
Fault Detection and Identification in an Acid Gas Removal Unit
Using Deep Autoencoders
Tan Kaiyun Kathlyn, Haslinda Zabiri,* Chris Aldrich, Xiu Liu,
and Ahmad Azharuddin Azhari Mohd Amiruddin

Cite This: ACS Omega 2023, 8, 19273−19286 Read Online

ACCESS Metrics & More Article Recommendations

ABSTRACT: An acid gas removal unit (AGRU) in a natural gas processing plant is designed specifically to remove acidic
components, such as carbon dioxide (CO2) and hydrogen sulfide (H2S), from the natural gas. The occurrence of faults, such as
foaming, and to a lesser extent, damaged trays and fouling, in AGRUs is a commonly encountered problem; however, they are the
least studied in the open literature. Hence, in this paper, shallow and deep sparse autoencoders with SoftMax layers are investigated
to facilitate early detection of these three faults before any significant financial loss. The dynamic behavior of process variables in
AGRUs in the presence of fault conditions was simulated using Aspen HYSYS Dynamics. The simulated data were used to compare
five closely related fault diagnostic models, i.e., a model based on principal component analysis, a shallow sparse autoencoder without
fine-tuning, a shallow sparse autoencoder with fine-tuning, a deep sparse autoencoder without fine-tuning, and a deep sparse
autoencoder with fine-tuning. All models could distinguish reasonably well between the different fault conditions. The deep sparse
autoencoder with fine-tuning was best able to do so with very high accuracy. Visualization of the autoencoder features yielded further
insight into the performance of the models, as well as the dynamic behavior of the AGRU. Foaming was relatively difficult to
distinguish from normal operating conditions. The features obtained from the fine-tuned deep autoencoder in particular can be used
to construct bivariate scatter plots as a basis for automatic monitoring of the process.

1. INTRODUCTION
An acid gas removal unit (AGRU) in a natural gas processing
plant is designed to remove acidic components, such as carbon
dioxide (CO2) and hydrogen sulfide (H2S), from natural gas.
Natural gas processing plants are operated with the fundamental
goal of producing gas that meets specific quality criteria
satisfying the needs of their customers. The quality of the
processed gas is determined by the type and concentration of the
contaminants present. For instance, a high concentration of
carbon dioxide in natural gas results in a lower gas heating value,
thus lowering its quality value.
Several technologies are currently applied in the monitoring

of acid gas removal units, including gas chromatography and
spectroscopy,1 to measure the composition of gas streams;
various types of sensors are used to monitor temperature,
pressure, flow rate, and other variables in acid gas removal units.
In addition to these, process modeling2 is used to simulate the
behavior of acid gas removal units and predict their performance
under different operating conditions, as well as data-driven fault
diagnostic methods, such as those considered in this paper.
Generally, the limitations of these monitoring technologies can

include factors such as cost, accuracy, complexity, and
maintenance requirements.
Process monitoring and control of AGRUs play a critical role

in their safe and efficient operation.2 Common challenges when
monitoring chemical process plants, including AGRUs, are their
nonlinearity, the high dimensionality of real industrial data, and
possible multimodal behavior that needs to be accounted for.
While many different models have been proposed to address
these problems in general, the reporting of research specifically
related to fault detection and identification in AGRUs in the
open literature is limited. Pradittiamphon and Wongsa3 have
found that the use of partial least squares (PLS) to detect
variations of natural gas composition and contamination of
amine solutions by hot oil could result in the early detection and
isolation of faults in time to prevent otherwise costly

Received: December 21, 2022
Accepted: April 6, 2023
Published: May 22, 2023

Articlehttp://pubs.acs.org/journal/acsodf

© 2023 The Authors. Published by
American Chemical Society

19273
https://doi.org/10.1021/acsomega.2c08109

ACS Omega 2023, 8, 19273−19286

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Tan+Kaiyun+Kathlyn"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Haslinda+Zabiri"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Chris+Aldrich"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Xiu+Liu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ahmad+Azharuddin+Azhari+Mohd+Amiruddin"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ahmad+Azharuddin+Azhari+Mohd+Amiruddin"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acsomega.2c08109&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c08109?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c08109?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c08109?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c08109?fig=abs1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c08109?fig=abs1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c08109?fig=abs1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c08109?fig=abs1&ref=pdf
https://pubs.acs.org/toc/acsodf/8/22?ref=pdf
https://pubs.acs.org/toc/acsodf/8/22?ref=pdf
https://pubs.acs.org/toc/acsodf/8/22?ref=pdf
https://pubs.acs.org/toc/acsodf/8/22?ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acsomega.2c08109?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://http://pubs.acs.org/journal/acsodf?ref=pdf
https://http://pubs.acs.org/journal/acsodf?ref=pdf
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://acsopenscience.org/open-access/licensing-options/

intervention. Another study conducted by Hakimi et al.4 have
made use of artificial neural networks to successfully detect faults
in a CO2 absorption/stripping column based on data simulated
on an Aspen Plus environment. A different approach, based on
artificial immune systems was used by Al-Sinbol and
Perhinschi.5−7 The approach was validated with a rigorous
Dynsimmodel of an acid gas removal unit and was able to detect
14 different abnormal conditions, including solid deposits and
leakages occurring at typical locations throughout the system.
Natural gas processing systems have been monitored by a

large variety of approaches that can broadly be grouped into two
main categories, viz. model-based and data-based methods. The
latter comprise variants of principal component analysis,8−10

partial least squares,11 and neural networks including
autoencoders.12,13 More recently, the use of deep neural
networks in fault diagnosis has attracted attention,14 but while
these networks can provide performance superior to traditional
machine learning methods, they need generally very large
amounts of data to perform optimally and are generally costly to
develop and maintain, owing to computationally intensive
requirements. Similarly, other models are virtually all subject to
trade-offs between the degree to which they are capable of
capturing nonlinear behavior, robustness to shifts in the
distributions of the data resulting from changes in operating
conditions, their requirements with regard to volumes of data,
cost of development and maintenance, interpretability, etc.
Therefore, despite the rapid increase in the use of traditional and
deep machine learning methods in these industries, there is still
significant scope for further development in data-based
methods, given the limited studies currently documented in
the literature. This includes not only the application of different
models but also their application to different possible fault
scenarios.
Therefore, in this study, the dynamic behavior of an AGRU

subject to faults related to foaming, damaged trays, and fouling
was investigated. In addition, an important class of models used
for fault detection are considered, namely, autoencoders
augmented with SoftMax output layers. In particular, it is
shown that these deep augmented autoencoders offer a decided
advantage over autoencoders with simpler structures and that
visualization of the process dynamics based on features
generated by such autoencoders can form a powerful basis for
process monitoring.
The rest of the paper is organized as follows; Section 2

discusses a general description of common faults occurring in
AGRUs. Section 3 describes the analytical methodology of fault
detection and identification studied in this paper, and Section 4
presents the results and discussion of this study, followed by
conclusions.

