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Lung cancer, the most commonly diagnosed cancer worldwide, usually presents as solid pulmonary 
nodules (SPNs) on early diagnostic images. Classification of malignant disease at this early 
timepoint is critical for improving the success of surgical resection and increasing 5-year survival 
rates. 18F-fluorodeoxyglucose (18F-FDG) PET/CT has demonstrated value for SPNs diagnosis with 
high sensitivity to detect malignant SPNs, but lower specificity in diagnosing malignant SPNs in 
populations with endemic infectious lung disease. This study aimed to determine whether quantitative 
heterogeneity derived from various texture features on dual time FDG PET/CT images (DTPI) can 
differentiate between malignant and benign SPNs in patients from granuloma-endemic regions. 
Machine learning methods were employed to find optimal discrimination between malignant and 
benign nodules. Machine learning models trained by texture features on DTPI images achieved 
significant improvements over standard clinical metrics and visual interpretation for discriminating 
benign from malignant SPNs, especially by texture features on delayed FDG PET/CT images.

Solitary pulmonary nodules (SPNs) are common clinical findings, often incidental, that may represent malignant 
disease in the lung. SPNs are defined as a single, well defined pulmonary nodule with a diameter less than 3 cm 
and surrounded by normal lung tissue that is not associated with atelectasis or adenopathy1. Causes of SPN range 
from lung cancer and metastatic cancer to infections, scar formation, and other benign lesions. Previous studies 
showed that pulmonary nodules were detected in 69% of patients who underwent lung cancer screening with 
low-dose CT2, and 53% of SPNs were found to be malignant nodules3. Lung cancer usually presents as a SPN on 
diagnostic imaging at early stages of the disease1. Accurate classification of SPNs is important clinically, as diag-
nosis of malignant disease at this early timepoint is critical for improving the success of surgical resection and 
increasing 5-year survival rates.

18F- fluorodeoxyglucose (18F-FDG) PET has been demonstrated its utility for SPNs diagnosis with a high sen-
sitivity to malignant SPNs detection; however, the application of FDG PET/CT is limited by its variable specificity 
estimates4. 18F-FDG, a PET tracer of glucose metabolism, has shown significant difference in uptake between 
malignant and benign lesions. Standard uptake value (SUV), the amount of tracer uptake inside the nodules, 
has been demonstrated good quantitative repeatability in lung nodules. Using SUVmax above 2.5 as a diagnostic 
threshold for malignant SPNs has been reported5, however, use of FDG PET/CT is less specific in diagnosing 
malignancy in populations with endemic infectious lung disease as compared with non-endemic regions. In order 
to improve the specificity of FDG PET/CT, some authors have proposed dual time point imaging (DTPI), using 
retention index (RI) to help differentiate benign and malignant SPNs. Unfortunately, the results of DTPI studies 
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also showed varied sensitivity/specificity comparisons to single time point imaging, with both positive6, 7 and 
negative findings8, 9 being reported. There is an urgent need to improve the accuracy and specificity in diagnosing 
malignancy in populations from granuloma-endemic regions.

Beyond evaluating lesion SUVmax, the spatial distribution of FDG also contains important information. Uptake 
of FDG is not homogeneously distributed within the lesions. Many factors, such as cellular proliferation, necrosis, 
blood flow and hypoxia, may contribute to intra-lesion heterogeneity10. Thus, measurements of this heterogeneity 
might help to distinguish benign from malignant pulmonary nodules.

Characterization of uptake heterogeneity is gaining popularity through radiomics-based analysis that extracts 
high throughput features based on intensity, shape, and texture of uptake within regions of interest. In CT imag-
ing, the use of quantitative heterogeneity metrics for diagnostic purpose has been well studied, showing promis-
ing results in various cancer types11, 12. In FDG PET/CT, the use of texture features has improved discrimination 
between abnormal tissues from normal tissue for lesion delineation. Texture features derived from Neighboring 
Gray Tone Difference Matrix13, describing features such as coarseness, contrast and busyness on PET images 
have shown the ability to differentiate tumor from normal tissue in head and neck cancer14. However, there are 
only a few studies looking at the diagnostic value of quantitative heterogeneity features in FDG PET/CT imag-
ing15, 16. Whether texture features can be able to discriminate malignant from benign lesions is still unknown. 
Furthermore, there are no studies evaluating the use of quantitative heterogeneity in DTPI PET/CT images for 
SPN differentiation.

