and Shh
(33) or WNT (34) has been described in skin tumors or in colon
cancer, respectively. In this last case, Dio3 is upregulated by WNT
signal resulting in a positive effect on cell proliferation (34) and,
contrary to our observations in animals (15, 16, 24), a report also
indicates a negative effect of T3 on cancer stem cells maintenance
in vitro (35). Concerning the TRs, it has been shown that their
mutation or aberrant expression is associated with gastrointestinal
tumors (25). In particular, TRb gene is frequently methylated and
its expression strongly decreased in colon cancer (36) whereas it is
still unclear whether in this same context TRa gene expression
is altered.

More work is clearly needed. In particular, the studies
reported above do not take into account the complexity and
the heterogeneity of the tumors. Hypo- or hyper-thyroidism
per se are probably not directly involved in inducing
mutations, but stimulate or inhibit cellular processes that
can facilitate tumor development in the presence of a
favorable genetic background.
TRa1/WNT CROSSTALK IN THE
PHYSIO-PATHOLOGY OF THE INTESTINE

TRa1 controls the proliferation of the mouse intestinal
epithelium precursor cells by modulating, directly or indirectly,
the expression of genes involved in cell cycle control, some of
them being related to the WNT pathway (20, 37). For instance,
TRa1 is a direct transcriptional regulator of the Ctnnb1 gene.
The increased expression of b-catenin, in turn, activates its
targets such as cyclins D1 and D2 as well as c-Myc which can
be considered TRa1 indirect targets (20). Another TRa1 direct
target in the intestinal epithelium is the secreted frizzled-related
protein (Sfrp2), which is another component of the WNT
pathway (38). Interestingly, through its regulation by TRa1, we
showed that sFRP2 stabilizes b-catenin in intestinal progenitors
in vivo and in primary cells (39). These genes have been
identified through a transcriptional analysis performed in cells
isolated from the intestinal crypts of WT, TRa0/0 and TRb-/-

mice (37). Moreover, the constitutive TRa1 overexpression in
the intestinal epithelium (vil-TRa1 mice) not only confirmed
their regulation but showed an increased cell proliferation and
adenoma development even though it was not able per se to
Frontiers in Endocrinology | www.frontiersin.org 3
induce tumorigenesis (15). Interestingly, the TRa1
overexpression enhanced the intestinal tumorigenic process in
the Apc+/1638N (40) animals (vil-TRa1/Apc+/1638N mice,
hereafter designated as vil-TRa1/Apc) (15) while TRa-KO in
the same Apc-mutated background retarded tumor development
(16). One of the most interesting molecular features of the vil-
TRa1/Apc mice is the increased activity of the WNT pathway
compared with that of the Apc-simple mutants, which is likely
responsible of the earlier onset of tumor development in the vil-
TRa1/Apc mice (15). Importantly, looking for the mechanisms
involved, we characterized the molecular signature of TRa1-
expressing murine tumors that includes Wnt and Notch
pathways as well as stem cell markers (16). We also
demonstrated in cohorts of CRC patients a significant up-
regulation of TRa1 and a positive highly significant correlation
between TRa1 expression and WNT pathway activity, therefore
validating the relevance of the fundamental observations in
clinics (16). Finally, the modulation of TRa1 expression in
human colon adenocarcinoma cell lines, directly correlated
with proliferation, migration and WNT pathway activity (41).

