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Heparan sulfate (HS) is a complex polysaccharide abundantly found in extracellular

matrices and cell surfaces. HS participates in major cellular processes, through its

ability to bind and modulate a wide array of signaling proteins. HS/ligand interactions

involve saccharide domains of specific sulfation pattern. Assembly of such domains is

orchestrated by a complex biosynthesis machinery and their structure is further regulated

at the cell surface by post-synthetic modifying enzymes. Amongst them, extracellular

sulfatases of the Sulf family catalyze the selective removal of 6-O-sulfate groups, which

participate in the binding of many proteins. As such, increasing interest arose on the

regulation of HS biological properties by the Sulfs. However, studies of the Sulfs have so

far been essentially restricted to the fields of development and tumor progression. The

aim of this review is to survey recent data of the literature on the still poorly documented

role of the Sulfs during inflammation, and to widen the perspectives for the study of this

intriguing regulatory mechanism toward new physiopathological processes.

Keywords: heparan sulfate (HS), inflammation, glycosaminoglycan/protein interactions, sulfatase, chemokine,

leukocyte migration

INTRODUCTION

Heparan sulfate proteoglycans (HSPGs) are major components of the cell surface, extracellular
matrix (ECM) and basement membrane in most animal cells. They are composed of a protein
core, onto which are covalently attached complex, anionic Heparan Sulfate (HS) chains of
the glycosaminoglycan (GAG) polysaccharide family. Through the ability of their HS chains
to bind, modulate and control bioavailability of a multitude of protein ligands, HSPGs are
involved in a plethora of biological processes, including cell adhesion, migration, proliferation and
differentiation, embryo development, inflammation, control of angiogenesis, blood coagulation,
tumor growth, and metastasis (1–3). Structurally, a HS chain is characterized by the linear
repetition of a disaccharide unit, composed of alternating N-acetyl glucosamine (GlcNAc) and
glucuronic acid (GlcA). During biosynthesis, the polymer undergoes a series of modifications,
which include the N-deacetylation/N-sulfation of glucosamine to form N-sulfo glucosamine
(GlcNS), the C5 epimerization of GlcA into iduronic acid (IdoA), and O-sulfations at positions C2
of IdoA and C6 (more rarely C3) of glucosamine residues. Tight regulation of these modification
steps leads to the generation of specialized saccharide regions termed S-domains, exhibiting both
remarkable structural diversity and high sulfation content. These S-domains are involved in the
recognition and binding of most HS ligands (4–6). HS is structurally closely related to heparin,
although the latter displays a much higher sulfation content. Therefore, heparin has been widely
used as a surrogate of HS S-domains for protein interaction studies.

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2020.00570
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2020.00570&domain=pdf&date_stamp=2020-04-03
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:romain.vives@ibs.fr
https://doi.org/10.3389/fimmu.2020.00570
https://www.frontiersin.org/articles/10.3389/fimmu.2020.00570/full
http://loop.frontiersin.org/people/898712/overview
http://loop.frontiersin.org/people/936371/overview
http://loop.frontiersin.org/people/122660/overview


El Masri et al. Potential Roles of Sulfs in Inflammation

HS IN INFLAMMATION

Inflammation is a complex, multi-step process leading to
the rapid recruitment of leukocytes from the blood to the
inflammation site. Briefly, emission of an inflammatory signal
triggers the secretion of cytokines and chemokines that diffuse
throughout the tissue and activate leukocytes and vascular
endothelial cells. Cell activation leads to the adhesion and rolling
of leukocytes on the endothelium toward the inflammatory site.
Leukocytes will then cross the endothelium to the basement
membrane, and migrate toward the inflamed tissue to initiate
immune responses. Through its large protein binding properties,
HS participates in various steps of inflammation [for review, see
(7, 8)].

Inflammation is first initiated by the production, upon
endogenous or exogenous signals, of inflammatory cytokines.
Amongst these, chemokines are a family of small proteins
involved in many biological processes such as development,
inflammation and immunosurveillance (9). Chemokines induce
the activation of the endothelium and themigration of leukocytes
from blood toward inflammatory sites. To elicit their functions,
they bind to their primary G-coupled receptors that trigger
downstream signaling. In addition, all chemokines bind to
cell surface and ECM HS. The structural basis of these
interactions has been intensively studied and is now well
documented (10–12).

