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Abstract

Motor skills and the acquisition of brain plasticity are important topics in current research.

The development of non-invasive white matter imaging technology, such as diffusion-tensor

imaging and the introduction of graph theory make it possible to study the effects of learning

skills on the connection patterns of brain networks. However, few studies have character-

ized the brain network topological features of motor skill learning, especially open skill.

Given the need to interact with environmental changes in real time, we hypothesized that

the brain network of high-level open-skilled athletes had higher transmission efficiency and

stronger interaction in attention, visual and sensorimotor networks. We selected 21 high-

level basketball players and 25 ordinary individuals as control subjects, collected their DTI

data, built a network of brain structures, and used graph theory to analyze and compare the

network properties of the two groups at global and regional levels. In addition, we conducted

a correlation analysis on the training years of high-level athletes and brain network nodal

parameters on the regional level to assess the relationship between brain network topologi-

cal characteristics and skills learning. We found that on the global-level, the brain network of

high-level basketball players had a shorter path length, small-worldness, and higher global

efficiency. On the regional level, the brain nodes of the high-level athletes had nodal param-

eters that were significantly higher than those of control groups, and were mainly distributed

in the visual network, the default mode network, and the attention network. The changes in

brain node parameters were significantly related to the number of training years.

Introduction

A large number of studies have found that motor skill training and acquisition can cause brain

plasticity [1–4]. These changes involve the optimization of the working pattern of local brain

regions as well as global brain network connectivity [5]. Using noninvasive neuroimaging

techniques such as functional magnetic resonance imaging (fMRI) [6] and diffusion-tensor

imaging (DTI)[7], it is possible to detect structural and functional brain plasticity after

long-term motor skill training and acquisition. Understanding the neural mechanisms
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underpinning this plasticity may provide a basis for determining the types of practice or train-

ing that are most beneficial for enhancing performance [8]. Thus, the study of plastic changes

associated with skill learning and expertise in the human brain is one of the most pertinent

areas of current neuroscience research.

Previous voxel-based studies have reported that motor skill training and acquisition can

induce changes in the structural and functional properties of specific brain areas that are

involved in a practiced task [3, 4, 9–11]. In recent years, the introduction of DTI and graph

theory has led to the conceptualization of the gross organization of the human brain as a struc-

tural network of connections comprising the “connectome” [12, 13]. The “connectome” mod-

els different brain areas by constructing networks with mathematical structures (such as nodes

and edges] and reveals the architectural properties of the nervous system. In contrast to voxel-

based approaches that focus on the local changes in various brain areas, graph theory tests the

organizational structure and interactions among these brain areas at the system level, thus

emphasizing the topological properties of the brain network as a whole [14, 15]. A pioneering

study using graph theory to examine the brain networks of elite athletes was conducted by

Wang et al. (2013) [16]. Wang and colleagues reported that the density of connections among

the sensorimotor, attentional, and default-mode systems in the brain networks of elite word

class gymnasts were increased. However, different types of motor skill learning lead to differ-

ent forms of brain plasticity. Based on the extent to which the environment is stable and pre-

dictable during performance, motor skills can be classified into closed or open skills [17]. The

study by Wang et al. revealed the effects of closed skill learning on brain networks, since a

gymnastic routine is a typical closed skill. To date, the effect of open skill learning on brain net-

work connectivity remains unclear.

In contrast to closed skills, an open skill is one that is performed in an environment that is

variable and unpredictable. In these situations, the performer must use the processes of percep-

tion and decision-making to adjust his/her movements in response to changing environmental

conditions, often in a short amount of time [17]. Excellent visual perception is the basis of effec-

tive prediction of the future moves of others (and hence, the future responses to them) [18].

Behavioral research on visual tasks for open skilled experts (such as in action games, basketball,

volleyball, and water polo) have suggested that the experts outperform their peers on multiple-

object tracking, visual search, and perceptual prediction [19]. Neuroimaging researches on sim-

ilar subjects have also found greater activity in visual-related regions in the brain such as the

intraparietal sulcus [20], indicating the different modes of brain activity. Considering the net-

work-based processes in the brain, it is reasonable to assume that at the network level, the

visual-related brain regions play an important role in transmission of information.

Consequently, we selected experts of a typical open skill (basketball) as subjects and recon-

structed the structural networks of brain white matter. We then adopted graph theory to ana-

lyze brain network changes. We compared the global and regional measurements in athletes

and controls, and examined the correlation between the changes in brain networks and the

degree of motor skills. Subsequently, we determined the regions related to the experience of

open skill learning. We hypothesized that compared to controls, the network importance of

areas in the sensorimotor, attentional, and fault-mode network in open skilled experts would

have been improved.

Materials & methods

Subjects

We studied 22 basketball players (mean age 20.65 ± 1.4 years) and 21 controls (mean age

22.59 ± 1.7 years). The age analysis was performed using a two-tailed two-sample t-test
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(t = 3.942, df = 41, p = 0.0003). All subjects were male. Basketball players were Chinese national

athletes who had experience in competition at national or international tournaments (average

training time of 5 days per week with each daily session lasting about 6 hours, for 8.3±2.2

years). The controls were university students without professional training in basketball or any

other sports. And in addition to the time of professional basketball training, there is no differ-

ence in the time of right-hand use between the athlete group (mean time 30±3.2 hours) and

the control group (mean time 32±2.7 hours) in last week (p = 0.09). All subjects were right-

handed and had no medical history of neurological or psychiatric disease. The protocol was

approved by the Research Ethics Committee of Shanghai University of Sport (No.2017106)

and all subjects gave written informed consent prior to the experiment.

Image acquisition

We obtained MRI data using a Siemens Trio Tim 3 T MR scanner. Both DTI and T1-weighted

data were acquired using a 12-channel phased-array head coil with the implementation of the

parallel imaging scheme of Generalized Auto-calibrating Partially Parallel Acquisitions and

with an acceleration factor of 2. DTI data were acquired using a single-shot twice-refocused

spin-echo diffusion echo planar imaging (EPI) sequence (repetition time 10000 ms, echo time

92 ms, 64 non-linear diffusion directions with b = 1000 s/mm2, an additional volume with

b = 0 s/mm2, data matrix 128×124, field of view 256 × 248 mm, slice thickness 2 mm, isotropic

voxel size 2 mm3) and 75 transverse slices without gap covering the whole brain for each. The

acquisition time was approximately 12 min for each DTI scan. High resolution 3D isotropic

structural images (voxel size 1 mm3) were acquired using a T1-weighted magnetization pre-

pared rapid gradient echo sequence (repetition time 1900 ms, echo time 3.44 ms, inversion

time 900 ms, flip angle 9˚, field of view 256 × 256 mm, slice thickness 1 mm) and 176 sagittal

slices covering the whole brain.

Image preprocessing

We performed data preprocessing in each subject. Both the DTI data and T1-weighted data

were visually inspected for apparent artifacts arising from subject motion and instrument mal-

function. Distortions in the diffusion tensor images caused by eddy currents and simple

head motions were then corrected by applying affine alignment. In particular, EPI distortion

induced by the presence of geometrical and intensity distortions along the phase-encode direc-

tion, which were caused by field inhomogeneity and concomitant fields, were corrected by

registering the first b0 image in each DTI set to its corresponding undistorted T1-weighted

image, with a cubic B-spline transformation of knot grid size 10×10×10, partitioning the

image space into 2 × 2 × 1.65 cm3. After correction, 3D maps of the diffusion tensor and the

FA (fractional anisotropy) were calculated. The correction and calculation were performed

using FMRIB’s Diffusion Toolbox [21].