2. FAULTS IN ACID GAS REMOVAL UNITS (AGRUS)
Operating anomalies (or faults) such as foaming, damaged trays,
fouling, solvent loss, and feed gas composition variation are
possible faults that may occur in the AGRU system. Table 1
summarizes the faults and the ways in which they may be
simulated.
Three of the five fault conditions presented in Table 1,

namely, foaming, damaged trays, and fouling, are investigated, as
described in the following sections.15 The occurrence of faults,
such as foaming, and to a lesser extent, damaged trays and
fouling, in AGRUs is a commonly encountered problem;
however, they are the least studied in the literature.
2.1. Foaming. Foaming is a common issue in many AGRU

units andmay reduce the CO2 removal efficiency in the absorber
column. Amine solvent solution tends to become frothy on the
absorber or stripping column tray when it is vigorously agitated
especially with the presence of contaminants in the solvent, such
as condensed hydrocarbon. The froth produced will then be
stabilized, altering the amine solution surface properties instead
of breaking in the tray downcomer, resulting in an analogous
situation of jet flooding. The possible way to simulate foaming
anomaly is by reducing the foaming factor of the absorber or
stripping column or by increasing the differential pressure across
the absorber or stripping column abruptly.
2.2. Damaged Tray. Corrosion of the tray due to deposit of

solids, which are produced from the solvent degradation, is the
most common source, which leads to the damaged tray of the
absorber or stripping column. Solids present in the solvent
solution tend to be abrasive to the protective layer of the tray,
thus exposing the tray to potential corrosion. The possible way
to simulate damaged tray anomaly is by decreasing the tray
efficiency of the absorber or stripping column. The frequency at
which damaged tray happens may be lower than those of
foaming.
2.3. Fouling. The accumulation of sludge or scale on the

absorber or stripping column tray in the area of the unit with
relatively still or low velocity is one of the common problems
happening in an AGRU. The sludge or scale consists of a mixture
of contaminants, such as heavy hydrocarbon and polymeric
solvent degradation product. The formation of scale on the tray
results in gradual choking of the hole area where gas is required
to flow up the column, resulting in jet flooding and gas capacity
loss in the column. The most direct way to simulate fouling is by
increasing the differential pressure across the absorber or
stripping column gradually in a slow manner. Similarly, fouling
issues may occur at a much lesser rate than foaming.

Table 1. Common Faults in AGRUs

type of fault source of fault fault simulation

foaming presence of contaminants in solvent, such as condensed hydrocarbon decreasing the foaming factor or increasing the differential pressure
across the absorber or stripping column abruptly

damagedtray corrosion of tray due to deposit of solids, which are produced from solvent
degradation

decreasing the tray efficiency of the absorber or stripping column

fouling accumulation of sludge or scale on trays which contains contaminants,
such as heavy hydrocarbon and polymeric solvent degradation product

increasing the differential pressure across the absorber or stripping
column gradually

solvent loss leakage or spills splitting the affected flow line into two streams; one stream is directed
to the original destination, while another stream is routed to a sink
(representing leakage)

variation of
feedgas
composition

upstream source gas process upset changing the hydrocarbon composition in the feed gas

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c08109
ACS Omega 2023, 8, 19273−19286

19274

http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c08109?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

3. ANALYTICAL METHODOLOGY FOR SUPERVISED
FAULT DETECTION

In this study, there were four main stages involved: (i) dynamic
process simulation of the AGRU system, (ii) preprocessing of

multivariate time series, (iii) feature extraction from the
preprocessed time series data, and (iv) construction of
classification models for fault detection. The general analytical
framework for model development is illustrated as shown in

Figure 1 on the left, while a more detailed workflow related to
the processing of the simulated data is as shown in Figure 1 on
the right.
In essence, the features extracted from the multivariate time

series data signal by the machine learning model are treated as
the diagnostics that can be used to detect the presence of fault
and identify the type of fault occurred. The workflow associated
with development and implementation of the models is shown
in Figure 2. The methodology is further described in more detail
in the following section.
3.1. Process Simulation of Acid Gas Removal Unit

(AGRU). In this study, diethanolamine (DEA) solution was used
as the solvent for the process simulation of the AGRU system.16

First, the AGRU system simulation model developed by Abbas
et al.16 was reproduced and simulated using all the operating
conditions stated. As not all of the operating parameters were
presented, the system model was treated as a foundation model
to be further developed. Modification on the system was
performed in accordance with heuristic rules applied in typical
AGRU system design and operation.17 The modification was
necessary to produce a process model that could represent the
real industrial AGRU as closely as possible.
The AGRU system was initially simulated using Aspen

HYSYS at a steady state as shown in Figure 3a. Adjustments
were subsequently made to the steady state model in order for it
to run dynamically, which included specification of pressure and
flow parameters, proper sizing of the equipment, and design of
the control schemes. Conventional proportional-integral-
derivative (PID) controllers were introduced into the system

Figure 1.Overall methodology framework, i.e., schematic workflow (left) and detailed flowchart from preprocessing till classification stage where the
machine learning model is involved, where AE represents “autoencoder” (right).