Functionally, HS does not seem to be essential for chemokine
signaling in vitro. However, in vivo studies showed that
chemokines unable to bind to HS failed to recruit leukocytes
(13), and that HS modulated chemokine activity through
different mechanisms [for review, see (12, 14)]. HS first regulates
chemokine diffusion and sequestration. In some instance,
the capture of the chemokine/cytokine by HS prevents its
release and thus its activity (15). However, by regulating
chemokine diffusion, HS participates in the formation and
stabilization of chemotactic gradients providing directional cues
for migrating leukocytes. In support to this, in vivo inhibition of
CXCL12/HS interaction using sulfated polysaccharide tilted the
chemokine distribution from bone marrow toward the plasma,
thereby causing the release of hematopoietic progenitor cells
in the blood circulation (16). HS also mediates chemokine
transcytosis across the endothelial cell wall (17, 18), and
protects chemokines/cytokines from enzymatic degradation
and inactivation (19–21). Finally, HS may further modulate
chemokine activity by inducing chemokine oligomerization [for
review, see (11)], which has been shown to be functionally
relevant in vivo (13). In that context, an original HS-dependent
cooperative mechanism driving CCL5 dimerization has been
characterized (22).

Activation by pro-inflammatory chemokines and cytokines
induces the expression of endothelial C-type lectins E- and P-
selectins. These bind a variety of glycosylated ligands present
on the leukocyte cell surface to initiate adhesion and rolling
of leukocytes on the endothelium. Recruitment is further
promoted through additional interactions, involving L-selectin
constitutively expressed on leukocytes with leukocyte and
endothelial ligands (23, 24). HS may participate to this process,

as studies reported binding to L-selectin (24, 25), P-selectin
(26), and E-selectin (27, 28). However, it should be noted that
the physiological relevance of these interactions remains to
be clarified. Studies showed that the removal of cell surface
HS with heparinases reduced L-selectin dependent binding of
monocytes, and leukocyte rolling on endothelial cells (29, 30).
During acute inflammation, HS was shown to support L-selectin
dependent rolling of neutrophils on lung microvasculature (31).
On the contrary, lymphocyte rolling on high endothelial venules
(HEV) exclusively relied on interactions of L-selectin with ligands
bearing sialyl Lewis X (sLex) glycosylation motifs, suggesting no
involvement of HS in L-selectin-dependent lymphocyte homing
(32). One could speculate that these discrepancies could be due
to the presence of distinct HS structures and/or sLex ligands on
these different cell types.

Leukocyte rolling is then arrested through increased integrin-
mediated cell-cell adhesion. In a recent study, it has been
proposed that endothelial cell surface HS could participate
indirectly to this process, by capturing and presenting CCL21,
which would in turn activate integrin LFA-1 on rolling
lymphocytes (32). Following arrest, leukocytes get access to
inflamed tissues through extravasation across the endothelial cell
wall. They then reach the basement membrane that comprises
numerous interacting molecules and a variety of HSPGs,
including perlecan, agrin and XVIII collagen, which may further
modulate the extravasation process. These HSPGs can bind
many chemokines, cytokines and growth factors that are critical
for leukocyte migration, and contribute to the formation of
chemokine gradients. On the contrary, they can act as a physical
barrier hindering leukocyte migration.

Finally, studies have also suggested a role of HS in the
phagocytosis process (33, 34). A proposed mechanism is that
newly-exposed HS binding sites at the surface of apoptotic
cells could facilitate their recognition, uptake and clearance by
macrophages (35). However, in vivo data are still needed to clarify
this process.

Most of these inflammatory steps are generally accompanied
by changes in the expression of their cell-surface HPSGs and HS
structure. Many studies have reported an upregulation of cell-
surface HSPG Syndecan-1 upon endothelial cell activation by
pro-inflammatory cytokines [reviewed in (25)]. Differentiation
of monocytes into macrophages leads to high expression of
Syndecan-1, -2 and -4, whereas macrophage activation by
Interleukin (IL)-1 results in the overexpression of Syndecan-2
only (36). Furthermore, the activation of T cells induces the
expression of Syndecans and Glypicans, while the differentiation
of B cells into plasma cells specifically triggers Syndecan-1
expression (37, 38). Depending on the inflammatory stimuli, HS
length, structure and sulfation profiles may also be affected. For
instance, the size and 6-O-sulfation patterns of HS are altered
in primary human endothelial cells upon treatment with tumor
necrosis factor (TNFα) or IL-1 (39). Pro-inflammatory effectors
have been shown to modulate the expression of NDSTs (40–
42). In particular induction of NDST1 led to the production
of highly sulfated HS that increased the sequestration of CCL5,
thereby promoting leukocyte extravasation (42). Vascular lesions
in mice have also been associated with a significant increase
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of NDST1 expression (43). In line with this, inactivation
of NDSTs in endothelial cells led to impaired rolling and
infiltration of neutrophils and macrophages into inflammatory
sites (31, 44). In contrast, restricted inactivation of NDSTs to
leukocytes had no effect on leukocyte infiltration (31). Changes
in HS O-sulfotransferases (OSTs) expression have also been
reported, during macrophage M1/M2 polarization (45), or the
development of renal fibrosis (46). Interestingly, the stimulation
of human monocytes by LPS or TNFα upregulates only one
out of the seven 3OST isoform: 3OST3b, thus highlighting
the fine tuning of sulfotransferase expression pattern during
inflammation (47). Finally, the silencing of 2OST in mouse
endothelial cells during acute inflammation resulted in enhanced
HS 6-O- and N-sulfation, leading to increased neutrophil
infiltration (48).