Network construction

We used the automated anatomical labeling template [22], and selected 90 brain regions to

construct brain networks for each subject. Each brain region was defined as a node, and each

detectable connection between two nodes was defined as an edge. We estimated the topologi-

cal properties of these brain networks using graph theory [23, 24]. Each subject of 3D struc-

tural images was first co-registered to with b = 0 images with linear transformations [25]. The

structural images resulted in the diffusion space were mapped to the T1 template of the Mon-

treal Neurological Institute space, using Non-linear Transformations (International Consor-

tium for Brain Mapping 152]. Using the inverse transformation method, the automatic
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anatomical marker template of the Montreal Neurological Institute was transformed into dif-

fusion space by the nearest neighbor interpolation method. Then we reconstructed the fibers

that connect each pair of brain regions in the diffusion space. Based on the Continuous Track-

ing Algorithm [26], the whole brain fiber was constructed by using the fiber assignment

technique. Fiber tracking was stopped at voxels where FA<0.2 or the angle between two eigen-

vectors of two consecutive voxels connected by the tracking was larger than 35˚. The density of

the connections between regions (obtained by fiber tractography) is defined as the value of FA.

In order to retain more information, and to reflect the heterogeneity in the capacity and inten-

sity of the connections, we used the non-thresholded inter-regional connection density to

define the edge. We then obtained a symmetrical connectivity matrix and an anatomical net-

work with weighted edges for each subject. Data preprocessing and network construction were

performed using the Pipeline for Analyzing Brain Diffusion Images (PANDA) toolbox [27].

Network analysis

We analyzed the topological properties of brain networks (global and regional networks) with

graph theory [14, 28]. We first analyzed small world network properties proposed originally by

Watts and Strogatz (1998) [29] using characteristic path length (Lp), network clustering coeffi-

cient (Cp), and small-worldness (σ). Additional global network properties including global effi-

ciency (Eglob) were also examined. (1) Characteristic path length (Lp) was computed as the

average of the shortest path length for all possible edges among nodes in the network. (2) Net-

work clustering coefficient (Cp) was computed as the average likelihood that the neighbors of a

node were interconnected. (3) Small-worldness (σ) was computed as the ratio of Cp to the Lp

with normalization to a null random network. The null networks were generated by randomly

connecting to the same number of nodes as in the real network. The mean degree of a null net-

work was set to equal that of the real network. In the present study, the rewiring was repeated

1000 times, and the average value of the null random network was used as the basis to normal-

ize Cp and Lp. Typically, a network is considered to have small-world features if it satisfies the

condition of σ>> 1 [29–31].

We then analyzed the regional properties of network measured in the athlete group in com-

parison to that of the control group using nodal degree, nodal efficiency and betweenness cen-

trality. (1) The nodal degree was computed as the number of the connections linking the node

with others. (2) The nodal efficiency was computed as the inverse of the average of the shortest

path length in the subgraph defined as the set of nodes that are the neighbors of the node of

interest [32]. (3) The betweenness centrality was computed as the fraction of the shortest path

between all other pairs of nodes in the network that actually pass through the node [33]. All

global and regional parameters were computed using the MATLAB-based Graph Theoretical

Network Analysis (GRETNA) toolbox [34].

Statistical analysis

Between-group (athlete vs. control) differences in the graph-based metrics (global parameters,

Cp, Lp, Eglob, σ; regional parameters, degree, efficiency and betweenness) of the anatomical net-

works were examined by a nonparametric permutation test [16, 35]. Subjects from each group

(athlete and novice) were randomly chosen and assigned to two datasets with the same num-

ber of subjects in the athlete and control groups. The procedure was repeated for 5000 permu-

tations, resulting in a sampled between-group difference null distribution for each graph-

based metric. Finally, we assigned a p-value to the between-group differences by computing

the proportion of the differences that exceeded the null distribution values. The threshold

for significance was set at p<0.05 with Bonferroni correction for multiple comparisons. In
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addition, we performed a Pearson’s correlation analysis to test the relationship between the

years of training and regional parameters of nodes which show statistically significant differ-

ences between groups. The threshold for significance was set at q<0.05 with FDR (False Dis-

covery Rate) correction for multiple comparisons.

Tract-based spatial statistics (TBSS)

To expand on our examination of network level differences, we lastly investigated group differ-

ences in the DTI data at the level of tissue microstructure. All participants’ FA data were

aligned into a common space (FMRIB58 FA 1-mm template) using a nonlinear registration

tool from FSL, called FNIRT [36], which employs a b-spline representation of the registration

warp field [37]. Next, a mean FA image was created and thinned to provide a mean FA skele-

ton representing the centers of all tracts common to the group. Each participant’s aligned FA

data were then projected onto this skeleton and the resulting data were fed into voxel-wise,

between-group analysis using FSL Randomise [38]. This method performs a nonparametric

two-sample t-test using permutation inference (5,000 permutations) and the threshold-free

cluster enhancement (TFCE) test statistic (p< 0.01, family-wise error rate corrected). TFCE

attempts to locate areas of significant spatial continuity while minimizing problems related to

arbitrary cluster threshold and spatial smoothing [39].

Results

Global parameters of the brain network

Statistical comparisons were performed to detect significant differences in the global parame-

ters and small-world properties of the whole brain anatomical networks between the two

groups. We detected significantly higher values of degree and Eglob [t (41) = 3.735, p = 0.0003]

and but significantly lower values of Lp [t (41) = 3.933, p = 0.0002] and σ [t (41) = 3.662,

p = 0.0004] and σ [t (41) = 3.662, p = 0.0004]in elite athlete group. However, we found no sta-

tistically significant differences in the value of Cp (t (41) = 1.235, p = 0.009) (Fig 1). The results

showed that compared to the control group, the brain networks were denser and more random

in the athlete group. These findings are consistent with previous studies [16]. We found that

the measured parameters for control subjects varied from those reported in research published

by Wang and his colleagues in 2013 [16]. The measured parameters also seemed to differ from

those in those reported in research published by Iturria-Medina and his colleagues in 2008

[40]. We think the reason for this discrepancy lied in the fact that in Wang and Iturria-Medi-

na’s studies, they constructed a binary network without weighted edges. Nevertheless, we con-

structed a weighted network, which the FA value between a pair of nodes was the weight value

of edges. It would cause the discrepancy of the measured parameters that whether contructing

the binary or weighted network, and choosing a different indices for the weight [30, 41–42].

Regional parameters of the brain network

Table 1 lists the results of statistical comparisons of the regional parameters of the anatomical

networks between the two groups (p<0.01). We found 14 brain regions with significantly

higher degrees, 29 brain regions with significantly higher regional efficiency, three brain

regions with significantly higher between-ness centrality, and four brain regions with signifi-

cantly lower between-ness centrality in the anatomical networks of the athlete group compared

to the controls. There were 34 brain regions with significant differences in regional parameters

between the two groups. Among them, the regions with higher regional parameters in the
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athlete group were located in the visual, default-mode, and attention networks; while the rest

of the regions were located in the sensorimotor and limbic/subcortical network (Fig 2).

