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Abstract: Metabolic health is highly dependent on intestinal
and hepatic handling of dietary and endogenous lipids and
lipoproteins. Disorders of lipid and lipoproteinmetabolism are
commonly observed in patients with insulin resistant states
such as obesity, metabolic syndrome, and type 2 diabetes. Ev-
idence from both animal models and human studies indicates
that a major underlying factor in metabolic or diabetic dysli-
pidemia is the overproduction of hepatic and intestinal apoli-
poprotein (apo)B-containing lipoprotein particles. These
particles are catabolized down into highly proatherogenic
remnants, which can be taken up into the arterial intima and
promote plaque development. Several gut-derived peptides
have been identified as key regulators of energy metabolism;
one such peptide is the incretin hormone glucagon-like peptide
(GLP)-1. Our laboratory has previously demonstrated that
GLP-1 can signal both centrally and peripherally to reduce
postprandial and fasting lipoprotein secretion. Moreover, we
have demonstrated that GLP-1 receptor (GLP-1R) agonists can
ameliorate diet-induced dyslipidemia. Recently, we published
evidence for a novel vagal neuroendocrine signalling pathway
by which native GLP-1 may exert its anti-lipemic effects.
Furthermore, we demonstrated a novel role for other gut-
derived peptides in regulating intestinal lipoprotein produc-
tion. Overall, ample evidence supports a key role for GLP-1R on
the portal vein afferent neurons and nodose ganglion in
modulating intestinal fat absorption and lipoprotein produc-
tion and identifies other gut-derived peptides as novel regula-
tors of postprandial lipemia. Insights from these data may
support identification of potential drug targets and the

development of new therapeutics targeting treatment of dia-
betic dyslipidemia.
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Introduction

The intestine regulates several aspects of metabolism via
secretion of enteroendocrine hormones from a variety of
specialized cells in the intestinal epithelium. These peptide
hormones have key roles in modulating components of
gastrointestinal function such as gastric acid secretion, in-
testinal motility, and gall bladder contraction. Importantly,
several of these hormones have also been implicated in the
regulation of metabolism on a global scale, influencing
satiety, glucose homeostasis, thermogenesis, and nutrient
mobilization [1]. Indeed, some of these peptides have already
been shown to influence lipoprotein metabolism, such as
glucagon-like peptide (GLP)-1 (discussed below) [2]. Impor-
tantly, these peptides can signal both locally within the GI
tract and to peripheral and central nervous centers to
regulate components of metabolism [3].

Glucagon-like peptides (GLPs)

GLP-1 is a 31 amino acid peptide that acts as an incretin
hormone, potentiating the release of insulin. It is 50 % ho-
mologous with glucagon [4], and the majority of its presence
in the circulation originates from the intestinal L-cell [5].
GLP-1 has been the focus of several pharmacological in-
terventions for the treatment of metabolic disease due to its
ability to normalize body weight, blood glucose, and blood
lipids in obese and type 2 diabetic (T2D) individuals [6]. GLP-2
on the other hand is used as an intestinotrophic drug for the
treatment of short bowel disease due to its ability to stimu-
late enterocyte growth and improve intestinal barrier
function [7]. GLPs bind to their eponymous G-protein
coupled receptors GLP-1 receptor (GLP-1R) and GLP-2 re-
ceptor (GLP-2R). The focus of this reviewwill center on GLP-1
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and its effects on postprandial and fasting lipoprotein
production.