Figure 2. Implementation of the fault identification models.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c08109
ACS Omega 2023, 8, 19273−19286

19275

https://pubs.acs.org/doi/10.1021/acsomega.2c08109?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c08109?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c08109?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c08109?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c08109?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c08109?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c08109?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c08109?fig=fig2&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c08109?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

with appropriate tuning. The AGRU system was then simulated
using Aspen HYSYS Dynamics as depicted in Figure 3b with
noise being introduced into the system to make the model more
realistic.
The process model is then allowed to be run dynamically until

it achieved its desired steady state condition. At this stage,
simulated faults were introduced into the system individually
and the resulting dynamic behavior of each relevant stream
variable was observed and recorded. The simulation was allowed
to run continuously, giving the controllers sufficient time to
bring the deviated process system back to its desired steady state
condition. Once steady state was achieved, the same type of fault
was introduced into the system once again and the procedure

repeated for a total of four times in order to generate a sufficient
amount of data representative of the fault condition.
The above steps were repeated with damaged trays and

fouling. It should be noted that all of the aforementioned faults
were introduced in the absorber unit. The AGRU simulated data
used in this study comprised 13 input variables and 4 output/
target classes. For fault detection and identification in the
AGRU, the input variables selected were the CO2 composition
of the sweet gas, as well as the total flowrate, temperature, and
pressure of sweet gas stream, lean solvent stream, rich solvent
stream and acid gas stream (3 process variables × 4 process
streams + CO2 composition from sweet gas stream), making up
a total of 13 input variables, as shown in Table 2. The four

Figure 3. (a) Steady state and (b) dynamic process simulation model of the AGRU system.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c08109
ACS Omega 2023, 8, 19273−19286

19276

https://pubs.acs.org/doi/10.1021/acsomega.2c08109?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c08109?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c08109?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c08109?fig=fig3&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c08109?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

output/target classes were normal, foaming, damaged tray, and
fouling conditions.
In this study, a total of n = 22,666 samples were generated and

m = 21,332 samples (excluding the initial 1334 samples, which
represent the nonsteady state) were treated as the base input
data for subsequent development of machine learning models
for fault diagnosis.
3.2. Preparation of the Data. MATLAB’s Deep Learning

Toolbox (2021a) was used to build the models. First of all,

preprocessing of data was performed. Normalization of the raw
multivariate time series data was done to yield variables with
zero mean and unit variance, as shown in eq 1, where xij and Xij
are the scaled and raw data point respectively at the ith sample
and jth variable, and μj and σj are the mean and standard
deviation, respectively, of the jth variable across m samples.

= = ··· = ···x
X

i m j n; 1, 2, , ; 1, 2, ,ij
ij j

j (1)

The fault conditions are labeled as shown in Table 3.
The scaled and normalized data together with their labels

were randomly divided into a training set (70% of the data or
14,936 samples) and a test set (30% of the data or 6396
samples).
3.3. Analytical Methodology. The overall analytical

methodology consisted of the use of autoencoders to extract
features from the operational variables in the AGRU and then
using these features as predictors in a supervised fault
classification model. Five related approaches were used to
achieve this. The first was based on the use of principal
component analysis (PCA), and the other two were based on a
shallow and a deep sparse autoencoder, each of which was
trained in two different ways.
A two-stage training methodology was followed. In the first

stage, an autoencoder was trained in unsupervised mode with
target function the reconstruction error of the predictors or
input data. The autoencoder in this first stage is defined by an
input layer (I) with the same number of nodes as the number of
input variables, either one (h2) or three hidden layers (h1, h2, and
h3) and an output layer (O) with the same number of nodes as
the input layer. All the models were also provided with a
classification (SoftMax) layer. The outputs of the bottleneck

Table 2. Input Variable and Output/Target Class

input variable (xi) output/target class

x1: sweet gas stream CO2 composition (kmol/kmol) normal
x2: sweet gas stream total flowrate (kmol/hr) foaming
x3: sweet gas stream temperature (°C) damaged tray
x4: sweet gas stream pressure (bar) fouling
x5: lean solvent stream total flowrate (kmol/hr)
x6: lean solvent stream temperature (°C)
x7: lean solvent stream pressure (bar)
x8: rich solvent stream total flowrate (kmol/hr)
x9: rich solvent stream temperature (°C)
x10: rich solvent stream pressure (bar)
x11: acid gas stream total flowrate (kmol/hr)
x12: acid gas stream temperature (°C)
x13: acid gas stream pressure (bar)

Table 3. Labeling of Fault Classes

AGRU system condition denoted label indexed label

normal N [1 0 0 0]
foaming A [0 1 0 0]
damaged tray B [0 0 1 0]
fouling C [0 0 0 1]

Figure 4.Models used in fault diagnosis of the AGRU. (i) Principal component model with scores serving as predictors to the classifier, (ii) shallow
autoencoder with no fine-tuning, (iii) shallow autoencoder with fine-tuning, (iv) deep autoencoder with no fine-tuning, (v) deep autoencoder with
fine-tuning.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c08109
ACS Omega 2023, 8, 19273−19286

19277

https://pubs.acs.org/doi/10.1021/acsomega.2c08109?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c08109?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c08109?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c08109?fig=fig4&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c08109?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

layer (h2) served as input to this classification layer (c), which
had as the output four predicted process conditions or classes
(normal operation and the three fault conditions).
The second hidden layer is also referred to as the bottleneck

or feature extraction layer of the autoencoder, while layers h1 and
h3 can be referred to as the encoding and decoding hidden layer
of the network. These nodes in the hidden layers typically have
sigmoidal activation functions, which allow nonlinear encoding
and decoding of the data. The three-hidden layer autoencoder
will be referred to as a deep autoencoder, although deep
autoencoders would typically have more than three hidden
layers.
It should also be noted that when layers h1 and h3 are absent

and the network and the bottleneck layers have linear nodes, the
model is equivalent to principal component analysis. Feature
extraction is carried out to extract the most significant and
essential information from the input data set with the goal of
obtaining a more effective representation of the features via
linear or nonlinear features learning.
These models are illustrated in Figure 4. Figure 4i is a

principal component model, which is fitted directly to the data,
as explained in Section 3.3.1, as this is a more efficient approach
than fitting the equivalent autoencoder mentioned above. The
principal components (P) served as input to the SoftMax
classifier (c), and during the second stage of training, only the
weights of this layer are trained. The second variant (ii) is a
shallow autoencoder with a bottleneck layer (h2) only. After the
first stage training of the autoencoder to reconstruct the input
data, the features generated from its bottleneck layer (h2) served
as input to the SoftMax layer (c). The third variant (iii) is
identical to (ii), except that during second stage training, both

the SoftMax weight layer and the weights of the encoding
section (h2) of the autoencoder are trained. The weights of h2 are
not trained ab initio but are further trained or fine-tuned,
following stage 1 training. Model (iv) is the same as model (ii),
except that the autoencoder has three hidden layers. In this case,
again, the output of the bottleneck layer (h2) serve as input to the
SoftMax classification layer and only the weights of this layer are
trained in the second stage.
In the same way, model (v) is identical to model (iii), except

that it also has three hidden layers. Unlike model (iv), during the
second stage of training, the layers of the SoftMax layer, as well
as those of the h2 and h2 hidden layers, are trained. Model (v) is
the most powerful version of the five models, as it has a deep
structure that is fine-tuned to identify the fault conditions. More
detail on each of the models is given in subsections 3.3.1−3.3.3.