In order to further investigate and shed more light in this
cross-talk we performed cellular and molecular analyses
in animals as well as in cells (methodological details in
Supplementary Materials and Methods). As shown in
Figure 1, the mRNA expression of WNT targets such as Ccnd1
and c-Myc (Figure 1A) is up-regulated in vil-TRa1 intestines
compared to the WT and their level is similar to the normal part
of the vil-TRa1/Apc double mutant mice. However, in the
lesions of these animals there is a further up-regulation,
probably due to the WNT pathway hyperactivation in the
context of the synergistic TRa1 overexpression and Apc
mutation (15, 16). The mRNAs encoding for the WNT
transcriptional effectors Tcf7l2 and Lef1 present an expression
pattern similar to those of their molecular targets (Figure 1A).
The expression of TRa1 direct targets Ctnnb1 and Sfrp2 behave
in different manner and, surprisingly, their expression is
diminished in the double mutant intestines (normal or lesions)
compared to the simple vil-TRa1 mice (Figure 1B). TRa1 and
b-catenin/Tcf4 bind to specific genomic sequences called TRE
and WNT Responsive Elements (WRE), respectively. We
decided to analyze the reciprocal influence of TRa1, b-catenin
and Tcf4 in a cellular test in vitro using the respective luciferase-
driven reporters DR4/TRE (20) and TopFlash/WRE (42). For
this aim, we transfected Caco2 cells with the specific reporters
and observed that the DR4-luciferase activity dependent on
TRa1 can be impaired by the co-transfection of b-catenin and
Tcf4 (Figure 1C). On the contrary, TRa1 transfection had a
small but significant positive effect on the TopFlash-driven
luciferase response (Figure 1C). All these experiments were
conducted in cells in the presence of serum, thus containing
physiological concentrations of THs (43). FopFlash and mut-
DR4 have been used as negative control and, as expected, we
could not detect any modulation of the luciferase activity (data
not shown). Intriguingly, the luciferase response was also present
in the absence of T3 (our unpublished observation), indicating
that TRa1 functionally interacts with the b-catenin/Tcf4
December 2021 | Volume 12 | Article 725708
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FIGURE 1 | Functional interaction between TRa1 and b-catenin/Tcf4 complex. (A, B) Gene expression analysis was performed in the intestine or tumors from 1-month
(young) or 6-month-old mice of the indicated genotype. Specifically, Ccnd1 and c-Myc Wnt targets and, Tcf7l2 and Lef1 Wnt transcriptional effectors (A) or the TRa1 direct
targets Ctnnb1 and Sfrp2 (B) were analyzed. Values represent fold change ± sd, after normalization with Ppib. *P < 0.05, **P < 0.01, ***P < 0.001 compared to indicated
conditions, by unpaired two-tailed Student’s t-test (n=4). (C) A synthetic DR4-driving luciferase reporter (TRa1 response) or the TopFlash luciferase reporter (Wnt response)
were transfected into Caco2 cells maintained in culture medium containing physiological concentrations of T3, together with TRa1, Tcf4 or b-catenin expression vectors in
different combinations, as indicated. Histograms represent mean ± sd. *P < 0.05, **P < 0.01, ***P < 0.001, compared to indicated conditions, by unpaired two-tailed
Student’s t-test (n=9). (D) ChIP analysis was performed on chromatin isolated from the intestine of WT or vil-TRa1/Apc mice normal intestine (N) or tumors (T). DNA/protein
complexes were precipitated with anti-TRa1, anti-b-catenin, anti-Tcf4 antibodies or rabbit IgG (negative control). qPCR was performed on purified DNA from each condition by
using specific primers covering the TRE of Sfrp2 and Ctnnb1, the WRE of Axin2 and c-Myc or the promoters of Villin and 36B4 as indicated; the Ppia gene was used as
internal control. Histograms represent the specific-DNA enrichment in each sample precipitated with the indicated antibody. The horizontal black dotted bars in each panel
delineates the threshold of binding specificity determined by the IgG non-specific binding.