GLP-1 and GLP-2 are derived from the proglucagon gene,
present in the pancreatic alpha cells, intestinal endocrine
L-cells, and in neurons of the nucleus tractus solitarius (NTS)
in the caudal brainstem [4, 8]. Post-translational processing
of the 158 amino acid proglucagon polypeptide will yield a
tissue-specific profile ofmetabolic hormones. In the intestine
and brainstem, prohormone convertase (PC)-1/3 cleaves
proglucagon into GLP-1, GLP-2, intervening peptide (IP)-2,
oxyntomodulin, and glicentin; whereas, in the pancreatic
alpha cells, PC-2 will cleave proglucagon to produce glucagon,
IPs, glicentin-related polypeptide (GRPP), and major progluca-
gon fragment (MPFG). Importantly, GLP-1 and GLP-2 are pro-
duced at an equimolar concentration, however, have diverging
metabolic effects [2]. Notably, both GLP-1 and GLP-2 are still
present in the fasting state with a circulating concentration of
5–10 pmol/L of GLP-1 (in a study conducted in 2009 on children
during neonatal period) [9] and 116±22 pg/mL of GLP-2 (in a
study conducted in 1997 in adults (6 adults, male and female,
aged 23–32) [10]. GLPs are primarily released in response to
nutrient consumption and display a biphasic pattern of secre-
tion [11]. Direct contact of nutrientswith intestinal L-cells on the
apical intestinal lumen produces an initial secretory peak as
early as 10–15min after consumption of a meal, followed by a
secondary peak around 30–60min post-consumption [11].
Secretion is prompted by several macronutrients, including
glucose, fatty acids, and amino acids [11, 12]. Fatty acids in
particular produce a more sustained elevation in GLP-1 secre-
tion compared to glucose, mediated by intestinal L-cell
expression of the long chain fatty acid receptors GPR40 and
GPR120 [13] which have been shown to stimulate GLP-1 secre-
tion [14, 15]. This is in line with evidence that intraduodenal
lipid emulsion in rats increases GLP-1 secretion in a dose
dependent manner [16]. However, the initial peak in GLP-1’s
biphasic secretion is likely mediated not by direct nutrient
contact but via a more rapid mechanism such as neural
signaling, since the majority of intestinal L-cells are located in
the distal ileum, and small intestinal transit time can exceed
3 h [17, 18]. This is supported by evidence that stimulation of the
vagus nerve –which provides parasympathetic innervation to
the gut –with a bipolar electrode potentiates GLP-1 secretion in
an in-situ rat model. In turn, subdiaphragmatic truncal vagot-
omy has the opposite effect, abrogating early rises in GLP-1
induced by lipid load [19]. Similarly, in vivo parasympathetic
blockade in humans and rats has been demonstrated to impair
early GLP-1 secretion [20, 21].

GLP-1R

GLP-1 binds to the GLP-1R, a class B heterotrimeric G protein-
coupled receptor (GPCR) with 463 amino acid residues that

spans seven transmembrane domains [22]. The receptor ex-
hibits diverse tissue expression but is most notably found in
the pancreatic beta-cells, stomach, duodenum, vagal afferent
nerves, lungs and in the CNS [23, 24]. The extracellular
domain of the GLP-1R binds with the C-terminal half of GLP-1,
and the third transmembrane domain interacts with the
N-terminal half of GLP-1 [25]. Transmembrane topology is
common to all class B GPCRs, with the N-terminal binding of
G-proteins in this domain crucial for the selective recognition
of peptide ligands [26]. Thus, peptides that have an
N-terminal truncation such as exendin 9–39 will act as
GLP-1R antagonists [27]. Upon successful binding of GLP-1,
receptor-bound adenylyl cyclase will catalyze the conversion
of ATP to cyclic AMP (cAMP), leading to subsequent activation
of protein kinase A (PKA) and the exchange protein directly
activated by cAMP (EPAC) family. In the beta-cell this in-
crease in PKA causes ADP-dependent phosphorylation of the
SUR1 K(ATP) channel subunit, ultimately triggering the in-
sulin secretory pathway via changes in membrane depolar-
ization [28]. Moreover, there is evidence that in addition to
inhibition of ATP-regulated potassium channels PKA and
EPAC can increase the activity of L-type voltage gated calcium
channels (VGCCs) and opening of non-specific cation
channels [28–30]. Increased phosphoinositol turnover results
in additional release of intracellular Ca2+ via phospholipase-
C-mediated production of inositol triphosphate (IP)3 [31].
Together leading to increased calcium influx to the cell, and
calcium induced insulin secretion. Diacylglycerol generation
from this pathway and elevated intracellular Ca2+ will also
result in the activation of protein kinase C (PKC). Elevated
PCK will phosphorylate extracellular signal-regulated kinase
(ERK)1/2, which in turn phosphorylates the C-terminus of the
GLP-1R [32]. Importantly, spatiotemporal control of GPCR
signaling is classically mediated by receptor desensitization
and cellular internalization.Wherein, the phosphorylation of
the C-terminus by ERK1/2 recruits β-arrestins to sterically
hinder interactions with GPCR kinases, initiating endocytosis
likely via the assembly of clathrin-coated pits [24, 33]. How-
ever, there is emerging evidence that internalized GPCRs
such as GLP-1R molecules may continue to signal within
endosomes [34].