3.3.1. Principal Component Analysis (PCA). With principal
component analysis (PCA), a new set of variables or principal
components is obtained from linear combinations of the original
variables and they are ordered by the amount of variance they
explain in the data. The first principal component explains the
most variance, and each subsequent component explains as
much of the remaining variance as possible. A reduced set of
features can be obtained by selecting only the top principal
components.
More formally, the decomposition of the data matrix X via

PCA is given by eq 2, where Tk is the score matrix with a
dimension ofm × k, Pk is the loading matrix with a dimension of
n × k, Ek is the residual matrix with a dimension of m × n, and k
≪ n is the total number of principal components retained.

= +X T P Ek k k
T (2)

Retention of k principal components was based on the
cumulative variance (CV) of the components, computed
according to eq 3. K is the minimum number of components
required to ensure CV ≥ 0.8.18 In eq 3, CVk is the cumulative
variance across the first k number of retaining principal
components, and λl the lth eigenvalue of the model, with l = 1,
2, ... k.

= =

=
CVk

l
k

l

l
n

l

1

1 (3)

The training data set was input into the PCA model. The
principal component variances, which are the eigenvalues λl,
were computed, and a CV value of approximately 0.8 was used a
criterion for the number of principal components to retain. The
CVwas computed from the eigenvalues starting fromCV1 until a
CV of >0.8 was reached, i.e., CV4= 0.853.

Table 4. Training Parameters of Shallow Sparse Autoencoder

training parameter value/description

number of hidden nodes in the
bottleneck layer

1 2 3 4

activation/transfer function in
encoder

logistic sigmoid (logsig) logistic sigmoid (logsig) logistic sigmoid (logsig) logistic sigmoid (logsig)

activation/transfer function in
decoder

logistic sigmoid (logsig) logistic sigmoid (logsig) logistic sigmoid (logsig) logistic sigmoid (logsig)

training algorithm scaled conjugate gradient
descent (trainscg)

scaled conjugate gradient
descent (trainscg)

scaled conjugate gradient
descent (trainscg)

scaled conjugate gradient
descent (trainscg)

L2 regularizer coefficient 0.001 0.001 0.001 0.001
sparsity regularizer coefficient 16 16 16 16
desired sparsity parameter 0.075 0.05 0.1 0.05
max epochs 1000 1000 1000 1000

Table 5. Process Variables Used as Predictors

stream variable

sweet gas CO2 composition (kmol/kmol)
total flowrate (kmol/hr)
temperature (°C)
pressure (bar)

lean solvent total flowrate (kmol/hr)
temperature (°C)
pressure (bar)

rich solvent total flowrate (kmol/hr)
temperature (°C)
pressure (bar)

acid gas total flowrate (kmol/hr)
temperature (°C)
pressure (bar)

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c08109
ACS Omega 2023, 8, 19273−19286

19278

http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c08109?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

3.3.2. Shallow Sparse Autoencoder. An autoencoder maps
an input vector x into a latent representation (features) H as
indicated by eq 4. This is followed by decoding the featuresH to
reconstruct the original sample vector x as outputs x̂, as
indicated in eq 5.

= +H W x b()1 1 (4)

= +x W h b()2 2 (5)

=
+

x
e

()
1

1 x (6)

In eqs 4 and 5,Φ is an activation function, which is typically a
sigmoidal function for both encoding and decoding processes as
expressed in eq 6.W1 andW2 are the weight matrices associated
with encoding and decoding, respectively, and likewise, b1 and b2
are bias vectors associated with encoding and decoding,
respectively.
Optimization of these parameters (W1, b1, W2, and b2) is

carried out with the fundamental objective of the average
reconstruction error, as shown by eq 7, where L(xij, x′ij) is the
loss function, which is set to be a squared error function in this
study as expressed in eq 8. A scaled conjugate gradient descent
algorithm was applied in the autoencoder training and
optimization.

[* * * *] = = =W b W b arg min
L x x

m
, , ,

(,)
W b W b

i
m

j
n

ij ij
1 1 2 2 , , ,

1 1
1 1 2 2

(7)

=L x x x x(,) ()ij ij ij
2

(8)

To prevent overfitting of the data, optimization was made
subject to a sparsity constraint19,20 as indicated by eq 9.

[* * * *]

= +

+

= =
i

k
jjjjjjj

y

{
zzzzzzz

W b W b

arg min
x x

m

, , ,

()
W b W b

i
m

j
n

ij ij

1 1 2 2

, , ,
1 1

2

weights

sparsity

1 1 2 2

(9)

= = = = W()

2
a
p

i
m

j
n

ij
a

weights
1 1 1

() 2

(10)

=
=

KL()
c

q

csparsity
1 (11)

As shown in eqs 9−11, α is the L2 regularization coefficient,
Ωweights is the L2 regularizer, β is the sparsity coefficient,Ωsparsity is
the sparsity regularizer, p is the total number of hidden layer(s),
W is the weight matrix, and q is the total number of hidden nodes
in the hidden layer. KL(ρ ∥ ρ̂c) and ρ̂c are further expressed
mathematically in eqs 12 and 13, respectively.

= +
i
k
jjjjj

y
{
zzzzz

i
k
jjjjj

y
{
zzzzzKL() log (1)log

1
1c

c c (12)

= = h x

mc
i
m

c i1
(13)

As shown in eqs 12 and 13, KL is the Kullback−Leibler
divergence, ρ is the desired sparsity parameter, which is typically
a relatively small value (ρ ≈ 0), and ρ̂c is the average activation of
the hidden node c. It is noted that the ρ value implies the desired
model input sample proportion that a hidden unit acts upon. In
this study, KL was used to enforce the sparsity enforce
constraint, ρ̂c ≈ ρ.
Upon completion of the first stage training as discussed above,

the features extracted from the bottleneck layer (h2) of the
autoencoder served as the inputs to the classificationmodel. The
training parameters of the shallow sparse autoencoder are as
shown in Table 4.