This main goal of this study was to assesses the use of quantitative heterogeneity features extracted from 
DTPI images for differentiating malignant from benign SPN lesions in a population from granuloma-endemic 
regions. Machine learning models using texture features from DTPI PET/CT were tested and compared against 
commonly used clinical metrics and visual interpretation.

Results
Patient population.  In total, 149 SPN patients underwent DTPI FDG PET/CT scans between 2004 and 
2014 were reviewed. 64 patients were excluded from the study as the metabolic volume of the SPNs was smaller 
than 5 mL, making texture feature analysis unreliable. As a result, 85 patients (mean age: 61.58 ± 11.95, 56 male) 
were included in this study. Lesion diagnoses were confirmed by pathology (n = 74 lesions) or follow-up imaging 
(median: 14 months, range: 12–34 months) (n = 11 lesions). Sixty-three lesions were malignant nodules, with 61 
confirmed by pathology results and 2 with evidence of metastasis in follow up period and subsequently clinically 

Type Stage Diagnosis Number of cases

Benign 22

Active inflammation 17

Inflammatory pseudotumor 1

Reduced nodule 5

Tuberculosis and Granuloma 11

Benign lung tumors 1

Sclerosing hemangioma 1

Old inflammation 4

Stable nodules 4

Malignant 63

Primary lung cancer 60

Adenocarcinoma 37

Large Cell Carcinoma 1

Mucoepidermoidcarcinoma 2

Unspecified NSCLC 6

SCLC 7

Squamous cell carcinoma 7

Metastasis 1

Thymic carcinoma 1

Malignant nodules 2

Unspecified malignant nodules 2

Table 1.  Diagnosis of SPNs.
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diagnosed as lung cancer. Twenty-two lesions were diagnosed to be benign lesions, 13 confirmed by pathology 
results, 4 diagnosed as stable nodules, 5 diagnosed as reduced nodules after treatment with antibiotics. Table 1 
summarizes diagnoses of SPNs.

Comparison of machine learning models and clinical metrics.  The discriminating power of each 
model was compared by Area Under the Curve (AUC) of the Receiver Operating Characteristic curve (ROC) 
(Fig. 1). The ROC analysis showed that the AUC of standard clinical metrics, including early SUVmax, delayed 
SUVmax, RI, and visual interpretation were 0.77, 0.77, 0.56 and 0.76, respectively (Table 2). Of these clinical met-
rics, RI performed the worst with significantly lower AUC than both early SUVmax and visual interpretation 
(p = 0.01 and p = 0.02, respectively). Support Vector Machine (SVM) models of quantitative features showed 
AUCs from dPET (delayed PET) model and edPET/CT (early and delayed PET/CT) model of 0.90 and 0.91, 
respectively; which were significantly larger than AUC of either early SUVmax (P = 0.02, P = 0.01) or visual inter-
pretation (P = 0.03, P = 0.04). Compared to either early SUVmax or visual interpretation, ePET (early PET) model 
and ePET/CT (early PET/CT) model showed moderate improvements, and eCT (early CT) model showed a little 
decline, but the differences were not significant (Table 2).

The performance of each model and indexes of the optimal thresholds were calculated and compared 
(Table 3). By using the optimal threshold, dPET and edPET/CT models achieved the best specificity, accuracy 
and positive predictive value. Two of the clinical indices, early SUVmax and RI, had a higher sensitivity than all 
SVM models, but the specificity was low.