While there is notable overlap with the periphery, less is
known about GLP-1R signaling in the CNS. It is hypothesized
that GLP-1 works primarily through enhanced calcium influx
through VGCCs. In the hindbrain VGCC activation ismediated
by PKA, whereby, calcium influx activates mitogen-activated
protein kinase (MAPK) and suppresses AMP-activated pro-
tein kinase (AMPK) [35]. Similarly, in midbrain structures
such as the hypothalamus and hippocampus GLP-1R activa-
tion has been shown to increase cAMP and activate L-type
VGCCs via cAMP response element binding protein
(CREB) [35, 36]. PKA also has been shown to enhance gluta-
matergic transmission via phosphorylation of the α-amino-
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3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) re-
ceptor glutamate receptor (GluR)1 subunit in the para-
ventricular nucleus of the hypothalamus [37].

Biological functions of GLP-1

GLP-1 influences several aspects of metabolism (Figure 1). In
the periphery it stimulates insulin secretion in a glucose-
dependent manner, and in the brain it enhances satiety and
reduces food consumption [38]. It has also been shown to
have important glucoregulatory effects, with chronic treat-
ment in T2D individuals resulting in attenuated fasting
plasma glucose levels and improved hemoglobin A1c
levels [39]. Moreover, patients demonstrate improved insu-
lin sensitivity and enhanced beta cell function. Whereas, the
reverse was seen when the GLP-1R antagonist exendin 9–39
was administered to healthy men, which resulted in eleva-
tions in fasting plasma glucose levels [40]. Similarly, portal
vein infusion of exendin 9–39 in rats has been shown to
worsen glucose tolerance [41]. Direct effects of GLP-1 include
the inhibition of glucagon and somatostatin secretion,
resulting in suppressed hepatic glucose production and
potentiated insulin release, respectively [42–44]. In humans

exenatide monotherapy has been shown to reduce plasma
TG levels [45] and postprandial ApoB48 biosynthesis [46].
These observations are consistent in individuals with
impaired glucose tolerance, where a single dose of the
GLP-1R agonist exendin-4 reduced postprandial plasma TG,
ApoB48, and remnant lipoprotein cholesterol and TG [47].

Direct impact of GLP-1 on hepatic
functions

The complete understanding of themetabolic repercussions of
GLP-1 andGLP-2 on hepatic lipid and lipoproteinmetabolism is
still pending (Figure 2). Nonetheless, both play a significant role
in influencing hepatic health. When primary hepatocytes and
immortalized cell lines are exposed to GLP-1R agonists, the
outcomes appear to be diverse. Despite reports indicating the
expression and functional activity of GLP-1Rs in immortalized
hepatocyte cell lines like HuH7 and HepG2, as well as in pri-
mary humanhepatocytes [48], the effects vary. Upon treatment
with the GLP-1R agonist exendin-4, steatotic HuH7 and HepG2
cells exhibited reduced lipid accumulation compared to
vehicle controls, as evidenced by oil red O staining [48].

Figure 1: Glucagon-like peptide (GLP)-1 and GLP-2 are multi-organ hormones that exert their effects through both central and peripheral signalling.
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Furthermore, HepG2 cells treated with liraglutide demon-
strated a dose-dependent decrease in protein and mRNA
levels of proprotein convertase subtilisin/kexin type 9
(PCSK9), a pro-hypercholesterolemic factor [49]. In contrast,
McArdle cells treated with palmitic acid displayed increased
expression of genes involved inde novo lipogenesis (SREBP-1c,
FAS, SCD1, and ACC). Co-incubation with exendin-4, however,
mitigated this steatotic phenotype [50]. Surprisingly, ex
vivo treatment of primary hamster hepatocytes with
exendin-4 did not alter cAMP production, an indicator of
GLP-1R signaling [51]. This is unexpected since GLP-1R
activation is anticipated to elevate cAMP within hepato-
cytes, leading to increased phosphorylation of AMPK, a
key enzymatic suppressor of lipogenesis [52]. Conse-
quently, conflicting evidence exists regarding the pres-
ence of GLP-1Rs on hepatocytes [53–56]. Interestingly,
however, a direct effect of GLP-1 infusion on endogenous
glucose production has been demonstrated in humans under
conditions where plasma insulin and glucagon are not allowed
to change and glucose concentrations are matched, suggesting
a potential direct effect on hepatocytes [57].