3.3.3. Deep Sparse Autoencoders. To develop a deep sparse
autoencoder, two individual shallow sparse autoencoders with
the implementation of the similar development approach as
discussed in Section 3.3.2 were first constructed. Layerwise
training/pretraining was conducted on one hidden layer at a
time in a sequential manner. The model input data x was
presented to the first shallow sparse autoencoder, whereupon
the features captured by the first shallow sparse autoencoder
were then treated as the inputs of the second shallow sparse
autoencoder for further feature extraction. The two shallow
sparse autoencoders were subsequently stacked together to
create a deep sparse autoencoder.
3.4. Classification (Fault Detection and Identification).

The classifier assigned the unknown AGRU conditions to their
respective classes; A (normal), B (foaming), C (damaged tray),
andD (fouling). The SoftMax function was used for this purpose
by introducing a SoftMax layer at the end of each of the PCA and
autoencoder models.
A SoftMax function, which is also known as a normalized

exponential, is recognized in multiclass generalization of the
logistic sigmoid function.21 The Softmax function is used to
represent a discrete variable with u possible values as a
probability distribution. The inputs of the SoftMax function
consisted of components or features, which were recomputed to
be interpretable as probabilities, i.e., each component having a
value between 0 and 1 and all component values summing to
unity.
This SoftMax function was used to map the features extracted

by the PCA and autoencoder models onto a probability
distribution over the four classes (normal, foaming, damaged
tray, fouling). The fault condition with the highest probability
was identified as the prevailing operational condition of the
AGRU. These calculations are represented by eqs 14 and 15.

=
=

y x e
e

()r i

x

j
k x

()

1
()

i

j
(14)

=
=

y y0 1; 1r
j

k

j
1 (15)

3.5. Fine-Tuning of Sparse Autoencoder with Classi-
fication Neural Network Model. As mentioned earlier, to
optimize each layer, layerwise training/pretraining was carried
out. Several studies have shown that the implementation of this
approach to training deep neural networks is most likely to
generate relatively low performance.22−24 This is due to the fact
that deep neural networks with sets of large initial weights are
prone to generation of poor local minima, while deep neural
networks with sets of small initial weights are susceptible to
generation of small gradients at bottom layers. Both conditions

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c08109
ACS Omega 2023, 8, 19273−19286

19279

http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c08109?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

may lead to deterioration in terms of the performance and
applicability of deep neural networks with multiple layers.25

This problem can be obviated by a fine-tuning of the weights
of the deep neural network.26,27 For this purpose, scaled
conjugate gradient descent was used as the backpropagation

algorithm. In order to investigate the effect of performing fine-
tuning on the models, a comparative analysis in terms of the fault
detection and identification performance in AGRU between
models with and without fine-tuning was done. Classification
accuracy (%) was used as the indicator in the evaluation of the

Figure 5. Dynamic behavior of sweet gas stream (left column) and lean solvent stream (right column).

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c08109
ACS Omega 2023, 8, 19273−19286

19280

https://pubs.acs.org/doi/10.1021/acsomega.2c08109?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c08109?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c08109?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c08109?fig=fig5&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c08109?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

model performance in terms of fault detection and identification
in the AGRU.

4. RESULTS AND DISCUSSION
4.1. Dynamic Behavior of Process Variables. The time

series data were extracted from each of the relevant process
variables as tabulated in Table 5.
The dynamic behavior in terms of time series data for each

process variable, which includes the behavior during normal
(N), foaming (A), damaged tray (B), and fouling (C)
conditions, is presented in Figure 5a (sweet gas stream), Figure
5b (lean solvent stream), Figure 6a (rich solvent stream), and
Figure 6b (acid gas stream). In Figures 5 and 6, the data for N, A,
B, and C are extracted and plotted together in the same graphs to
highlight the difference in the behaviors of the process variables
when foaming, damaged tray, and fouling are simulated.
During dynamic process simulation, an initialization process

was performed by Aspen HYSYS Dynamics whenever a fault is

introduced into the system before resulting with the desired
dynamic condition. Thus, the process variable behavior during
the initialization stage is omitted from the time series data in
order to preserve the validity of the results obtained.
As shown in Figures 5 and 6, it can be observed that the

occurrence of the three faults resulted with relatively similar
spike-like dynamic behavior that varied only in terms of the
magnitude of the spikes. As foaming, damaged tray, or fouling
occurred in the AGRU, the sour gas sweetening efficiency
gradually decreased owing to the presence of undesired
operating conditions for the absorption of acid gases into the
solvent solution.
Hence, the CO2 composition of the resulting sweet gas

increased, resulting in poorer quality of the natural gas
produced. Based on heuristic applied in typical AGRU design
and operation,17 a feedback control strategy is usually employed
in order to control the CO2 composition of the outlet sweet gas
(controlled variable) by manipulating the flowrate of the inlet

Figure 6. Dynamic behavior of rich solvent stream (left column) and acid gas stream (right column).

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c08109
ACS Omega 2023, 8, 19273−19286

19281

https://pubs.acs.org/doi/10.1021/acsomega.2c08109?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c08109?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c08109?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c08109?fig=fig6&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c08109?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

lean solvent (manipulated variable) of the absorber unit. Thus,
once the CO2 composition of the sweet gas deviates from the
specified setpoint value, the feedback controller will send a signal
to the control valve of the lean solvent by increasing its flowrate
in order to absorb more CO2 from the natural gas, further
sweetening the sour gas till the resulting sweet gas CO2
composition is brought back to its desired value. As depicted
in Figure 5, with the introduction of faults into the system, it can
be observed that a sudden increment occurred in both the CO2
composition of the sweet gas stream and total flowrate of the
lean solvent stream, in accordance with the theories mentioned
earlier.

The dynamic process model of the AGRU was validated with
heuristic rules.17 The time series data were subsequently used as
the inputs in the machine learning models designed for fault
diagnosis.
4.2. Principal Component Analysis. Four principal

components were retained in the PCA model, collectively
accounting for 83.5% of the total variance of the 13 variables, as
shown in Figure 7. These components served as inputs or
predictors in the subsequent classification model.
4.3. Autoencoders. The deep sparse autoencoder was

developed with four hidden nodes in the bottleneck hidden layer
(h2), analogous with the four component PCA model. The
training parameters of the deep sparse autoencoder are shown in
Table 6. The same parameters were used for the shallow
autoencoders (bottleneck layers only).
4.4. ClassificationAccuracy.Generally, validation data sets

were not required when training autoencoders. However, during
fine-tuning of the autoencoders, a small validation data set was
used to optimize the hyperparameters of the models. This
included the number of nodes in the hidden layers of the deep
autoencoders, the L2 regularization coefficients, sparsity
parameters, etc., and was done with a 65% training, 5%
validation, and 30% test data split.
All of the results for the models in terms of classification

accuracy over 20 runs are shown in Table 7 and Figure 8. As
shown in Table 7 and Figure 8, the first observation is that, with
the increase of feature number from one up to four, the
accuracies show an increasing trend using all the methods except
using deep sparse autoencoder with fine-tuning, whereas the
latter has achieved near perfect performance with any number of
features.
When only one feature is retained, all models involving sparse

autoencoders performed markedly better than one-component

Figure 7. PCA scree plot.