Correlation between years of training and regional parameters

We analyzed the correlation between the years of training and the three regional parameters

(Degree, Efficiency and Betweenness) of all 90 nodes in the brain network of athlete group and

performed the FDR correction for multiple comparisons. Fig 3 reveals a tendency for the

regional parameters to change with years of training, of which the regional parameters of the

left l middle temporal gyrus (Efficiency, q = 0.0432; Degree, q = 0.0489), right lingual gyrus

(q = 0.0482), and left supplementary motor (q = 0.0453)area have positive correlations with

years of training (Fig 3).

Tract-based spatial statistics (TBSS)

The TBSS was conducted to investigate tissue microstructural features that may provide ana-

tomical explanations for the distribution of network connectivity differences. The elite athlete

group demonstrated significantly higher FA (p< 0.01, corrected) compared with controls in

Fig 1. Comparison of global parameters between the athlete group and control group. Black indicates the athlete group while white

indicates the control group. The brain network of the athlete group had a higher global efficiency and a lower shortest path coefficient and

small-worldness.

https://doi.org/10.1371/journal.pone.0210015.g001
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multiple regions throughout the brain (Table 2 and Fig 4A). Nerve fiber bundles showing FA

differences were mainly located on the inferior longitudinal fasciculus, uncinate fasciculus,

and inferior fronto-occipital fasciculus, which are among the major long range fiber tracts con-

necting distant cortical areas [43] (Fig 4B). No significantly higher FA (p<0.01) in controls

were found compared with elite athlete group.

Table 1. Changes in regional parameters in basketball players.

Subnetwork Brain areas Degree Efficiency Betweenness

Attention IFGoperc.R " " "

IFGtriang.L − " −
IFGtriang.R " " −
ORBinf.L " " −
SMA.L − " −
ANG.L − " −

Sensorimotor INS.L − − #

SPG.R − − #

SMG.R − " −
STG.L − " −
STG.R " " −

Default-mode ACG.L − " −
ACG.R − " −
PCG.R " " −
PCUN.L − " −
PCUN.R " " −
MTG.L − " −
MTG.R − " −
ITG.R − − "

Visual CAL.L " " −
CAL.R " " −
CUN.R " " −
LING.L " " −
LING.R − " −
SOG.R " " −
MOG.L − " −

Limbic/Subcortical HIP.R − − #

PHG.L − − #

CAU.R − " −
PUT.L " " −
PUT.R − " −
PAL.R " " "

THA.L " " −
THA.R " " −

" showed that the value of regional parameters of nodes in athletes brain network were higher than those nodes in controls brain network while # showed that the value

of regional parameters of nodes in athletes brain network were lower than those nodes in controls brain network. IFGoperc, inferior frontal gyrus, opercular part;

IFGtriang, inferior frontal gyrus, triangular part; ORBinf, inferior frontal gyrus, orbital part; SMA, supplementary motor area; ANG, angular gyrus; INS, insula; SPG,

superior parietal gyurs; SMG, supramarginal gyrus; STG, superior temporal gyurs; ACG, anterior cingulated and paracingulated gyrus; PCG, posterior cingulate gyrus;

PCUN, precuneus; MTG, middle temporal gyrus; ITG, inferior temporal gyrus; CAL, calcarine; CUN, cuneus; LING, lingual gyrus; SOG, superior occipital gyrus; MOG

middle occipital gyrus; HIP, hippocampus; PHG, parahippocampal gyrus; CAU, caudate; PUT, putamen; PAL, pallidum; THA, thalamus.

https://doi.org/10.1371/journal.pone.0210015.t001
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Discussion

In this study, we investigated the changes in structural networks of brain white matter between

people with professional skills and controls. The results show that global network parameters

of the two groups are different, and the changes in network properties are predominantly in

the visual, default-mode, and attention networks. Furthermore, the main changes in visual

regions were related to the years of training, and showed that motor skill learning can improve

the ability of our brains to control behavior, make decisions more effectively, and switch the

focus of attention more accurately.

Open skill and brain subnetworks

The results of the network analysis at both global and regional levels are consistent with the

results by Wang et al (2013). First, at the whole brain level, we found significantly greater val-

ues of Eglob, but significantly lower values of LP and σ in the anatomical networks of the athlete

group compared to the controls. The anatomical networks of both groups exhibited small-

world properties, a finding which is consistent with previous studies [16]. Small-worldness

supports both integrated and distributed information processing and maximizes the efficiency

of propagating information at a relatively low cost [44]. However, the anatomical networks of

the athlete group were more random, with a lower value of LP, indicating that the connections

among distant brain regions may be tighter after prolonged training in professional skills. The

Fig 2. Comparison of regional parameters between athlete and control groups. A shows the bigger node size of brain networks in athletes

group with higher regional parameters compared to the control group. B shows the bigger node size of brain networks in the control group with

higher regional parameters relative to the athlete group. Red nodes indicate the sensorimotor network while yellow nodes indicate the visual

network, green nodes the attention network, light blue nodes the default-mode network, and the dark blue nodes the limbic/subcortex network.

https://doi.org/10.1371/journal.pone.0210015.g002
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Fig 3. The correlation between regional parameters and years of training. SMA: supplementary motor area; MTG: middle temporal

gyrus; LING: lingual gyrus. The results show that the regional parameters of right SMA, left MTG and right LING are positively

correlated to the number of years of training.

https://doi.org/10.1371/journal.pone.0210015.g003

Table 2. Fractional anisotropy data for peak voxels of athletes> novices.

N of voxel t-value x y z Label

18063 5.78 50 -6 -8 Right inferior longitudinal fasciculus

1523 5.2 13 33 -8 Forceps minor

Right uncinate fasciculus

134 5.78 37 -81 -3 Right inferior longitudinal fasciculus

125 3.43 -18 -91 4 Forceps minor

Left inferior fronto-occipital fasciculus

Left inferior longitudinal fasciculus

50 2.07 26 -23 -3 Right optic radiation

40 4.19 -32 28 25 Left anterior thalamic radiation

37 3.5 -32 -14 41 Left superior longitudinal fasciculus

32 2.92 10 -85 15 Forceps major

21 1.76 17 -53 27 Callosal body

20 2.37 35 -62 -2 Right inferior longitudinal fasciculus

Right inferior fronto-occipital fasciculus

11 2.97 -47 -1 21 Left superior longitudinal fasciculus

Peak voxel locations included bilateral inferior longitudinal fasciculus, bilateral inferior fronto-occipital fasciculus,

left superior longitudinal fasciculus, left anterior thalamic radiation, forceps minor and major, right uncinate

fasciculus and right optic radiation. Co-ordinates are shown in MNI (Montreal Neurological Institute) space.

https://doi.org/10.1371/journal.pone.0210015.t002
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obvious changes may point to the involvement of distributed cortex-subcortex connections

when people learn professional skills. The lower value of Lambda may be associated with

higher efficiency among nearby brain regions [45, 46]. Repetitive skill learning renders motor

processes more automatic and increases the accuracy of motor performance. Based on our

results, it is reasonable to assume that after long-term professional skills training, the athlete

group could transfer and integrate the local information automatically. In the athlete group,

the random network properties ensured that the connections among distant brain areas were

faster and more direct, thereby increasing the effectiveness of switching between functional

areas.