Similar uncertainties surround GLP-2R, which is
acknowledged to be expressed in the nervous system and on
enteric neurons, myofibroblasts, and enteroendocrine cells
of the gut. However, its presence in the liver is contentious,
with some studies suggesting its presence [58] and others
indicating its absence [59] in hepatocytes. A study investi-
gating the localization of intravenously injected radio-
labeled 125 I-GLP-2 (1–33) proposed that the primary site of
GLP-2R-specific binding is within the small intestine. The
liver and kidneywere proposed tometabolize GLP-2 through
a non-specific metabolic pathway [60]. Consequently,

further research is imperative to definitively establish
whether GLP-1 and GLP-2 directly exert their metabolic ef-
fects on the liver.

Direct intestinal effects of GLP-1

In humans GLP-1 has been shown to slow digestion by sup-
pressing gastric acid secretion [61] and slowing gastric
emptying [62, 63]. In rats GLP-1 has been shown to lower
plasma lipid accumulation after intraduodenal fat load by
suppressing intestinal lymphflow, triglyceride absorption, and
ApoB production [64]. Similarly, GLP-1R agonist treatment in
Syrian golden hamsters suppressed hepatic very-low density
lipoprotein (VLDL) and TRL TG accumulation, with tandem
reductions in TRLApoB48 [65]. Peripheral exendin-4 treatment
has also been shown to depress intestinal microsomal triglyc-
eride transfer protein (MTP) activity, decreasing the lipidation
and secretion of ApoB48 particles after lipid load [66]. Recently,
the GLP-1R has been found in human colon cell culturemodels,
and in the colonic epithelium [67]. Similarly, in CD1 mice
GLP-1R expression was found by immunohistochemical stain-
ing to be localized to the mucosal villi layer of the ileum and
colon [68]. Interestingly, while GLP-1Rs are not found on
Villin+enterocytes and are predominantly localized to intra-
epithelial lymphocytes (IELs) [69]. Regardless, GLP-1R agonist
treatment has been shown to reduce ApoB48 secretion from
primary hamster enterocyte cultures [65]. Similarly, exendin-4
hasbeen shown todirectly increase cAMPactivity in these IELs,
however, their role in modulating enterocyte function has yet
to be fully explored [69]. GLP-1R mRNA has also been found in
acid secreting parietal cells [70] where they may block gastric

Figure 2: Glucagon-like peptide (GLP)-1 and GLP-2 modulate liver health through various metabolic signalling cascades.
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acid secretion and in specialized mucus secreting cells in the
proximal duodenum called Brunners glands [71].

GLP-1R expression is also prominent in the enteric
nervous system (ENS). In reporter mice expressing yellow
fluorescent protein (YFP) under a GLP-1R-Cre, expression
was found in a subpopulation of enteric neurons, the action
potential frequency of which could be modulated ex vivo by
GLP-1 administration [23]. Interestingly, a significant pro-
portion of these ENS neurons were positive for neuronal
nitric oxide synthase (nNOS) expression, which has been
linked to the pro-lipemic properties of GLP-2 [72]. RNA seq
data suggests that these neurons may be secretomotor/vas-
odilatory in nature [73]. However, their relative importance
to GLP-1s anti-lipemic effects may be minimal as GLP-1R KO
in the enteric neurons of mice did not affect plasma TG
accumulation after an oral fat load [74].