Table 6. Training Parameter of Deep Sparse Autoencoder

first hidden layer (encoder)

training parameter value/description

number of hidden nodes in
bottleneck layer

7 7 7 7

activation/transfer function in
encoder

logistic sigmoid (logsig) logistic sigmoid (logsig) logistic sigmoid (logsig) logistic sigmoid (logsig)

activation/transfer function in
decoder

logistic sigmoid (logsig) logistic sigmoid (logsig) logistic sigmoid (logsig) logistic sigmoid (logsig)

training algorithm scaled conjugate gradient
descent (trainscg)

scaled conjugate gradient
descent (trainscg)

scaled conjugate gradient
descent (trainscg)

scaled conjugate gradient
descent (trainscg)

L2 regularizer coefficient 0.001 0.001 0.001 0.001
sparsity regularizer coefficient 16 16 16 16
desired sparsity parameter 0.25 0.2 0.1 0.2
max epochs 1000 1000 1000 1000

second hidden layer (bottleneck)

training parameter value/description

number of hidden nodes in
bottleneck layer

1 2 3 4

activation/transfer function in
encoder

logistic sigmoid (logsig) logistic sigmoid (logsig) logistic sigmoid (logsig) logistic sigmoid (logsig)

activation/transfer function in
decoder

logistic sigmoid (logsig) logistic sigmoid (logsig) logistic sigmoid (logsig) logistic sigmoid (logsig)

training algorithm scaled conjugate gradient
descent (trainscg)

scaled conjugate gradient
descent (trainscg)

scaled conjugate gradient
descent (trainscg)

scaled conjugate gradient
descent (trainscg)

L2 regularizer coefficient 0.00001 0.00001 0.00001 0.00001
sparsity regularizer coefficient 16 16 16 16
desired sparsity parameter 0.15 0.1 0.1 0.2
maximum number of epochs 2000 2000 2000 2000

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c08109
ACS Omega 2023, 8, 19273−19286

19282

https://pubs.acs.org/doi/10.1021/acsomega.2c08109?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c08109?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c08109?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c08109?fig=fig7&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c08109?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

PCA. This is related to the autoencoder’s ability to generate
nonlinear feature representations, while PCA can only learn
linear feature representations. Fine-tuning contributes to the
further improvement in performance, as it facilitates the
extraction of learnt features designed for optimal performance
of the classifier.

Even with only one feature, the deep sparse autoencoder
without fine-tuning is performing reasonably well at an average
accuracy of over 60%. This indicates the potential of utilizing a
deep sparse autoencoder as feature extractors in an unsupervised
manner, like PCA.

Table 7. Result of Classification Accuracy over 20 Runs with Various Numbers of Featuresa

a*, All models had 13 inputs and 13 outputs (1st stage training) and the SoftMax layer had h2 inputs and four outputs.

Figure 8. Result of classification accuracy over at least 20 runs with various feature numbers.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c08109
ACS Omega 2023, 8, 19273−19286

19283

https://pubs.acs.org/doi/10.1021/acsomega.2c08109?fig=tbl7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c08109?fig=tbl7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c08109?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c08109?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c08109?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c08109?fig=fig8&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c08109?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

With more than one feature, there is little difference in the
performance between both the sparse autoencoders without
fine-tuning and PCA, indicating that any of these models can be
used as the alternative to one another in such cases. Meanwhile,
sparse autoencoders with fine-tuning consistently performed

better than PCA, with a nominal increase in accuracy of 12.2 to

17.2 percentage points. Fine-tuning during network training

forces the models to learn more effective features and

consequently increases themodel performance in fault detection

Figure 9. t-SNE (top, left), principal component (top, right), untuned two-node shallow autoencoder (middle, left), untuned two-node deep
autoencoder (middle, right), fine-tuned shallow autoencoder (bottom, left), and fine-tuned deep autoencoder (bottom, right) score plot of the
variables in the test data set.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c08109
ACS Omega 2023, 8, 19273−19286

19284

https://pubs.acs.org/doi/10.1021/acsomega.2c08109?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c08109?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c08109?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c08109?fig=fig9&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c08109?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

and identification in AGRU systems, in accordance with the
theory discussed in Section 3.5.
4.5. Visualization and Process Monitoring. To gain

further insights and qualitatively assess the discriminative power
of the different models, the AGRU data can be visualized as
shown in Figure 9. This figure shows the 13 plant variables
projected to two dimensions with a t-SNE algorithm (top, left), a
principal component model (top, right), the untuned
autoencoders (middle), and the fine-tuned autoencoders
(bottom). Only the deep autoencoder with fine-tuning shows
nearly complete separation of all four fault classes (bottom,
right) in two dimensions.
Moreover, as indicated by the plots in Figure 9, foaming is

clearly the most difficult fault condition to distinguish from
normal operation. Even so, the deep fine-tuned autoencoder
managed to discriminate between these two conditions with a
high level of confidence.
These scores can form the basis for the construction of

process monitoring maps based on the future scores generated
by the fine-tuned deep autoencoder, as indicated in Table 8.
Confidence limits are superimposed on each of the operating
regimes by use of a support vector data description (SVDD)
model, the parameters of which are summarized in Table 8. This
model is fitted to the first two principal component scores of the
data.
SVDD models are unsupervised learning approaches,28 in

which the data are enclosed in a hypersphere. Although SVDD is
a hardmargin classifier, a cost parameter Cc∈ [0, 1] is often used
in optimization to allow some observations to lie outside the
enclosing hypersphere. The larger the value of Cc, the more
expensive excluding observations from the hypersphere
becomes.