At the regional level, we found that the attentional and default-mode networks were still the

major subnetworks that were changed, which is similar to the results reported by Wang et al

(2013). We believe that these results may partly be caused by the brain mechanisms underlying

the acquisition of open and closed skills. The regions of the attentional network are mainly

located in the dorsal attention system, which comprises the parietal cortex and superior frontal

gyrus. These regions relate to a directional stimulus, target selection, and preparation reaction.

The dorsal attention network is responsible for the coordination of complex motor functions

and control of motor plans [47]. It is considered a bridge between the central executive net-

work and default-mode network [48]. A clinical study showed that the frontal-parietal network

may contribute to effectively coordinate complex visual movement [49]. In addition, the

default-mode network is related to episodic memory retrieval [50–53] and self-reflection [54].

Enhancement of default-mode network activity may help to extract episodic memories [55]. In

addition, another important function of the default-mode network is to monitor the external

environment [56–58]. The changed default-mode regions of our study were in the so-called

“dorsal medial prefrontal cortex subsystem.” The function of this subsystem is to guide and

drive behavior when information about external stimuli is processed. This may be generated

by the interaction of the default-mode network and subcortical regions or the internal mental

processing functions of two different subsystems of the default-mode network. The dorsal

medial prefrontal system may reflect the state of an individual’s mind induced by external

stimulation; for example, when individuals need to identify a particular social context (such as

a basketball scene). In contrast, the medial temporal lobe system may integrate the existing

experience of the past and thus contribute to goal-directed behavior. Based on the consistency

Fig 4. Tissue microstructure result of white matter. (A) Green denotes the white matter skeleton and red denoted the areas with significant bigger

fractional anisotropy. (B) The reconstructed streamlines are shown for the major three nerve fiber bundles in the brain. Yellow denoted the inferior fronto-

occipital fasciculus connecting occipital and limbic system. Orange denoted the inferior longitudinal fasciculus connecting occipital and temporal. Red

denoted the uncinated fasciculus connecting orbitofrontal and basal ganglia.

https://doi.org/10.1371/journal.pone.0210015.g004
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of our results with those of Wang et al. (2013), we propose that the two networks are the basis

of the acquisition of different types of skills.

Consistent with our hypothesis, the visual network plays an important role in the acquisi-

tion of open skills. It is believed that there are two visual pathways in the brain. The first path-

way is the ventral pathway, which transmits information to the temporal cortex with V4 as the

center. The second pathway is the dorsal pathway, which transmits information to the parietal

cortex with MT (middle temporal / V5) as the center [59]. The ventral pathway is responsible

for identifying and recognizing objects, whereas the dorsal pathway is responsible for helping

the motion system detect and use objects, and is also involved in behavioral control [60]. The

result of the group comparison revealed that the regional parameters of some brain areas

showed significant differences. These areas included the calcarine area, cuneus, lingual gyrus,

and middle occipital gyrus. Collectively, these areas are part of the peripheral striatum.

Research on monkeys has revealed that the peripheral striatum is a collection of different areas

involved in processing visual information and multiple representations of the visual scene

[61]. Therefore, it appears to be the differentiation point of the two visual pathways. The

increase in regional parameters of brain areas in the peripheral striatum suggests that after

long-term motor skill learning, the brain areas which used to distinguish different visual infor-

mation are more important. They can therefore characterize visual input more quickly and

transmit the information to the relevant visual pathways for visual processing.

The relationship between regional parameters and years of training

The correlation analysis of regional parameters and years of training showed that the between-

ness of the left supplementary motor area as well as the degree of right lingual gyrus and left

middle temporal gyrus, increased with years of training. Notably, these changes were specific

to years of training. The supplementary motor area is important for motor planning and orga-

nizing a rapid motor sequence based on a specific order [62–64] also reported that the supple-

mentary motor area can suppress habitual behavior to engage in other activities. As part of the

ventral visual pathway, the lingual gyrus is related to complex image coding. Machielsen et al.

(2000) [65] considered the lingual gyrus to be responsible for memory and recognition of neu-

tral pictures. Furthermore, the lingual gyrus is involved in selective visual attention. Mangun

et al. (1998) [66] found that the lingual gyrus is highly activated when remembering the char-

acteristics of objects in a particular visual field and ignoring objects in other visual fields.

Based on the results of our correlation analysis, we propose that in the athlete group, the years

of training of all subjects are decided by acquired factors. As such, the changes in regional

parameters of brain areas related to years of training may be induced by the learning interven-

tions. We speculate that with the increase of the years of training, the importance of supple-

mentary motor area which was responsible for perceiving others’ and own actions and

position automatically and make a decision as well as lingual gyrus, which was responsible for

selectively processing visual information as well as controlling habitual behavior and fast

motor sequences, are improved.

It is worth noting that the regional parameters of the left middle temporal gyrus showed a

significant positive correlation with the years of training. It seems that the left middle temporal

gyrus plays a critical role in motor skill learning. The middle temporal gyrus is important for

semantic information processing and lexical representation and storage [67]. Together with

the rostral supplementary motor area, the middle temporal gyrus is responsible for monitoring

internal speech [68]. As the hub of the dorsal temporal lobe system of the default-mode net-

work, the middle temporal gyrus is related to the complex characteristics of objects and high-

level cognitive functions such as semantic memory and visual perception of information [69,
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70]. Kim et al. (2008) [71] found that when world-class archers focused on targets, their middle

temporal gyri were significantly activated. Draganski et al. (2004) [3] also found that the vol-

ume of grey matter of bilateral temporal gyri of acrobats increased significantly. These studies

show that the middle temporal gyrus may be able to promote the transmission between visual

information and motion perception, which helps to coordinate visual motor skill learning and

performance. Research using PET (Position Emission Tomography) on semantic paralysis

and normal subjects found that the anterior middle temporal gyrus is not only a semantic pro-

cessing center, but is also responsible for integrating visual, auditory, motor, and functional

information, as well as vocabulary and concepts, to form high-level amodal conceptual repre-

sentations [72–74]. With the increase of the years of training, the importance of middle tempo-

ral gyrus, which is responsible for interpreting and abstracting the science scene, extracting

key information, and making decisions accurately, has been improved. The enhancement of

these functions promotes superiority when subjects in the athlete group perform professional

skills.

Limitation

Although graph theory are applied increasingly more to detect brain plasticity, few studies

have focused on the influence of motor skills learning on brain networks. Wang and his col-

leagues’ exploration of the structural and functional network characteristics of the brain in

World Gymnastics Champion is an excellent achievement in this field. Our research draws on

the methods of Wang and his colleagues and attempts to explore the impact of open skill learn-

ing on brain networks. We believe that our research complements the field of motor skills

learning that affects the brain network.

In this study, we regarded basketball as a representative of the open skills. However, the

results did not fully represent the characteristics of the open skills. Closed skills (Gentile, 1972)

are those without environmental uncertainty during planning (e.g. repeating the same motion

without variation in external conditions). Open skills are skills with environmental uncertainty

(e.g. those that require ongoing sensory feedback). Schmidt [75] suggested that this difference

is not useful, because, for example, once a decision is made to produce a component move-

ment, the response cannot be changed for some small interval around 200ms. Also, if warm up

and fatigue in muscles are considered as components of environmental uncertainty, there is

also (at most) a limited time period over which even highly repetitive skills may be considered

closed. Moreover, our results are consistent with the results of Wang, et al. (2013) support the

viewpoint that closed versus open skills produce similar changes in brain connectivity as mea-

sured by DTI. In the future, it is valuable to test the differences between open and closed skill

group.