Gut-brain axis

Recent data has demonstrated a strong role for bidirectional
neuronal governance over intestinal and hepatic lipid
metabolism. The intestine itself boasts its own independent
neural network called the enteric plexus, which is comprised
of over 100 million neurons that can operate autonomously,
or in tandem with afferent and efferent sensory feedback
from the CNS [75]. To complicate this, the intestine is the
largest endocrine organ in the body, secreting over 100
bioactive peptides, which can act in an autocrine, paracrine,
and neuroendocrine manner [76]. These hormonal signals
when released upon nutrient consumption can signal
through binding to vagal or somatosensory afferent nerve
fibers which project to the dorsal vagal complex in the
brainstem, in turn relaying sensory information to key
metabolic regulatory nuclei in the hypothalamus. Alterna-
tively, some hormones may be able to circulate and directly
bind to receptors in hypothalamic nuclei, either by active
transport through the blood brain barrier, or via access to
circumventricular organs [77–80]. This gut-brain axis has
already been implicated in the signaling of several key
hormones released by the gut such as GLP-1, CCK, and PYY.
These hormones act as intermediate messengers to signal
information via peripheral nerves about meal size and
composition to the brain [1, 81]. Hypothalamic centers in the
brain then act on these signals to alter key components of
metabolism such as energy expenditure, food intake, and
gastrointestinal function [82, 83]. Many have demonstrated
the integral role of the vagus nerve inmediating this system,
as CCK-related satiation is dependent on intact gastric and
duodenal vagal afferent signaling [84, 85]. Similarly, the
inhibitory effects of PYY and GLP-1 and the stimulatory

effects of ghrelin on feeding, were lost after
vagotomy [86–88]. In the same vein, the anorectic effects of
GLP-1 by intraperitoneal exendin-4 administrationwere also
lost after capsaicin-mediated vagal denervation [89]. Loss of
certain subpopulations of vagal nerves shows similar re-
sults, where selective denervation of CCK receptor-
containing vagal afferents abolished the satiating effects of
GLP-1 and CCK, aswell as feeding-induced c-fos expression in
theNTS [90]. The relative contributions of the peripheral and
central nervous systems are discussed further below.

Peripheral neural control of
metabolism

The peripheral nervous system consists of nerves and as-
sociates ganglia which lie outside the brain and spinal cord.
Autonomic signals from these nerves deliver sympathetic
and parasympathetic drive to the body wall and viscera. The
sympathetic system provides the “fight or flight” response,
and its effects are mediated through stimulatory neuro-
transmitters such as norepinephrine and epinephrine. Pre-
ganglionic sympathetic motor neurons originate from the
ventral horn of the spinal cord, they then travel through
ventral rootlets to the white rami communicantes of spinal
nerves, where they synapse on post-ganglionic sympathetic
neurons in sympathetic chain ganglia. Contributions of
several spinal levels spanning thoracic spinal nerve 5 (T5) to
T12 form sympathetic splanchnic nerves which innervate
the viscera [91]. In contrast, the parasympathetic system
provides the “rest and digest” response, mediated by release
of the neurotransmitter acetylcholine. Parasympathetic
neurons which innervate the viscera do not originate from
the spinal cord, but from cranial nerves which project
directly from the brainstem. Together, the sympathetic
greater and lesser splanchnic nerves, and parasympathetic
anterior and posterior vagal trunks coalesce in the celiac
plexus (solar plexus), which is a network of interconnecting
fibers that innervate the abdominal contents, both uniquely
influencing metabolism and lipoprotein production [87].