5. CONCLUSIONS
In this study, supervised detection of faulty operating conditions
in AGRUs based on the use of autoencoders with SoftMax
output layers was investigated. These conditions were foaming,
damaged trays, and fouling. Five different models were
considered, namely, a principal component model, a shallow
sparse autoencoder without fine-tuning, a shallow sparse
autoencoder with fine-tuning, a deep sparse autoencoder
without fine-tuning, and a deep sparse autoencoder with fine-
tuning.
Discrimination between nominal operational conditions and

dynamic process conditions associated with foaming were
relatively difficult, and this could not be achieved by all the
models considered. However, among all these models, the deep
sparse autoencoder with fine-tuning always could identify all
fault conditions near perfectly based on the use of as few as two
or three features only. This is ideal for automated visualization
andmonitoring systems when fitted with appropriate confidence
limits to delineate different operational regimes.
Visualization of the data was accomplished with a t-SNE score

plot of all the original features, PCA score plot of the first two
principal components, as well as equivalent score plots based on
the autoencoder features. Visualization indicated the relative

difficulty in distinguishing foaming from normal operating
conditions. In addition, foaming had a significantly more varied
effect on process operations than damaged trays, for example, a
can be seen from the distribution of the data in Figure 10.
However, a deep sparse autoencoder with fine-tuning can largely
eliminate this kind of misclassification.
Further validation of the selected model is proposed to be

carried out in future work based on real data from an industrial
AGRU.

■ AUTHOR INFORMATION
Corresponding Author

Haslinda Zabiri − Department of Chemical Engineering and
CO2RES, Institute of Contaminant Management, Universiti
Teknologi PETRONAS, Seri Iskandar 32610 Perak,
Malaysia; orcid.org/0000-0003-1821-1028;
Email: haslindazabiri@utp.edu.my

Authors
Tan Kaiyun Kathlyn − Department of Chemical Engineering,
Universiti Teknologi PETRONAS, Seri Iskandar 32610
Perak, Malaysia; PETRONAS, Kuala Lumpur 50088,
Malaysia

Chris Aldrich − Western Australian School of Mines, Curtin
University, Perth 6845 WA, Australia

Xiu Liu − Western Australian School of Mines, Curtin
University, Perth 6845 WA, Australia

Ahmad Azharuddin Azhari Mohd Amiruddin − Department
of Chemical Engineering, Universiti Teknologi PETRONAS,
Seri Iskandar 32610 Perak, Malaysia

Complete contact information is available at:
https://pubs.acs.org/10.1021/acsomega.2c08109

Funding
Collaborative Research Fund (CRF) (Cost center 015ME0-
215) and YUTP-FRG (015LC0-477).
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
The authors would like to thank Universiti Teknologi
PETRONAS (UTP), Malaysia and Matrix Technologies,

Table 8. Hyperparameters of Support Vector Data
Description Model Used to Generate Confidence Limits
Shown in Figure 10

kernel type kernel parameter cost

Gaussian 1000 0.9

Figure 10. Process monitoring map of AGRU operation with 99%
SVDD confidence limits delineating normal operation.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c08109
ACS Omega 2023, 8, 19273−19286

19285

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Haslinda+Zabiri"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0003-1821-1028
mailto:haslindazabiri@utp.edu.my
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Tan+Kaiyun+Kathlyn"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Chris+Aldrich"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Xiu+Liu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ahmad+Azharuddin+Azhari+Mohd+Amiruddin"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c08109?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c08109?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c08109?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c08109?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c08109?fig=fig10&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c08109?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Australia, for the facility and technical support provided to
complete this work. This work is performed under the
Collaborative Research Fund (CRF) (Cost center 015ME0-
215), and jointly supported by YUTP-FRG (015LC0-477).

■ REFERENCES
(1) S., Buda; Y.M., Yak; M.F., JaisMethod for determination of dissolved
hydrocarbon in amine solvent by gas chromatography (2008) Interna-
tional Gas Research Conference Proceedings, 1, pp. 550−561.
(2) Paul, P.; Bhattacharyya, D.; Turton, R.; Zitney, S. E. Dynamic
model-based sensor network design algorithm for system efficiency
maximization. Comput. Chem. Eng. 2016, 89, 27−40.
(3) S., Pradittiamphon; S., Wongsa Fault detection and isolation of acid
gas removal units in a gas separation process using PLS, in 2016
International Conference on Instrumentation, Control and Automation
(ICA), Bandung, 2016.
(4) Hakimi, M., Omar, M.B., Ibrahim, R. 2023. Application of neural
network in predicting H2S from an acid gas removal unit (AGRU) with
different compositions of solvents. Sensors, 23(2), art. no. 1020,
DOI: 10.3390/s23021020.
(5) Al-Sinbol, G.; Perhinschi, M. G. Development of an artificial
immune system for power plant abnormal condition detection,
identification, and evaluation. International Review of Automatic Control
2017, 10, 218−228.
(6) Perhinschi, M. G.; Al-Sinbol, G. Artificial dendritic cell algorithm
for advanced power system monitoring. International Review of
Automatic Control 2016, 9, 330−340.
(7) Al-Sinbol, G.; Perhinschi, M. G. Generation of power plant
artificial immune system using the partition of the universe approach.
International Review of Automatic Control 2016, 9, 40−47.
(8) Ha, D.; Ahmed, U.; Pyun, H.; Lee, C.-J.; Baek, K. H.; Han, C.
Multi-mode operation of principal component analysis with k-nearest
neighbor algorithm to monitor compressors for liquefied natural gas
mixed refrigerant processes. Comput. Chem. Eng. 2017, 106, 96−105.
(9) Kumar, A.; Bhattacharya, A.; Flores-Cerrillo, J. Data-driven
process monitoring and fault analysis of reformer units in hydrogen
plants: Industrial application and perspectives. Comput. Chem. Eng.
2020, 136, No. 106756.
(10) Xiao, B.; Li, Y.; Sun, B.; Yang, C.; Huang, K.; Zhu, H.
Decentralized PCA modeling based on relevance and redundancy
variable selection and its application to large-scale dynamic process
monitoring. Process Saf. Environ. Prot. 2021, 151, 85−100.
(11) M., Madakyaru, F., Harrou, Y., Sun, ″Monitoring Distillation
Column Systems Using Improved Nonlinear Partial Least Squares-Based
Strategies,″ in IEEE Sensors Journal, vol. 19, no. 23, pp. 11697−11705, 1
Dec.1, 2019, DOI: 10.1109/JSEN.2019.2936520.
(12) Figueroa Barraza, J.; Guarda Bräuning, L.; Benites Perez, R.;
Morais, C. B.; Martins, M. R.; Droguett, E. L. Deep learning health state
prognostics of physical assets in the Oil and Gas industry. Proceedings of
the Institution of Mechanical Engineers, Part O: Journal of Risk and
Reliability. 2022, 236, 598−616.
(13) Behbahani, R. M.; Jazayeri, H.; Hajmirzaee, S. Fault detection
and diagnosis in a sour gas absorption column using neural network.
Chem. Eng. Technol. 2009, 32, 840−845.
(14) Qi, M.; Jang, K.; Cui, C.; Moon, I. Novel control-aware fault
detection approach for non-stationary processes via deep learning-
based dynamic surrogate modeling. Process Saf. Environ. Prot. 2023,
172, 379−394.
(15) L., Beke, ″Contamination in amine systems,″ September 2010.
[Online]. Available: https://refiningcommunity.com/wp-content/
uploads/2017/06/Contamination-in-Amine-Systems-Beke-BSDT-
SRU-Calgary-2010.pdf. [Accessed 31 January 2020].
(16) Abbas, T.; Ghauri, M.; Rashid, Z.; Shahid, M. Dynamic
simulation of sweetening process of natural gas. Canadian Journal on
Chemical Engineering & Technology 2011, 2, 156−161.
(17) L., Addington, C., Ness, ″An evaluation of general “rules of thumb”
in amine sweetening unit design and operation,″ in Gas Processors
Association (GPA) Annual Convention, Austin, 2010.