Although the study found that the node parameters of the visual, attention and sensorimo-

tor areas of brain network in athletes group were improved, and these improvements were

related to the duration of the basketball training. But this did not necessarily mean that basket-

ball players had the better ability of visual, attention and movement related ability. We need to

do further behavioral experiments related to these functions and correlate the data of behav-

ioral experiments with the brain network data in order to finally get a conclusion.

Conclusions

In summary, we constructed brain anatomical networks for the athlete group with professional

skills and controls using DTI and deterministic tractography. Using a graphical analysis

approach, we found that the ability of long-distance information transmission in the brain was

stronger, and the network was more random in the athlete group. Moreover, the importance
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of attention, sensorimotor, default-mode and visual function regions in the network was

improved in the athlete group. More importantly, the main factor leading to enhancement of

these functions is induced by acquired motor learning. We believe that motor skill learning

can improve the ability of our brains to control behavior, make decisions more effectively, and

switch the focus of attention more accurately. Our results provide insight into the mechanisms

underlying brain plasticity and may help to develop the brain’s potential for change as well as

to treat brain injury.

Supporting information

S1 Compressed Raw Data. Rawdata.rar.

(RAR)

Author Contributions

Conceptualization: Yan-Ling Pi, Ke Liu, Hua Zhu, Jian Zhang.

Data curation: Xu-Heng Wu, Hua Zhu.

Formal analysis: Hua Zhu.

Investigation: Yin Wu.

Methodology: Yin Wu, Hua Zhu.

Project administration: Hua Zhu.

Resources: Ke Liu.

Software: Hua Zhu.

Supervision: Feng-Juan Wang, Hua Zhu.

Validation: Feng-Juan Wang.

Visualization: Hua Zhu.

Writing – original draft: Hua Zhu.

Writing – review & editing: Yan-Ling Pi, Hua Zhu.

References
1. Bengtsson SL, Nagy Z, Skare S, Forsman L, Forssberg H, Ullen F. Extensive piano practicing has

regionally specific effects on white matter development. Nature neuroscience. 2005; 8(9):1148–50.

https://doi.org/10.1038/nn1516 PMID: 16116456

2. Cole MW, Bassett DS, Power JD, Braver TS, Petersen SE. Intrinsic and task-evoked network architec-

tures of the human brain. Neuron. 2014; 83(1):238–51. https://doi.org/10.1016/j.neuron.2014.05.014

PMID: 24991964

3. Draganski B, Gaser C, Busch V, Schuierer G, Bogdahn U, May A. Neuroplasticity: changes in grey mat-

ter induced by training. Nature. 2004; 427(6972):311. https://doi.org/10.1038/427311a PMID:

14737157

4. Scholz J, Klein MC, Behrens TE, Johansen-Berg H. Training induces changes in white-matter architec-

ture. Nature neuroscience. 2009; 12(11):1370–1. https://doi.org/10.1038/nn.2412 PMID: 19820707

5. Zatorre RJ, Fields RD, Johansen-Berg H. Plasticity in gray and white: neuroimaging changes in brain

structure during learning. Nature neuroscience. 2012; 15(4):528–36. https://doi.org/10.1038/nn.3045

PMID: 22426254

6. Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A. Neurophysiological investigation of the

basis of the fMRI signal. Nature. 2001; 412(6843):150–7. https://doi.org/10.1038/35084005 PMID:

11449264

Motor skill learning induces brain network plasticity

PLOS ONE | https://doi.org/10.1371/journal.pone.0210015 February 6, 2019 13 / 17

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0210015.s001
https://doi.org/10.1038/nn1516
http://www.ncbi.nlm.nih.gov/pubmed/16116456
https://doi.org/10.1016/j.neuron.2014.05.014
http://www.ncbi.nlm.nih.gov/pubmed/24991964
https://doi.org/10.1038/427311a
http://www.ncbi.nlm.nih.gov/pubmed/14737157
https://doi.org/10.1038/nn.2412
http://www.ncbi.nlm.nih.gov/pubmed/19820707
https://doi.org/10.1038/nn.3045
http://www.ncbi.nlm.nih.gov/pubmed/22426254
https://doi.org/10.1038/35084005
http://www.ncbi.nlm.nih.gov/pubmed/11449264
https://doi.org/10.1371/journal.pone.0210015


7. Le Bihan D, Mangin JF, Poupon C, Clark CA, Pappata S, Molko N, et al. Diffusion tensor imaging: con-

cepts and applications. Journal of magnetic resonance imaging. 2001; 13(4):534–46. PMID: 11276097

8. Chang Y. Reorganization and plastic changes of the human brain associated with skill learning and

expertise. Frontiers in human neuroscience. 2014; 8:35. https://doi.org/10.3389/fnhum.2014.00035

PMID: 24550812

9. Imfeld A, Oechslin MS, Meyer M, Loenneker T, Jancke L. White matter plasticity in the corticospinal

tract of musicians: a diffusion tensor imaging study. NeuroImage. 2009; 46(3):600–7. https://doi.org/10.

1016/j.neuroimage.2009.02.025 PMID: 19264144

10. Jäncke L, Koeneke S, Hoppe A, Rominger C, Hänggi J. The architecture of the golfer’s brain. PloS one.

2009; 4(3):e4785. https://doi.org/10.1371/journal.pone.0004785 PMID: 19277116

11. Mechelli A, Crinion JT, Noppeney U, O’doherty J, Ashburner J, Frackowiak RS, et al. Neurolinguistics:

structural plasticity in the bilingual brain. Nature. 2004; 431(7010):757. https://doi.org/10.1038/431757a

PMID: 15483594

12. He Y, Evans A. Graph theoretical modeling of brain connectivity. Current opinion in neurology. 2010;

23(4):341–50. PMID: 20581686

13. Sporns O, Tononi G, Kotter R. The human connectome: A structural description of the human brain.

PLoS computational biology. 2005; 1(4):e42. https://doi.org/10.1371/journal.pcbi.0010042 PMID:

16201007

14. Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional

systems. Nature Reviews Neuroscience. 2009; 10(3):186. https://doi.org/10.1038/nrn2575 PMID:

19190637

15. Latora V, Marchiori M. Efficient behavior of small-world networks. Physical review letters. 2001;

87(19):198701. https://doi.org/10.1103/PhysRevLett.87.198701 PMID: 11690461

16. Wang B, Fan Y, Lu M, Li S, Song Z, Peng X, et al. Brain anatomical networks in world class gymnasts: a

DTI tractography study. NeuroImage. 2013; 65:476–87. https://doi.org/10.1016/j.neuroimage.2012.10.

007 PMID: 23073234

17. Gentile AM. A Working Model of Skill Acquisition with Application to Teaching. Quest. 1972; 17(1):3–

23.