Neural control of hepatic
lipoprotein metabolism by GLP-1

It has long been known that GLP-1 and GLP-2 can act as
neurotransmitters in the brain [92]. Early studies have
shown that hindbrain pre-proglucagon (PPG) producing
neurons in the NTS can be activated even without gut-
associated hormone release, just by simple mechanical
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distention of the stomach [93]. This, paired with the obser-
vation that GLP-1 can act as a neuroendocrine signalling
peptide in the circulation tightly links central and peripheral
GLP-1 signalling to the regulation of energy homeostasis and
satiety. Although the effect of GLP-1 in regulating satiety has
been known for some time, the relative contribution of GLP-1
to hepatic and intestinal lipid homeostasis is only recently
emerging. Intracerebroventricular (ICV) injection of active
GLP-1(7–37) peptide into the brains of HFD-fed mice resulted
in enhanced Akt-mediated hepatic insulin signalling during
hyperinsulinemic-euglycemic clamp experiments. This was
associated with elevations in insulin secretion, improved
glucose tolerance, and decreased hepatic TG accumulation in
the livers of HFD-fed mice. In contrast, ICV injection of the
GLP-1R antagonist exendin 9–39 impaired the suppressive
effects of insulin on hepatic glucose production, suggesting
that central GLP-1R inhibition deteriorates hepatic insulin
signalling. Moreover, central GLP-1R agonism selectively
attenuated hepatic TG accumulation in HFD-fed mice, with
no observed change in muscle, white adipose tissue (WAT),
or plasma TG during hyperinsulinemia [93]. ICV injections of
exendin-4 have also been shown to lower fasting hyper-
triglyceridemia and hepatic VLDL production in a dietary
fructose-induced dyslipidemic hamster model [50]. Simi-
larly, both acute and chronic treatment with ICV exendin-4
has been shown to reduce circulating plasmaTG, cholesterol,
and low-density lipoprotein cholesterol (LDLc) in addition to
hepatic lipids. Thiswas further associatedwith reductions in
hepatic expression of sterol regulatory element binding
protein (SREBP)-1c and elevated LDL receptor expression,
which occurred independent of food consumption [94].

Separate experiments have shown that bilateral injec-
tion of active GLP-1(7–37) peptide into the dorsomedial hy-
pothalamus (DMH) of mice results in increased TG
mobilization from the liver. Alternatively, GLP-1R knock-
down in the DMH induced hepatic steatosis, coupled with
elevated de novo lipogenesis, and the development of insulin
resistance [95]. This is in linewith previous observations that
ICV administration of exendin-4 increases sympathetic
outflow to brown adipose tissue (BAT) and WAT depots,
resulting in increased thermogenesis and uptake of fatty
acid (FA) to these tissues. Interestingly, this effect on WAT
was seen to be blunted in a diet-induced obese mouse
model [96]. Recently, chronic ICV infusion of a GLP-1R and
glucagon receptor co-agonist has been shown to significantly
decrease plasma and liver lipids in a cholesterol-fed hamster
model of dyslipidemia. Co-agonist treated hamsters also
showed increased hepatic TG excursion, and depressed
expression of hepatic lipogenic factors such as SREBP-1c,
3-hydroxy-3-methyl-glutaryl (HMG)-CoA reductase, stearoyl-
CoA desaturase (SCD)-1, FA synthase, and acetyl-CoA

carboxylase. Interestingly, these effects could be partially
blocked by co-administration of the GLP-1R antagonist
exendin 9–39, and completely abrogated by surgical vagot-
omy [97] - further reinforcing the importance of central
GLP-1R activity, and its influence on hepatic lipid
metabolism.

Genetic ablation of specific neuronal GLP-1R-containing
populations has recently been achieved in mice. Ablation in
Wnt1 expressing neurons, representing neurons in the hy-
pothalamus, brainstem, and ENS was compared to ablation
in Phox2b-expressing neurons, representing peripheral
autonomic nerves. Strikingly, plasma TG following an oral
fat load was unaffected in either model, nor were the anti-
lipemic effects of several GLP-1R agonists [74]. While lipid
tolerance was unaffected, the distinct kinetics of excursion
and clearance were not assessed; nor were intestinal and
hepatic lipoproteins delineated. Thus, the exact signaling
cascade resulting in central modulation of lipoprotein
secretion by GLP-1 has yet to be fully elucidated.

The most compelling data for central control over in-
testinal lipoprotein metabolism comes from animal studies
examining the effects of central GLP-1R activation. In the
Syrian golden hamster ICV injections of exendin 9–39 into
the third ventricle acutely depressed postprandial TRL-TG
and ApoB48 secretion by approximately 55 %. Antagonism of
central GLP-1R with exendin 9–39 did not completely abro-
gate the effects of peripheral exendin-4 administration,
suggesting at least partial independence of these systems
under conditions of prolonged GLP-1 activation. Impor-
tantly, depressions in postprandial lipoprotein metabolism
via central GLP-1R activation were mediated via increased
sympathetic outflow, as pharmacological blockade abol-
ished the effects of ICV GLP-1.While no changes were seen in
the activity of lipogenic genes, jejunal MTP activity was
significantly reduced, explaining how sympathetic outflow
may exert rapid temporal control over chylomicron lip-
idation and secretion [66].