Sirakov et al. TRa1 and Canonical WNT Pathway Cross-Regulation
complex independently from the hormone. These results in cells
pushed us to investigate the eventual presence of the three
proteins on the chromatin, by using an in vivo chromatin
immunoprecipitation (ChIP) approach to analyze the TREs
and WREs of the specific target genes of TRa1 and b-catenin/
Tcf4, respectively. As shown in Figure 1D, in the WT intestine,
TRa1 binds to the promoter region of the Sfrp2 and Ctnnb1
genes containing TRE elements (37). As the Sfrp2 and Ctnnb1
expression profiles suggested, the TRa1 chromatin occupancy
changed between the WT and mutant intestine. In fact, in vil-
TRa1/Apc mice, the TRa1-specific DNA binding on the
Frontiers in Endocrinology | www.frontiersin.org 5
regulatory regions is lost, when compared with the WT
animals. To analyze the specific DNA binding of b-catenin/
Tcf4 on their target genes and the eventual presence of TRa1 in
the same regions, we decided to look at WREs described within
the Axin2 (44) and c-Myc (45), two classical direct WNT targets.
In both cases (Figure 1D) TRa1 was not present on the WRE
regions in the WT intestine but was clearly enriched on them,
both in normal mucosae and the tumors of vil-TRa1/Apc mice
(Figure 1D). As we could not find any TREs within the Axin2 or
c-Myc genomic regions in proximity of the WREs analyzed, we
speculate that TRa1 might be present as a protein partner to
FIGURE 2 | Proposed cross-regulation of TRa1 and Wnt effectors in normal intestine and in tumors. In physiological conditions (Wild Type panel), TRa1 binding on
TREs regulates in a positive manner the expression and stabilization of b-catenin, then contributing to maintain epithelial homeostasis. In vil-TRa1 mice, the levels of
stabilized b-catenin are increased leading to WNT activation and hyper-proliferation. In vil-TRa1/Apc mice, the stronger b-catenin stabilization and Tcf4
overexpression might induce a competitive shift in TRa1 binding from TREs to WREs. We can speculate that this mechanism is one of the factors responsible for the
activation and/or the acceleration of the tumorigenic process dependent upon TRa1-up regulation. TREs, Thyroid hormone response elements; WREs, WNT
response elements. Solid arrows indicate genomic actions; dotted lines represent (i) the b-catenin translocation from cytoplasm to nucleus and (ii) the speculative
model of TRa1 shift from TRE to WRE. Thickness of the solid arrows indicates an increased level of transcriptional activity. Double black arrows indicate crypt width
in WT and vil-TRa1 intestinal sections or the size of the altered mucosa in vil-TRa1/Apc tumor.
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amplify the transcriptional response dependent upon the WNT
effectors b-catenin/Tcf4.
DISCUSSION AND CONCLUSIONS

Complex cross-talks between signaling pathways and hormones,
such as T3, have been described in several physiological models
and in cancers (41, 46, 47). We reported here recent literature
and also included new data on the intriguing relations between
THs/TRa1 and WNT/b-catenin pathway in normal intestine
and in tumors. From these different findings we propose the
model summarized in Figure 2. Indeed, in a normal intestine
TRa1 and the WNT effectors control their own target genes
(Wild Type panel). When TRa1 is up-regulated in a normal
context (vil-TRa1 mice) it stimulates its target genes including b-
catenin, resulting in the activation of the WNT pathway and, by
consequence, increased crypt proliferation, through the
mechanisms we have already described (41, 48). In the case of
the tumors (panel vil-TRa1/Apc), the stronger increase of the b-
catenin/Tcf4 complex not only induces the WNT pathway
activity but may also act to “displace” TRa1 from its own
targets to the WNT targets. We may speculate that the
“displacement” of TRa1 can be considered the molecular
counterpart of the WNT hyperactivation resulting from the
interaction of this two signalling pathways. Indeed, in the
intestinal tumors of vil-TRa1/Apc mice the transcriptional
activity of TRa1 on its own target is similar to that observed
in WT condition, despite the nuclear receptor is expressed at
augmented levels comparable with those of vil-TRa1/Apc mice.
It is worth noting that TRb or other nuclear receptors and b-
catenin/Tcf (alone or in combination) have been shown to form
protein complexes (49–52). We can speculate that TRa1
interacts with b-catenin/Tcf4 complex on WNT targets and
that this process might be independent from T3. In addition,
this interaction could contribute to the WNT pathway hyper-
activation. In the case of the normal mucosae of vil-TRa1/Apc
mice, the molecular phenotype is even more intriguing, given
that these portions of the intestines have histological appearance
similar to that of the vil-TRa1, but show molecular features close
to the tumors.

According to the literature and also considering our work,
THs-TRs definitively play a pivotal role in intestinal
development and homeostasis in both mouse and amphibians
by regulating the expression of a large panel of genes, including
those belonging to the WNT pathway and cell cycle regulators
(37, 53, 54). It is important to underline that all these studies
provide data that can be now used in bioinformatics and statistics
analyses for a direct comparison of TH-TR dependent
Frontiers in Endocrinology | www.frontiersin.org 6
mechanisms in the intestine of different species. Such a study
will aim to identify common/uncommon mechanisms, genes
directly or indirectly regulated in developmental, homeostatic
and pathological conditions. This comparative analysis will
surely be of importance for translational research. Indeed,
when considering the tumor heterogeneity and cell plasticity
within the CRCs (55–57), one of the future challenges will be to
fully define the genes and signalling networks influencing the
activity of TRa1 and, vice-versa, the cascade of regulations
depending on THs-TRa1.
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