18. Clark A. Whatever next? Predictive brains, situated agents, and the future of cognitive science. The

Behavioral and brain sciences. 2013; 36(3):181–204. https://doi.org/10.1017/S0140525X12000477

PMID: 23663408

19. Green CS, Bavelier D. Exercising your brain: a review of human brain plasticity and training-induced

learning. Psychology and aging. 2008; 23(4):692–701. https://doi.org/10.1037/a0014345 PMID:

19140641

20. Xu Y, Chun MM. Visual grouping in human parietal cortex. Proceedings of the National Academy of Sci-

ences of the United States of America. 2007; 104(47):18766–71. https://doi.org/10.1073/pnas.

0705618104 PMID: 17998539

21. Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM. Fsl. NeuroImage. 2012; 62

(2):782–90. https://doi.org/10.1016/j.neuroimage.2011.09.015 PMID: 21979382

22. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated

anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI

single-subject brain. NeuroImage. 2002; 15(1):273–89. https://doi.org/10.1006/nimg.2001.0978 PMID:

11771995

23. Gong G, Rosa-Neto P, Carbonell F, Chen ZJ, He Y, Evans AC. Age- and gender-related differences in

the cortical anatomical network. The Journal of neuroscience: the official journal of the Society for Neu-

roscience. 2009; 29(50):15684–93.

24. Yan C, Gong G, Wang J, Wang D, Liu D, Zhu C, et al. Sex- and brain size-related small-world structural

cortical networks in young adults: a DTI tractography study. Cereb Cortex. 2011; 21(2):449–58. https://

doi.org/10.1093/cercor/bhq111 PMID: 20562318

25. Collignon A, Maes F, Delaere D, Vandermeulen D, Suetens P, Marchal G. Automated Multi-Modality

Image Registration Based On Information Theory. In Information processing in medical imaging. 1995;

3(6):263–74.

26. Jiang H, van Zijl PC, Kim J, Pearlson GD, Mori S. DtiStudio: resource program for diffusion tensor com-

putation and fiber bundle tracking. Computer methods and programs in biomedicine. 2006; 81(2):106–

16. https://doi.org/10.1016/j.cmpb.2005.08.004 PMID: 16413083

27. Cui Z, Zhong S, Xu P, He Y, Gong G. PANDA: a pipeline toolbox for analyzing brain diffusion images.

Frontiers in human neuroscience. 2013; 7:42. https://doi.org/10.3389/fnhum.2013.00042 PMID:

23439846

Motor skill learning induces brain network plasticity

PLOS ONE | https://doi.org/10.1371/journal.pone.0210015 February 6, 2019 14 / 17

http://www.ncbi.nlm.nih.gov/pubmed/11276097
https://doi.org/10.3389/fnhum.2014.00035
http://www.ncbi.nlm.nih.gov/pubmed/24550812
https://doi.org/10.1016/j.neuroimage.2009.02.025
https://doi.org/10.1016/j.neuroimage.2009.02.025
http://www.ncbi.nlm.nih.gov/pubmed/19264144
https://doi.org/10.1371/journal.pone.0004785
http://www.ncbi.nlm.nih.gov/pubmed/19277116
https://doi.org/10.1038/431757a
http://www.ncbi.nlm.nih.gov/pubmed/15483594
http://www.ncbi.nlm.nih.gov/pubmed/20581686
https://doi.org/10.1371/journal.pcbi.0010042
http://www.ncbi.nlm.nih.gov/pubmed/16201007
https://doi.org/10.1038/nrn2575
http://www.ncbi.nlm.nih.gov/pubmed/19190637
https://doi.org/10.1103/PhysRevLett.87.198701
http://www.ncbi.nlm.nih.gov/pubmed/11690461
https://doi.org/10.1016/j.neuroimage.2012.10.007
https://doi.org/10.1016/j.neuroimage.2012.10.007
http://www.ncbi.nlm.nih.gov/pubmed/23073234
https://doi.org/10.1017/S0140525X12000477
http://www.ncbi.nlm.nih.gov/pubmed/23663408
https://doi.org/10.1037/a0014345
http://www.ncbi.nlm.nih.gov/pubmed/19140641
https://doi.org/10.1073/pnas.0705618104
https://doi.org/10.1073/pnas.0705618104
http://www.ncbi.nlm.nih.gov/pubmed/17998539
https://doi.org/10.1016/j.neuroimage.2011.09.015
http://www.ncbi.nlm.nih.gov/pubmed/21979382
https://doi.org/10.1006/nimg.2001.0978
http://www.ncbi.nlm.nih.gov/pubmed/11771995
https://doi.org/10.1093/cercor/bhq111
https://doi.org/10.1093/cercor/bhq111
http://www.ncbi.nlm.nih.gov/pubmed/20562318
https://doi.org/10.1016/j.cmpb.2005.08.004
http://www.ncbi.nlm.nih.gov/pubmed/16413083
https://doi.org/10.3389/fnhum.2013.00042
http://www.ncbi.nlm.nih.gov/pubmed/23439846
https://doi.org/10.1371/journal.pone.0210015


28. Hagmann P, Cammoun L, Gigandet X, Gerhard S, Grant PE, Wedeen V, et al. MR connectomics: Prin-

ciples and challenges. Journal of neuroscience methods. 2010; 194(1):34–45. https://doi.org/10.1016/j.

jneumeth.2010.01.014 PMID: 20096730

29. Watts DJ, Strogatz SH. Collective dynamics of ‘small-world’ networks. Nature 1998; 393(6684):440.

https://doi.org/10.1038/30918 PMID: 9623998

30. Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E. A resilient, low-frequency, small-world

human brain functional network with highly connected association cortical hubs. The Journal of neuro-

science: the official journal of the Society for Neuroscience. 2006; 26(1):63–72.

31. Humphries MD, Gurney K. Network ‘small-world-ness’: a quantitative method for determining canonical

network equivalence. PloS one. 2008; 3(4):e0002051. https://doi.org/10.1371/journal.pone.0002051

PMID: 18446219

32. Achard S, Bullmore E. Efficiency and cost of economical brain functional networks. PLoS computational

biology. 2007; 3(2):e17. https://doi.org/10.1371/journal.pcbi.0030017 PMID: 17274684

33. Freeman LC. A set of measures of centrality based on betweenness. Sociometry. 1977:35–41.

34. Wang J, Wang X, Xia M, Liao X, Evans A, He Y. GRETNA: a graph theoretical network analysis

toolbox for imaging connectomics. Frontiers in human neuroscience. 2015; 9:386. https://doi.org/10.

3389/fnhum.2015.00386 PMID: 26175682

35. Zhang Z, Liao W, Chen H, Mantini D, Ding JR, Xu Q, et al. Altered functional-structural coupling of

large-scale brain networks in idiopathic generalized epilepsy. Brain: a journal of neurology. 2011;

134(Pt 10):2912–28.

36. Andersson JL, Jenkinson M, Smith S. Non-linear registration, aka Spatial normalisation FMRIB techni-

cal report TR07JA2. FMRIB Analysis Group of the University of Oxford. 2007; 2:1–21.

37. Rueckert D, Sonoda LI, Hayes C, Hill DL, Leach MO, Hawkes DJ. Nonrigid registration using free-form

deformations: application to breast MR images. IEEE transactions on medical imaging. 1998; 18:712–

721.