POST-EDITING MECHANISMS
REGULATING HS DISTRIBUTION,
STRUCTURE AND FUNCTION

Although HS expression and structure is primarily
controlled during polysaccharide biosynthesis, increasing
evidence have also highlighted the importance of the
additional regulatory step provided by post-editing enzymes,
including Heparanase, sheddases, and sulfatases of the
Sulfs family.

In inflammatory processes, post-synthesis regulation of
HS plays a significant role. Heparanase is an endo-β-D-
glucuronidase targeting [GlcA-GlcNS] linkages within HS.
Heparanase cleaves long HS chains from ECM and cell-surface
HSPGs into shorter fragments of 10–20 sugar units. This results
in the release of sequestered HS bound ligands, such as growth
factors, chemokines and morphogens, which can then induce
angiogenesis, cell proliferation and motility (49). Consequently,
Heparanase has been associated with various pathologies,
including cancer, inflammation, thrombosis, atherosclerosis,
fibrosis, diabetes, and kidney disease (50). During inflammation,
Heparanase plays multiple roles. It favors neutrophil adhesion
onto the endothelium, by degrading endothelial cell-surface
HS and unmasking membrane adhesion molecules (51). It
also facilitates leukocyte extravasation, by degrading basement
membrane HSPGs (52). More recently, Heparanase has
been shown to enhance T-cell activity (53). Furthermore,
intracellular heparanase upregulated the transcription of genes
involved in T-cell differentiation (54). Finally and noteworthy,
Heparanase expression is also markedly increased during
neuroinflammation (55).

Shedding of HSPGs takes place upon activation of
metalloproteinases, plasmins and elatases by inflammatory
cytokines (56–59). These proteases target the core protein
of HSPGs like Syndecans, thus releasing soluble HS-peptide
conjugates. Shedding regulates the amount of HSPGs found
at the cell surface or in the ECM and facilitate the release of
sequestered chemokines, which contributes to the resolution
of neutrophilic inflammation (58, 60). In combination with
Heparanase, shedding also facilitate leukocyte migration

by altering the architecture of the ECM and basement
membranes (52).

In addition, soluble released HS fragments/conjugates
(produced by sheddases or Heparanase) induce the secretion by
macrophages and splenocytes of pro-inflammatory cytokines
through activation of the NF-κB signaling pathway (61–63).
Soluble HS fragments also activate neutrophils and promote
an immune response via toll like receptor-4 (64, 65). They
can also trigger the maturation of dendritic cells, leading to
their migration toward lymphoid organs to elicit primary
immune responses (66). In line with this, it was shown that an
exogenous administration of HS or elastase resulted in a systemic
inflammatory response syndrome (SIRS)-like reaction (67).

THE SULFS: POST-SYNTHETIC
REGULATORS OF HS STRUCTURE AND
FUNCTION

Sulfs are extracellular endosulfatases that catalyze the 6-O-
desulfation of HS. Sulf-1 was first discovered in Quail (68),
then orthologs were later identified in mouse, rat, chick, C.
elegans, zebrafish, and human, as well as a second related enzyme,
Sulf-2 (69). In human, HSulf-1 and HSulf-2 (encoded by two
distinct genes) feature a common structural organization (69).
Maturation of the sulfs involves furin-type processing of pro-
enzyme proteins, yielding two sub-units linked by one or more
disulfide bonds (see Figure 1 inset). The N-terminal regions
features the enzyme catalytic (CAT) domain, which shows strong
homology with most eukaryotic sulfatases. The CAT domain
comprises the enzyme active site, including the two conserved
sulfatase signature amino acid sequences as well as the cysteine
modified, catalytic FGly residue. The second functional domain
of the Sulfs is the highly charged basic domain (HD), which
spans over both N-terminal and C-terminal sub-units. The HD
domain is a unique feature of the Sulfs, as it shares no homology
with any other known protein. It is responsible for high affinity
binding to HS substrate and is therefore required for the enzyme
endo-6-O-sulfatase activity (70–73). In addition, the HD domain
has been shown to mediate the capture of Sulfs on cell-surface
HS thereby modulating enzyme diffusion (71). Finally, Sulf C-
terminal region shows homology to Glucosamine-6-sulfatase
(G6S) and Arabidopsis thaliana GlcNAc transferase, suggesting
a role of this domain in the recognition of glucosamine
motifs (69).