Table 4 summarizes the frequency of features selected by models more than 2 times. Delayed Busyness had 
the highest frequency of selection, being chosen in all 5/5 cross validations of the combined edPET/CT model 
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Figure 1.  ROC curves of SVM models, early SUVmax, visual interpretation and retention index. Areas under 
curve showed the ability of machine learning models, early SUVmax, visual interpretation and retention 
index to distinguish malignant from benign SPNs. The dPET model and edPET/CT model had a significant 
improvement in discriminating power than early SUVmax, visual interpretation and retention index.

Models AUC 95%CI P valuea P valueb

eCT Model 0.72 0.58–0.84 0.47 0.59

ePET Model 0.83 0.74–0.93 0.14 0.27

ePET/CT model 0.83 0.74–0.93 0.14 0.24

dPET model* 0.90 0.83–0.97 0.02 0.03

edPET/CT model* 0.91 0.82–0.99 0.01 0.04

Early SUVmax 0.77 0.66–0.89 — 0.88

Visual interpretation 0.77 0.65–0.88 0.88 —

RI 0.56 0.41–0.72 0.02 0.01

Table 2.  AUC of ROC Analysis for each model. *P value smaller than 0.05. aP value of Delong’s test, compare 
AUC of each model to that of early SUVmax. bP value of Delong’s test, compare AUC of each model to that of 
visual interpretation.
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and 3/5 dPET models. The most commonly selected feature-types are “Busyness”, “Coarseness” and “Cluster 
Prominence” on either delayed or early PET.

Discussion
In this study, we were able to demonstrate significant improvement in classifying malignant from benign SPNs 
using machine learning techniques. The machine learning algorithms were trained on quantitative heterogeneity 
features from DTPI PET and CT images and results were shown to be superior to commonly used clinical metrics 
and visual interpretation. Using an SVM model created with DTPI FDG PET/CT features, we were able to achieve 
higher diagnostic accuracy, marked by higher specificity and sensitivity, than commonly used clinical metrics and 
visual interpretation. This is the first report of using texture features for diagnosis of solitary pulmonary nodules, 
and the first study to evaluate texture features in delayed PET images. The improvement in diagnostic perfor-
mance shown in this study could potentially benefit patients by preventing unnecessary invasive tests following 
false-positive findings or providing earlier detection and intervention in patients with malignant disease.

We compared the diagnostic accuracy of SVM models with that of two experienced physicians. The diagnostic 
ability of SVM created from multiple early FDG PET/CT texture features was comparable to two experienced 
physicians. With the addition of delayed PET features, the SVM models showed greater diagnostic accuracy 
compared to physician assessment and common clinical metrics. Therefore, SVM analysis from DTPI FDG PET/
CT might play an integral role as a semi-automated tool to supplement diagnostic classifications for physician 
readers.

Previous studies have reported success using features from high quality diagnostic CT in classification of lung 
cancer12. Results from our study suggest CT texture features from free breath CT images of FDG PET/CT may not 
provide more information than PET features along for classification purposes. Models using only CT features can 
be used in SPNs classification, but the differentiation ability is weak, and no improvements were seen compared 
to using only early SUVmax. Additionally, the AUC and accuracy for the ePET model and the ePET/CT model 
are similar, suggesting that the addition of early CT features to early PET features did not improve the diagnosis 
ability significantly.

Models True positive True negative Sensitivity Specificity Accuracy PPV* NPV†

ePET model 41 19 0.65 0.86 0.71 0.93 0.46

eCT model 39 16 0.62 0.72 0.65 0.87 0.40

ePET/CT model 45 17 0.71 0.77 0.73 0.90 0.49

dPET model 53 20 0.84 0.91 0.86 0.96 0.67

edPET/CT model 53 20 0.84 0.91 0.86 0.96 0.67

Physician’s 
Scores** < 3.5 59 13 0.94 0.59 0.85 0.87 0.76

Early SUVmax > 2.5 62 4 0.98 0.18 0.78 0.78 0.80

RI > 10% 59 5 0.94 0.23 0.76 0.78 0.63

Table 3.  Diagnostic values for differentiation of malignant and benign SPN lesions with SVM models and 
indexes. *Positive predictive value †, Negative prediction value, **Scores of visual interpretation.