(18) A., Rea, W., Rea, ″How many components should be retained
from a multivariate time series PCA?,″ arXiv preprint, vol. arXiv, p.
1610.03588, 2016.
(19) Vincent, P.; Larochelle, H.; Lajoie, I.; Bengio, Y.; Manzagol, P.-A.
Stacked denoising autoencoders: Learning useful representations in a
deep network with a local denoising criterion. J. Mach. Learn. Res. 2010,
11, 3371−3408.
(20) Olshausen, B. A.; Field, D. J. Sparse coding with an overcomplete
basis set: A strategy employed by V1? Vis. Res. 1997, 37, 3311−3325.
(21) C. M., Bishop, Pattern recognition and machine learning, New
York: Springer, 2006.
(22) H., Drucker, R., Schapire, P., Simard, ″Improving performance in
neural networks using a boosting algorithm,″ in Advances in neural
information processing systems 5, San Francisco, Morgan Kaufmann
Publishers, 1993, pp. 42−49.
(23) Kambhatla, N.; Leen, T. K. Dimension reduction by local
principal component analysis. Neural Computation 1997, 9, 1493−
1516.
(24) Tenenbaum, J. B.; de Silva, V.; Langford, J. C. A global geometric
framework for nonlinear dimensionality reduction. Science 2000, 290,
2319−2323.
(25) Hinton, G. E.; Salakhutdinov, R. R. Reducing the dimensionality
of data with neural networks. Science 2006, 313, 504−507.
(26) Hinton, G. E.; Osindero, S.; Teh, Y.-W. A fast learning algorithm
for deep belief nets. Neural Computation 2006, 18, 1527−1554.
(27) Y., Bengio, P., Lamblin, D., Popovici, H., Larochelle, ″Greedy
layer-wise training of deep networks,″ in Advances in neural information
processing systems 19, vol. 19, Cambridge, MIT Press, 2007, pp. 153−
160.
(28) Tax, D. M.; Duin, R. P. Support Vector Data Description. Machine
Learning 2004, 54, 45−66.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c08109
ACS Omega 2023, 8, 19273−19286

19286

https://doi.org/10.1016/j.compchemeng.2016.01.018
https://doi.org/10.1016/j.compchemeng.2016.01.018
https://doi.org/10.1016/j.compchemeng.2016.01.018
https://doi.org/10.3390/s23021020
https://doi.org/10.3390/s23021020
https://doi.org/10.3390/s23021020
https://doi.org/10.3390/s23021020?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.15866/ireaco.v10i3.11739
https://doi.org/10.15866/ireaco.v10i3.11739
https://doi.org/10.15866/ireaco.v10i3.11739
https://doi.org/10.15866/ireaco.v9i5.10067
https://doi.org/10.15866/ireaco.v9i5.10067
https://doi.org/10.15866/ireaco.v9i1.8170
https://doi.org/10.15866/ireaco.v9i1.8170
https://doi.org/10.1016/j.compchemeng.2017.05.029
https://doi.org/10.1016/j.compchemeng.2017.05.029
https://doi.org/10.1016/j.compchemeng.2017.05.029
https://doi.org/10.1016/j.compchemeng.2020.106756
https://doi.org/10.1016/j.compchemeng.2020.106756
https://doi.org/10.1016/j.compchemeng.2020.106756
https://doi.org/10.1016/j.psep.2021.04.043
https://doi.org/10.1016/j.psep.2021.04.043
https://doi.org/10.1016/j.psep.2021.04.043
https://doi.org/10.1109/JSEN.2019.2936520?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1177/1748006X20976817
https://doi.org/10.1177/1748006X20976817
https://doi.org/10.1002/ceat.200800486
https://doi.org/10.1002/ceat.200800486
https://doi.org/10.1016/j.psep.2023.02.023
https://doi.org/10.1016/j.psep.2023.02.023
https://doi.org/10.1016/j.psep.2023.02.023
https://refiningcommunity.com/wp-content/uploads/2017/06/Contamination-in-Amine-Systems-Beke-BSDT-SRU-Calgary-2010.pdf
https://refiningcommunity.com/wp-content/uploads/2017/06/Contamination-in-Amine-Systems-Beke-BSDT-SRU-Calgary-2010.pdf
https://refiningcommunity.com/wp-content/uploads/2017/06/Contamination-in-Amine-Systems-Beke-BSDT-SRU-Calgary-2010.pdf
https://doi.org/10.1016/S0042-6989(97)00169-7
https://doi.org/10.1016/S0042-6989(97)00169-7
https://doi.org/10.1162/neco.1997.9.7.1493
https://doi.org/10.1162/neco.1997.9.7.1493
https://doi.org/10.1126/science.290.5500.2319
https://doi.org/10.1126/science.290.5500.2319
https://doi.org/10.1126/science.1127647
https://doi.org/10.1126/science.1127647
https://doi.org/10.1162/neco.2006.18.7.1527
https://doi.org/10.1162/neco.2006.18.7.1527
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c08109?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