Sulfs catalyze the 6-O-desulfation of HS with a strong
preference for [Glc/IdoA(2S)-GlcNS(6S)] trisulfated
disaccharides that are essentially found within S-domains.
Although abundant in heparin, this disaccharide motif is
relatively scarce in HS. Sulf-induced modification of HS
structure is therefore structurally subtle, but with great
functional consequences, as 6-O-sulfation pattern of HS S-
domains is critical for the binding of many signaling proteins
(74). Sulfs are therefore implicated in a number of physiological
and pathological processes, including development, tissue repair,
neurodegenerative disease and cancer [for reviews, see (75–77)].
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FIGURE 1 | HS in inflammation and potential roles of the Sulfs. Inflammatory stimuli induce the secretion of cytokines and chemokines (I) that activate endothelial cells

and blood circulating leukocytes. HS controls the diffusion of these pro-inflammatory proteins, their oligomerization and the establishment of chemotactic gradients (II

and III). Activated Leukocytes then adhere and roll over endothelial cells, through interactions of E- and P-selectins with their counter ligands. L-selectin tightens

cell-contacts by binding to sLeX decorated glycoproteins and HSPGs (IV). After passage through the endothelial layer, efficient migration of leukocytes toward

inflammatory sites requires the degradation of basement membrane HSPGs by proteases and Heparanase (V). HS is thus largely involved during inflammation and HS

6-O-sulfation is critical for most of these interactions. Although still poorly investigated, Sulfs could therefore play different roles during inflammation. In the figure, steps

during which Sulfs could be implicated are highlighted with red bolts. Inset: schematic representation of Sulf structural organization.

DISCUSSION: POTENTIAL ROLES OF THE
SULFS DURING INFLAMMATION

Over the recent years, Sulfs have emerged as critical regulators of
HS functions, with well documented roles during development
and cancer. However and despite growing evidence, Sulfs have
remained largely unstudied in the context of inflammation (see
Figure 1).

It is first well established that HS 6-O-sulfation is a
major structural determinant for the interaction with many
chemokines, including CXCL12 (78–80), CXCL8 (81, 82),
CXCL4 (83, 84) and CCL5 (85). For the latter, the resolution
of the CCL5 crystal structure in complex with heparin
provided further evidence of the contribution of 6-O-S
group in the interaction (85). Furthermore, HS mimetic
glycopolymers featuring [IdoA(2S), GlcNS(6S)] disaccharides
efficiently inhibited CCL5/heparin interaction (86). In this
context, it is therefore most likely that Sulfs would significantly
affect HS binding properties toward many of these chemokines,

with consequences on chemokine oligomerization, storage,
bioavailability and diffusion. Interestingly, a recent study
investigating chemokine inhibition using synthetic sulfated
[IdoA(2S), GlcNS(±6S)]6 dodecasaccharides showed that the
presence of a 6-O-sulfate group on the non-reducing end residue
switched saccharide binding properties from CXCL8 toward
CXCL12 (87). In light of this, it was also recently reported
that HSulfs catalyzed the 6-O-desulfation of HS following a
processive and orientated mechanism, starting from S-domain
non-reducing end (88). Together, these data thus suggest that
Sulfs could tune HS binding selectivity for chemokines. Despite
these findings and most surprisingly, the effect of Sulfs on
HS/chemokine interaction has so far only been investigated in
one study, which showed the inhibition of CXCL12-α binding to
heparin by the Sulfs in an in vitro immunoassay (79).

Studies have reported that the 6-O-sulfation of endothelial
HS was critical for leukocyte rolling (89), and that 6-O-
sulfation of heparin was necessary to block L-selectin mediated
leukocyte adhesion (80, 90). Sulfs could thus be involved in the
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control of leukocyte adhesion and migration on the activated
endothelium. Vascular glycocalyx and especially endothelial HS
undergo significant degradation during inflammation (91). A
role of the Sulfs in these mechanisms could thus be postulated,
as suggested by a first study on post-septic mice. Sepsis is
associated with a hyper-inflammatory process, followed by a
delayed period of immunosuppression called compensatory
anti-inflammatory response syndrome (CARS), which can lead
to secondary infections. This study showed that HS of lung
endothelial glycocalyx displayed higher 6-O-sulfation content
after septic injury, which was due to a downregulation of Sulf-
1. Interestingly, the post-septic loss of Sulf-1 was necessary for
CARS to occur, as the administration of exogenous recombinant
Sulf-1 intravenously reversed the immunosuppression phenotype
(92). In the same context, Sulfs could also participate in
the degradation of the basement membrane, along with
Heparanase and proteases to facilitate leukocyte migration
toward inflammatory sites. Although there is no evidence of such
an involvement yet, a study preceding the discovery of the Sulfs
showed that activation of endothelial cells with pro-inflammatory
cytokines led to the detection of a sulfatase activity, which was
required for the degradation of the basement membrane (52).