CT ePET ePET/CT dPET edPET/CT* Total

Busyness — 2 4 3 0/5 14

Cluster Prominence — 3 1 4 1/2 11

Coarseness — 2 2 5 1/0 10

Sum Variance — 1 2 4 0/0 7

Coefficient Of Variation — 3 3 — 0/0 6

Standard Deviation — 2 3 — 0/0 5

CT Skewness 0 — 4 — 1 5

CT Entropy 3 — 1 — 1 5

CT Busyness 3 — 1 — 0 4

CT Long Run High Gray Level 
Emphasis 2 0 1 — 0 3

Maximal Correlation Coefficient — 0 0 1 0/2 3

Run Percentage — 0 0 1 0/2 3

CT Diagonal Moment 1 — 1 — 1 3

Table 4.  Frequency of most commonly selected features for each model. Note: maximum selected in each 
model is equal to the number of cross-validations performed (5). *For edPET/CT model, frequency of PET 
features is represented as “early PET features”/“delayed PET feature”, representing number of times “early PET 
features” was selected and number of times “delayed PET feature” was selected.
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FDG PET/CT has been demonstrated as a useful, yet incomplete, tool for SPN diagnosis. One of the main 
limitations is that many benign lesions demonstate high FDG uptake which lead to false-positive results. Active 
infectious and non-infectious inflammatory etiologies can lead a high uptake in FDG PET. There are numerous 
reports in the literature of false-positive findings on FDG PET imaging due to granulomas and tuberculosis17. 
Use of FDG PET/CT was less specific in diagnosing malignant lesions in populations with endemic infectious 
lung disease compared with non-endemic regions4. The average adjusted specificity in regions with endemic 
infectious lung disease is 16% lower, compared with nonendemic regions4. Improving the accuracy and specificity 
of FDG-PET/CT in diagnosing malignancy especially in populations from granuloma-endemic regions, which 
would be expected to have a higher rate of false-positive FDG PET/CTs due to uptake in benign inflammatory 
granulomas, is a difficult problem. In this study, both visual interpretation and early SUVmax had a low specificity 
and accuracy in diagnosis malignant SPNs, but SVMs using texture features extracted from both timepoints in 
DTPI FDG PET/CT images achieved higher specificity and accuracy over clinical metrics and visual interpreta-
tion. This support the hypothesis that intratumoral heterogeneity of FDG uptake was useful for discriminating 
benign from malignant nodule for the patients from granuloma-endemic regions.

Materials and Methods
This retrospective study was approved by the Medical Science Ethic Committee of the 1st hospital of China 
Medical University, and formal consent was not required. All procedures performed in studies involving human 
participants were in accordance with the ethical standards of the institutional. This study was retrospective, and 
its results did not influence further therapeutic decision-making.

Patients.  DTPI 18F-FDG PET/CT scans were performed between 2004 and 2014 at a single center in a 
granuloma-endemic region. The scans were retrospectively reviewed and those scans with a Single Pulmonary Nodule 
(SPN) were analyzed. Diagnosis of malignant or benign disease was primarily established by pathology review fol-
lowing biopsy or surgical resection of the nodule within one month after the FDG PET/CT acquisition. When biopsy 
or surgery was not performed, patients were followed for at least 1 year after the FDG PET/CT scan, using chest radi-
ography or CT. If the SPN was stable during this period or reduced with antibiotics treatment, they were considered 
benign. Patient without pathological confirmation or those receiving surveillance follow-up imaging less than 1 year 
were removed from this study. In total, FDG PET/CT data from 149 patients was reviewed under these criteria.