38. Winkler AM, Ridgway GR, Webster MA, Smith SM, Nichols TE. Permutation inference for the general

linear model. Neuroimage. 2014; 92:381–397. https://doi.org/10.1016/j.neuroimage.2014.01.060

PMID: 24530839

39. Smith SM, Nichols TE. Threshold-free cluster enhancement: addressing problem of smoothing, thresh-

old dependence and localisation in cluster inference. Neuroimage. 2009; 44:83–89. https://doi.org/10.

1016/j.neuroimage.2008.03.061 PMID: 18501637

40. Iturria-Medina Y, Sotero RC, Canales-Rodriguez EJ, Aleman-Gomez Y, Melie-Garcial L. Studying the

human brain anatomical network via diffusion-weighted MRI and Graph Theory. Neuroimage. 2008;

40:1064–1076. https://doi.org/10.1016/j.neuroimage.2007.10.060 PMID: 18272400

41. Salvador R, Suckling J, Coleman MR, Pickard JD, Menon D, Bullmore ED. Neurophysiological architec-

ture of functional magnetic resonance images of human brain. Cerebral cortex. 2005; 15(9): 1332–

1342. https://doi.org/10.1093/cercor/bhi016 PMID: 15635061

42. He Y, Chen ZJ, Evans AC. Small-world anatomical networks in the human brain revealed by cortical

thinckness from MRI. Cereb Cortex. 2007; 17: 2407–2419. https://doi.org/10.1093/cercor/bhl149

PMID: 17204824

43. Wakana S, Jiang H, Nagae-Postscher LM, Van Zijl PC, Mori S. Fiber tract-based atlas of human white

matter anatomy. Radiology. 2004; 230:77–87. https://doi.org/10.1148/radiol.2301021640 PMID:

14645885

44. Bassett DS, Bullmore E. Small-world brain networks. The Neuroscientist: a review journal bringing neu-

robiology, neurology and psychiatry. 2006; 12(6):512–23.

45. Wu T, Kansaku K, Hallett M. How self-initiated memorized movements become automatic: a functional

MRI study. Journal of neurophysiology. 2004; 91(4):1690–8. https://doi.org/10.1152/jn.01052.2003

PMID: 14645385

46. Haslinger B, Erhard P, Altenmuller E, Hennenlotter A, Schwaiger M, Grafin von Einsiedel H, et al.

Reduced recruitment of motor association areas during bimanual coordination in concert pianists. Hum

Brain Mapp. 2004; 22(3):206–15. https://doi.org/10.1002/hbm.20028 PMID: 15195287

47. Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention in the brain. Nature

reviews Neuroscience. 2002; 3(3):201–15. https://doi.org/10.1038/nrn755 PMID: 11994752

48. Sridharan D, Levitin DJ, Menon V. A critical role for the right fronto-insular cortex in switching between

central-executive and default-mode networks. Proceedings of the National Academy of Sciences of the

United States of America. 2008; 105(34):12569–74. https://doi.org/10.1073/pnas.0800005105 PMID:

18723676

49. Leiguarda RC, Marsden CD. Limb apraxias: higher-order disorders of sensorimotor integration. Brain: a

journal of neurology. 2000; 123(5):860–79.

Motor skill learning induces brain network plasticity

PLOS ONE | https://doi.org/10.1371/journal.pone.0210015 February 6, 2019 15 / 17

https://doi.org/10.1016/j.jneumeth.2010.01.014
https://doi.org/10.1016/j.jneumeth.2010.01.014
http://www.ncbi.nlm.nih.gov/pubmed/20096730
https://doi.org/10.1038/30918
http://www.ncbi.nlm.nih.gov/pubmed/9623998
https://doi.org/10.1371/journal.pone.0002051
http://www.ncbi.nlm.nih.gov/pubmed/18446219
https://doi.org/10.1371/journal.pcbi.0030017
http://www.ncbi.nlm.nih.gov/pubmed/17274684
https://doi.org/10.3389/fnhum.2015.00386
https://doi.org/10.3389/fnhum.2015.00386
http://www.ncbi.nlm.nih.gov/pubmed/26175682
https://doi.org/10.1016/j.neuroimage.2014.01.060
http://www.ncbi.nlm.nih.gov/pubmed/24530839
https://doi.org/10.1016/j.neuroimage.2008.03.061
https://doi.org/10.1016/j.neuroimage.2008.03.061
http://www.ncbi.nlm.nih.gov/pubmed/18501637
https://doi.org/10.1016/j.neuroimage.2007.10.060
http://www.ncbi.nlm.nih.gov/pubmed/18272400
https://doi.org/10.1093/cercor/bhi016
http://www.ncbi.nlm.nih.gov/pubmed/15635061
https://doi.org/10.1093/cercor/bhl149
http://www.ncbi.nlm.nih.gov/pubmed/17204824
https://doi.org/10.1148/radiol.2301021640
http://www.ncbi.nlm.nih.gov/pubmed/14645885
https://doi.org/10.1152/jn.01052.2003
http://www.ncbi.nlm.nih.gov/pubmed/14645385
https://doi.org/10.1002/hbm.20028
http://www.ncbi.nlm.nih.gov/pubmed/15195287
https://doi.org/10.1038/nrn755
http://www.ncbi.nlm.nih.gov/pubmed/11994752
https://doi.org/10.1073/pnas.0800005105
http://www.ncbi.nlm.nih.gov/pubmed/18723676
https://doi.org/10.1371/journal.pone.0210015


50. Greicius MD, Srivastava G, Reiss AL, Menon V. Default-mode network activity distinguishes Alzhei-

mer’s disease from healthy aging: evidence from functional MRI. Proceedings of the National Academy

of Sciences of the United States of America. 2004; 101(13):4637–42. https://doi.org/10.1073/pnas.

0308627101 PMID: 15070770

51. Otten LJ, Rugg MD. Task-dependency of the neural correlates of episodic encoding as measured by

fMRI. Cerebral Cortex. 2001; 11(12):1150–60. PMID: 11709486

52. Poldrack RA, Wagner AD, Prull MW, Desmond JE, Glover GH, Gabrieli JD. Functional specialization

for semantic and phonological processing in the left inferior prefrontal cortex. NeuroImage. 1999;

10(1):15–35. https://doi.org/10.1006/nimg.1999.0441 PMID: 10385578

53. Wheeler ME, Buckner RL. Functional dissociation among components of remembering: control, per-

ceived oldness, and content. Journal of Neuroscience. 2003; 23(9):3869–80. PMID: 12736357

54. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain

function. Proceedings of the National Academy of Sciences. 2001; 98(2):676–82.

55. Huijbers W, Vannini P, Sperling RA, C MP, Cabeza R, Daselaar SM. Explaining the encoding/

retrieval flip: memory-related deactivations and activations in the posteromedial cortex. Neuropsy-

chologia. 2012; 50(14):3764–74. https://doi.org/10.1016/j.neuropsychologia.2012.08.021 PMID:

22982484

56. Gilbert SJ, Dumontheil I, Simons JS, Frith CD, &, Burgess PW. Comment on" Wandering minds: the

default network and stimulus-independent thought". Science. 2007; 317(5834):43. https://doi.org/10.

1126/science.1140801 PMID: 17615325

57. Gusnard DA, Raichle ME. Searching for a baseline: functional imaging and the resting human brain.

Nature Reviews Neuroscience. 2001; 2(10):685. https://doi.org/10.1038/35094500 PMID: 11584306

58. Shulman GL, Corbetta M, Buckner RL, Raichle ME, Fiez JA, Miezin FM, et al. Top-down modulation of

early sensory cortex. Cerebral cortex (New York, NY: 1991). 1997; 7(3):193–206.