Changes in the expression of the Sulfs upon inflammatory
conditions have been reported. An in vivo study on renal
allograft biopsies showed that Sulf-1 expression was repressed
in inflammatory conditions (93). In contrast, HSulf-1 was up-
regulated in human fibroblasts upon TNF-α treatment (94).
Likewise, TGF-β1 induced the expression of Sulf-2 in renal
epithelial cells (95), and of both Sulf-1 and Sulf-2 in lung
fibroblasts (96). In line with this, Sulf-2 was overexpressed in
idiopathic pulmonary fibrosis (97) and would act as a regulator,
in a negative feedback loop, of TGF-β1 signaling in type 2
alveolar epithelial cells (96, 97). Furthermore, it was shown
that Sulf-2 expression in type II alveolar epithelial cells played
a protective role in epithelial lung injury, inflammation and
mortality (98). Surprisingly, Sulf-2 overexpression in human
hepatocellular carcinoma cells promoted TGF-β1 signaling (99).
Altogether, these data clearly underline the complex interplay
between Sulf activities and TGF-β1 signaling.

One still intriguing and yet poorly understood issue about
the Sulfs is that the two human forms, HSulf-1 and HSulf-2,
feature very similar enzyme activities in vitro, but show clear
functional discrepancies in vivo. As such, a study on Sulf KO
mice indicated that both forms exhibit redundant or overlapping
functions during development (100, 101), while accumulating
data describe opposite activities in cancer (75, 76). Furthermore,
it has been reported that alternative splicing of Sulf1/Sulf2
genes generated functionally active variants. In Quail, a QSulf-1
variant (QSulf-1B) encoding for a shorter protein form exhibited
opposite activities to full length QSulf-1, QSulf-1B inhibiting
Wnt signaling and promoting angiogenesis (102). Mammalian
variants of Sulf1 and Sulf2 were later identified in tumors (103,
104). The occurrence and biological significance of Sulf variants
are still poorly understood. However, some of these variants have
been shown to regulate growth factor signaling pathways and
to display anti-oncogenic and anti-angiogenic properties (105).
Noteworthy, the expression of Sulf-1 and Sulf-2 variants was
also reported in the context of inflammation (105). Studying the

spatial and temporal expression and activity of the two Sulf forms
as well as their respective splice variants may therefore be critical
to fully understand the role of these enzymes in a given biological
process such as inflammation.

Finally, another interesting observation arose from our recent
article reporting the expression and purification of recombinant
HSulf-2 (73). In this work, we showed that the protein
HD domain was very sensitive to proteolytic digestion. This
observation is in agreement with secondary structure predictions
based on amino-acid sequence, which suggests the presence
of large unstructured regions within the HD domain. Most
surprisingly, we found that these degraded forms of HSulf-
2 displayed endosulfatase activity. This is in agreement with
a previous study, which demonstrated that deletion of the
inner region of HSulf-1 HD domain did not abrogate enzyme
activity (71). However, partial degradation of the HD domain
may significantly affect HS substrate selectivity and/or the HD-
dependent immobilization of Sulfs on cell-surface HS (71). It
could thus be hypothesized that, under inflammatory conditions,
protease-driven processing of the HD could affect both Sulf
biological activity and diffusion throughout tissues.

In conclusion, the structural and functional regulation of HS
by the Sulfs is undeniably a significant topic of interest, which
merits further investigation in the context of inflammation.
Evidence of Sulf involvement in inflammatory processes and in
the modulation of pro-inflammatory effectors are slowly arising,
but progress in the field has been hampered by the complexity
of these enzymes, which markedly distinguishes them from
other eukaryotic sulfatases. Nevertheless, recent access to purified
recombinant protein solved a critical technical bottleneck, which
should boost progress in their study. In this context, we reported
for the first time the intravenous injection of recombinant
enzyme in vivo to analyze an inflammatory process (92), and
we anticipate that this study will pave the way to further
investigations in this field.
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