Image acquisition and reconstruction.  Patients fasted for at least 6 h, and blood glucose levels were 
measured before being injected with 5.55MBq/kg (0.15 mCi/kg) 18F-FDG. Early and Delayed FDG PET/CT 
acquisition started 60 min and 180 min post injection using a GE discovery LS 4 PET/CT scanner. Emission data 
were acquired for 3 min per bed position in 2D mode. The PET images were reconstructed using an iterative 
algorithm (ordered-subsets expectation maximization: 2 iterations, 28 subsets) with an 8-mm Gaussian filter, a 
128 × 128 matrix and 4.25 mm/slice. Transmission scanning proceeded under the following parameters.

Image Analysis.  Nodules on both early FDG PET (ePET) and delayed FDG PET (dPET) images were iden-
tified and segmented by two experienced physicians (with more than 5 years experiences working in nuclear 
medicine). Discordant segmentations were resolved by discussion and mutual consensus. Lesions with volume 
of interest (VOI) smaller than 5 mL on the early FDG PET/CT images were removed from this study, following 
recommendations from previous studies showing FDG PET texture features uncertainty in small volumes18, 19.

For each lesion, two quantitative clinical metrics, SUVmax and Retention Index(RI), were calculated.
RI was calculated according to equation (1).

= ×
−RI 100% (delayed SUV early SUV )

early SUV (1)
max max

max

Additionally, for each lesion in this study, a visual interpretation score was made based on DTPI FDG PET/
CT images (both early and delayed FDG PET/CT images). All images were interpreted by two physicians. Image 
interpretation was performed without knowledge of patient diagnosis to avoid potential interpretation bias. A 
5-point scale was used when readers interpreted the images, which represent the likelihood of the lesion being 
benign or malignant, from: 1, definitely benign; 2, probably benign; 3, equivocal; 4, probably malignant; and 5, 
definitely malignant. If the interpretation scores were discordant between two readers, they were subsequently 
discussed to arrive to a consensus.

The following interpretive criteria20 were utilized:

CT image interpretation.  Each nodule was characterized in terms of its attenuation, shape, and margin char-
acteristics using previously well-described criteria developed by the American College of Radiology Imaging 
Network (ACRIN) for its lung cancer screening trials21, 22.

FDG PET image interpretation.  FDG PET images interpretation was based on the degree and the distribution 
of the uptake in the lesion on the early FDG PET images as well as the contrast changes apparent on the delayed 
FDG PET image. If lesion uptake was higher than blood pool in the early FDG PET and appeared distinctly focal 
and its contrast increased in delayed FDG PET, the lesion was categorized as more likely to be malignant. In con-
trast, if the lesion was poorly defined with a low uptake in the early FDG PET and lost contrast in delayed FDG 
PET, it was interpreted as more likely to be benign. On the basis of integration of FDG PET characteristics (uptake 
degrees, distribution of uptakes, spatial volume effect, and contrast changes) and CT characteristics (attenuation, 
shape, and margin characteristics) the readers then made a 5-point scale score.
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Quantitative Texture-based Analysis.  Texture features were extracted following voxel-based method-
ology described previously23, 24. Uptake values contained within the Volume of Interest (VOI) were resampled 
prior to texture feature extraction using a 256-bin discretization. For each voxel inside the VOI, a patch was 
extracted, defined as a portion of the image with 5 × 5 × 5 (axial, coronal, sagittal) voxels in size, centered on that 
voxel. Texture features were computed on these patches in 4 angular directions on axial, coronal and sagittal slices 
and then the mean value was calculated. For each lesion, 59 features were extracted respectively on early FDG 
PET images (ePET), delayed FDG PET images (dPET) and CT (CT) images with an in-house code developed in 
MATLAB, using methodology as described by Galavis et al.24, adapted to include all nearest neighbors of each 
voxel. This methodology of 3D extraction was motivated by previous works showing increasing the number of 
neighboring planes did not increase observed performance of extracted spatial information25, 26. Those features 
included: 10 histogram based first order features, eight first order features, 22 features based on the co-occurrence 
matrix, 11 features based on the gray level run length matrix, 5 features based on the neighboring gray level and 3 
features based on the neighborhood gray tone difference matrix (Table 5).