59. Milner AD, Goodale MA. Two visual systems re-viewed. Neuropsychologia. 2008; 46(3):774–85.

https://doi.org/10.1016/j.neuropsychologia.2007.10.005 PMID: 18037456

60. Rizzolatti G, Matelli M. Two different streams form the dorsal visual system: anatomy and functions.

Experimental brain research. 2003; 153(2):146–57. https://doi.org/10.1007/s00221-003-1588-0 PMID:

14610633

61. Saint-Cyr JA, Ungerleider LG, Desimone R. Organization of visual cortical inputs to the striatum and

subsequent outputs to the pallido-nigral complex in the monkey. Journal of Comparative Neurology,.

1990; 298(2):129–56. https://doi.org/10.1002/cne.902980202 PMID: 1698830

62. Isoda M, Hikosaka O. Switching from automatic to controlled action by monkey medial frontal cortex.

Nature neuroscience. 2007; 10(2):240–8. https://doi.org/10.1038/nn1830 PMID: 17237780

63. Shima K, Tanji J. Both supplementary and presupplementary motor areas are crucial for the temporal

organization of multiple movements. Journal of neurophysiology. 1998; 80(6):3247–60. https://doi.org/

10.1152/jn.1998.80.6.3247 PMID: 9862919

64. Tanji J, Shima K. Role for supplementary motor area cells in planning several movements ahead.

Nature. 1994; 371(6496):413. https://doi.org/10.1038/371413a0 PMID: 8090219

65. Rombouts SA, Barkhof F, Veltman DJ, Machielsen WC, Witter MP, Bierlaagh MA, et al. Functional MR

imaging in Alzheimer’s disease during memory encoding. American Journal of Neuroradiology. 2000;

21(10):1869–75. PMID: 11110539

66. Mangun GR, Buonocore MH, Girelli M, Jha AP. ERP and fMRI measures of visual spatial selective

attention. Human brain mapping. 1998; 6(5–6):383–9. PMID: 9788077

67. Martin A, Chao LL. Semantic memory and the brain: structure and processes. Current opinion in neuro-

biology. 2001; 11(2):194–201. PMID: 11301239

68. McGuire PK, David AS, Murray RM, Frackowiak RSJ, Frith CD, Wright I., Silbersweig DA. Abnormal

monitoring of inner speech: a physiological basis for auditory hallucinations. The Lancet. 1995; 346

(8975):596–600.

69. Ojemann GA, Schoenfield-McNeill J, Corina DP. Anatomic subdivisions in human temporal cortical neu-

ronal activity related to recent verbal memory. Nature neuroscience. 2002; 5(1):64–71. https://doi.org/

10.1038/nn785 PMID: 11753418

70. Price CJ. The anatomy of language: contributions from functional neuroimaging. The Journal of Anat-

omy. 2000; 197(3):335–59.

71. Kim J, Lee HM, Kim WJ, Park HJ, Kim SW, Moon DH, et al. Neural correlates of pre-performance rou-

tines in expert and novice archers. Neuroscience letters. 2008; 445(3):236–41. https://doi.org/10.1016/

j.neulet.2008.09.018 PMID: 18805460

Motor skill learning induces brain network plasticity

PLOS ONE | https://doi.org/10.1371/journal.pone.0210015 February 6, 2019 16 / 17

https://doi.org/10.1073/pnas.0308627101
https://doi.org/10.1073/pnas.0308627101
http://www.ncbi.nlm.nih.gov/pubmed/15070770
http://www.ncbi.nlm.nih.gov/pubmed/11709486
https://doi.org/10.1006/nimg.1999.0441
http://www.ncbi.nlm.nih.gov/pubmed/10385578
http://www.ncbi.nlm.nih.gov/pubmed/12736357
https://doi.org/10.1016/j.neuropsychologia.2012.08.021
http://www.ncbi.nlm.nih.gov/pubmed/22982484
https://doi.org/10.1126/science.1140801
https://doi.org/10.1126/science.1140801
http://www.ncbi.nlm.nih.gov/pubmed/17615325
https://doi.org/10.1038/35094500
http://www.ncbi.nlm.nih.gov/pubmed/11584306
https://doi.org/10.1016/j.neuropsychologia.2007.10.005
http://www.ncbi.nlm.nih.gov/pubmed/18037456
https://doi.org/10.1007/s00221-003-1588-0
http://www.ncbi.nlm.nih.gov/pubmed/14610633
https://doi.org/10.1002/cne.902980202
http://www.ncbi.nlm.nih.gov/pubmed/1698830
https://doi.org/10.1038/nn1830
http://www.ncbi.nlm.nih.gov/pubmed/17237780
https://doi.org/10.1152/jn.1998.80.6.3247
https://doi.org/10.1152/jn.1998.80.6.3247
http://www.ncbi.nlm.nih.gov/pubmed/9862919
https://doi.org/10.1038/371413a0
http://www.ncbi.nlm.nih.gov/pubmed/8090219
http://www.ncbi.nlm.nih.gov/pubmed/11110539
http://www.ncbi.nlm.nih.gov/pubmed/9788077
http://www.ncbi.nlm.nih.gov/pubmed/11301239
https://doi.org/10.1038/nn785
https://doi.org/10.1038/nn785
http://www.ncbi.nlm.nih.gov/pubmed/11753418
https://doi.org/10.1016/j.neulet.2008.09.018
https://doi.org/10.1016/j.neulet.2008.09.018
http://www.ncbi.nlm.nih.gov/pubmed/18805460
https://doi.org/10.1371/journal.pone.0210015


72. Patterson K, Nestor PJ, Rogers TT. Where do you know what you know? The representation of seman-

tic knowledge in the human brain. Nature reviews Neuroscience. 2007; 8(12):976–87. https://doi.org/

10.1038/nrn2277 PMID: 18026167

73. Rogers TT, Hocking J, Noppeney UTA, Mechelli A, Gorno-Tempini ML, Patterson K, et al. Anterior tem-

poral cortex and semantic memory: reconciling findings from neuropsychology and functional imaging.

Cognitive, Affective, & Behavioral Neuroscience. 2006; 6(3):201–13.

74. Visser M, Embleton KV, Jefferies E, Parker GJ, Ralph MA. The inferior, anterior temporal lobes and

semantic memory clarified: novel evidence from distortion-corrected fMRI. Neuropsychologia. 2010;

48(6):1689–96. https://doi.org/10.1016/j.neuropsychologia.2010.02.016 PMID: 20176043

75. Schmidt RA. A schema theory of discrete motor skill learning. Psychological review, 1975; 82(4): 225.

Motor skill learning induces brain network plasticity

PLOS ONE | https://doi.org/10.1371/journal.pone.0210015 February 6, 2019 17 / 17

https://doi.org/10.1038/nrn2277
https://doi.org/10.1038/nrn2277
http://www.ncbi.nlm.nih.gov/pubmed/18026167
https://doi.org/10.1016/j.neuropsychologia.2010.02.016
http://www.ncbi.nlm.nih.gov/pubmed/20176043
https://doi.org/10.1371/journal.pone.0210015