However, endogenous GLP-1 is rapidly cleaved in the
circulation, leading to recent doubts regarding its endocrine
potential to signal central metabolic regulatory nuclei and
peripheral organs [98]. That said, native GLP-1 is secreted
into the portal vein, which is richly innervated with vagal
afferent nerve terminals containing GLP-1Rs [41]; consti-
tuting a rapid mechanism by which GLP-1 may exert its anti-
lipemic effects within its short life-span. The GLP-1R con-
taining vagal afferents overlying the portal bed house their
cell bodies in the nodose ganglia where GLP-1R expression
has also been observed [99]. Moreover, primary isolated
nodose neurons show action potential generation, coupled
with increases in intracellular Ca2+ when exposed to GLP-1
[100]. The role of these GLP-1R-containing NG neurons in
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regulating peripheral metabolism has been evidenced pre-
viously by GLP-1R knockdown in the vagal afferent nerves of
rats, which display increased food consumption, accelerated
gastric emptying, and post-meal glycemia coupled with
depressed insulin secretion [101, 102]. Moreover, vagal
afferent neurons project to GLP-1 producing neurons in the
caudal brainstem which secrete GLP-1 into hypothalamic
nuclei which regulate energymetabolism [103]. Importantly,
activation of GLP-1Rs in the CNS shows similar anti-lipemic
actions as peripheral administration, where ICV injection of
exendin-4markedly suppressed chylomicron excursion [66].
Together, suggesting that a portal-vagal axis may explain
how endogenous GLP-1 modulates lipoprotein production.
Indeed, recently we have demonstrated the importance of
this portal-vagal axis in lipid homeostasis in Syrian golden
hamsters (Figure 3). Wherein, portal but not jugular or caval
administration of active GLP-1(7–37) caused significant re-
ductions in postprandial lipids [104]. This reduction was lost
upon surgical or pharmacological vagal deafferentation, or
under conditions of adrenergic blockade – corroborating
previous reports that GLP-1 both signals via the vagus and
reduces plasma lipids via sympathetic signalling [66, 101].

Strikingly, this axis was sensitive to diet-induced insulin
resistance, and portal GLP-1 resistance rapidly developed
under high-fructose diet feeding [104]. Suggesting that loss of
endogenous GLP-1 signalling may be a contributing or
initiating factor in the development of hypertriglyceridemia.

Concluding remarks

Dyslipidemia is a common co-morbidity in insulin resistant
states, resulting in the overproduction of ApoB-containing
chylomicron particles, VLDL particles, and elevated plasma
TG levels [100]. This leads to the generation of atherogenic
remnant particles, precursors to the development of
atherosclerosis and CVD, the leading cause of death in
T2D [105, 106]. Several hormones have been shown to regu-
late intestinal and hepatic lipid metabolism such as insulin
and gut-derived incretin hormones released upon nutrient
consumption [50, 107]. Key viscerosensory peptides released
from the gut are the incretin hormones GLP-1 and gastric
inhibitory peptide (GIP), CCK, and PYY [74, 84, 108–110].
Notably, GLP-1 has been shown by our laboratory and others

Figure 3: Glucagon-like peptide (GLP)-1 works through a portal-vagal signalling axis to modulate postprandial and fasting lipids. Native GLP-1 works in a
site-specific manner within the portal vein, binding to GLP-1R on vagal afferent nerves. Vagal afferents project to the nodose ganglion to integrate
viscerosensory data, then impulses are propagated to the brainstem, and central metabolic regulator nuclei. Changes in efferent sympathetic tone alter
postprandial and fasting lipoprotein secretion and lipemia. Image created with BioRender.com.
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to modulate intestinal and hepatic lipoprotein production
through a complex gut-brain-liver axis [66, 111–113].
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