In total, 177 features were calculated for each lesion: 59 features from ePET images, 5, 59 features from dPET 
images and 59 features from CT images.

Features selection and testing machine learning models.  Five-fold cross validation was used in this 
study to divide the original data into training data and validation data. By using 5-fold cross-validation27, the 
original data is randomly partitioned into 5 equally sized subsamples. Of the 5 subsamples, a single subsample is 
retained as the validation data for testing the model, and the remaining 4 subsamples are used as training data. 
The cross-validation process is then repeated 5 times, with each of the 5 subsamples used exactly once as the val-
idation data. The 5 results from the folds can then be averaged to produce a single estimation.

In order to reduce the size of the dataset, sequential forward floating selection (SFFS) was used to select only 
a few critical features to training the Support Vector Machine (SVM) models28. The SFFS was performed in the 
training dataset and the maximal number of selected features was set to five. Five SVM models were built with 
selected features from different feature sets: (1) ePET model: early PET features, (2) eCT model: early CT features, 
(3) dPET model: delayed PET features, (4) ePET/CT model: early PET/CT features, (5) edPET/CT model: early 
PET/CT features and delayed PET features. The SVM models were built by several built-in functions in Matlab 
(ver.2015b) using the default parameters.

The performance of each machine learning model to perform classification of unseen SPNs lesion into the 
benign or malignant was tested using receiver operating characteristics (ROC) analysis.

Comparison the performance of models with clinical metrics and visual interpretation.  The 
performance of each model (SVM models, clinical metrics and visual interpretation) was evaluated using the 
areas under ROC curves (AUC), diagnostic accuracy, sensitivity, specificity, positive prediction value, and nega-
tive prediction value. AUCs were compared using Delong’s test29. Values plotted nearest the upper left corner of 
the ROC plot were considered to be the optimal threshold for diagnosis. The diagnostic accuracy, sensitivity, spec-
ificity were calculated using the optimal threshold and commonly accepted clinical metrics (early SUVmax > 2.5 
and RI > 10% for malignant lesions).

Conclusions
The intratumoral heterogeneity of FDG uptake was useful for discriminating benign from malignant nodules 
in larger SPNs especially on delayed PET images for the patients from granuloma-endemic regions. Texture 
features on FDG DTPI provided different types of information that should be used to supplement SUVmax for 
making a diagnosis. SVMs and texture features extracted from DTPI FDG PET/CT images showed a significant 
improvement in discriminating benign from malignant nodules over commonly used clinical metrics and visual 
interpretation.

Image Feature Basis Features

Histogram Max, Total Lesion Glycolysis, Mean, Min, Volume, Skewness, Kurtosis, Energy, Entropy, 
Standard Deviation

First order features Mean, Median, Coefficient of Variation, Skewness, Kurtosis, Energy, Entropy, Variance

Co-occurrence matrix

Angular Moment, Contrast-GLCM, Correlation, Sum of Squares Variance, Inverse Difference 
Moment, Sum Average, Sum Variance, Sum Entropy, Entropy-GLCM, Difference Variance, 
Difference Entropy, Information Measure of Correlation 1, Information Measure of Correlation 
2, Maximal Correlation Coefficient, Maximum Probability, Diagonal Moment, Dissimilarity, 
Difference Energy, Inertia, Inverse Difference Moment, Sum Energy, Cluster Shade, Cluster 
Prominence

Gray level run length
Small Run Emphasis, Long Run Emphasis, Gray-Level Nonuniformity, Run Length 
Nonuniformity, Run Percentage, Low Gray-Level Emphasis, High Gray-Level Emphasis, Short 
Run Low Gray-Level Emphasis, Short Run High Gray-Level Emphasis, Long Run Low Gray-
Level Emphasis, Long Run High Gray-Level Emphasis

Neighboring gray level Small Number Emphasis, Large Number Emphasis, Number Nonuniformity, Second Moment, 
Entropy-NGL

Neighborhood grey tone difference matrix Coarseness, Contrast-NGL, Busyness

Table 5.  Texture features.
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