

OPEN

Bioactive components of Chinese herbal medicine enhance endogenous neurogenesis in animal models of ischemic stroke

A systematic analysis

Ji-Huang Li, MD^a, Zi-Xian Chen, MD^a, Xiao-Guang Zhang, MD^a, Yan Li, MD^a, Wen-Ting Yang, MD^a, Xia-Wei Zheng, MD^a, Shuang Chen, MD^a, Lin Lu, MD^b, Yong Gu, MD, PhD^{c,*}, Guo-Qing Zheng, MD, PhD^{a,*}

Abstract

Background: Chinese herbal medicine (CHM) has been used to treat stroke for thousands of years. The objective of the study is to assess the current evidence for bioactive components of CHM as neurogenesis agent in animal models of ischemic stroke.

Methods: We searched PubMed, China National Knowledge Infrastructure, WanFang Database, and VIP Database for Chinese Technical Periodicals published from the inception up to November 2015. The primary measured outcome was one of neurogenesis biomarker, including Bromodeoxyuridine (BrdU), Nestin, doublecortin (DCX), polysialylated form of the neural cell adhesion molecule (PSA-NCAM), neuronal nuclear antigen (NeuN), and glial fibrillary acidic protein (GFAP).

Results: Thirty eligible studies were identified. The score of quality assessment ranged from 2 of 10 to 7 of 10. Compared with controls, 10 studies conducting neurobehavioral evaluation showed significant effects on bioactive components of CHM for improving neurological deficits score after ischemic insults (P < 0.01 or P < 0.05); 6 studies in Morris water-maze test showed bioactive components of CHM significantly decreased escape latency and increased residence time (P < 0.05); 5 studies showed that bioactive components of CHM significantly reduced infarct volume after ischemic stroke (P < 0.05); 25 of 26 studies showed that bioactive components of CHM significantly increased the expression of BrdU and/or Nestin markers in rats/mice brain after ischemic injury (P < 0.05, or P < 0.01); 4 of 5 studies for promoting the expression of PSA-NCAM or DCX biomarker (P < 0.05); 5 studies for improving the expression of NeuN biomarker (P < 0.05); 6 of 7 studies for promoting the expression of GFAP biomarker in brain after ischemic stroke (P < 0.05).

Conclusion: The findings suggest that bioactive components of CHM may improve neurological function, reduce infarct volume, and promote endogenous neurogenesis, including proliferation, migration, and differentiation of neural stem cells after ischemic stroke. However, evidences are supported but limited because only a few studies were available for each descriptive analysis. Further rigor study is still needed.

Abbreviations: BrdU = Bromodeoxyuridine, CAMARADES = Collaborative Approach to Meta-Analysis and Review of Animal Data from Experimental Studies, CHM = Chinese herbal medicine, CNS = central nervous system, DCX = doublecortin, DG = dentate gyrus, GFAP = glial fibrillary acidic protein, MCAO = middle cerebral artery occlusion, NCAM = neural cell adhesion molecule, NeuN = neuronal nuclear antigen, NPCs = Neural progenitor cells, NSCs = Neural stem cells, PSA = Polysialic acid, SGZ = subgranular zone, SVZ = subventricular zone.

Keywords: bioactive components, chinese herbal medicine, experimental ischemic stroke, neurogenesis

Editor: Gokhan Cuce.

Medicine (2016) 95:40(e4904)

Received: 2 April 2016 / Received in final form: 13 August 2016 / Accepted: 25 August 2016 http://dx.doi.org/10.1097/MD.00000000004904

JHL, ZXC, and XGZ contributed equally to this work.

This project was supported by the grant of National Natural Science Foundation of China (81573750/81473491/81173395/H2902); the Young and Middle-Aged University Discipline Leaders of Zhejiang Province, China (2013277); Zhejiang Provincial Program for the Cultivation of High-level Health talents (2015).

The authors have no conflicts of interest to disclose.

^a Department of Neurology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, ^b School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China, ^c Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.

^{*} Correspondence: Yong Gu, Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China (e-mail: yonggu@smu.edu.cn); Guo-Qing Zheng, Department of Neurology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China (e-mail: gq_zheng@sohu.com).

Copyright © 2016 the Author(s). Published by Wolters Kluwer Health, Inc. All rights reserved.

This is an open access article distributed under the Creative Commons Attribution-NoDerivatives License 4.0, which allows for redistribution, commercial and noncommercial, as long as it is passed along unchanged and in whole, with credit to the author.

1. Introduction

Neural stem cells (NSCs) are characterized as having properties of continuous proliferation and multiple differentiation potential. Since NSCs discovered in adult mouse striatum by Reynolds and Weiss in 1992,^[1] intensive studies have indicated that neurogenesis can occur in the adult central nervous system (CNS).^[2] Persistent neurogenesis mainly occurs in the subventricular zone (SVZ) and the subgranular zone (SGZ) of the dentate gyrus (DG) in the adult brain.^[3–5] Neural progenitor cells (NPCs) generated from NSCs in both regions, confining in proliferation and differentiation into neurons or glia cells,^[5,6] may offer an endogenous mechanism to brain repair and recovery from injury or disease.^[7] Neurogenesis, which involves proliferation of NSCs/NPCs, differentiation of NPCs, and migration of neuroblasts, could be affected not only by multifarious physiological conditions including exercise,^[8] enriched living conditions,^[9,10] and aging^[10,11] but also by various pathological conditions such as stroke,^[12,13] psychosocial stress,^[14,15] seizure,^[16] and neurodegeneration.^[17,18] Actively dividing cell population in the SVZ of adult rat is approximately 15% to 21%.^[19-21] Previous study indicated that stroke substantially increased dividing SVZ cells up to 31% in mice model.^[22] Though supplementing on survival and proliferation of intrinsic NSCs could assist to repair the damaged tissues, the efficacy of this supplementation has been shown to be limited.^[23,24] Therefore, enhancing endogenous neurogenesis will have great potential application as a therapeutic strategy for CNS disorders. Neurogenesis markers, including Bromodeoxyuridine (BrdU), Nestin, doublecortin (DCX), polysialylated form of the neural cell adhesion molecule (NCAM), neuronal nuclear antigen (NeuN), and glial fibrillary acidic protein (GFAP) are widely used as the neuroregenerative development of proliferation, migration, and differentiation. BrdU, a synthetic thymidine analog used for measuring cell proliferation, incorporates DNA of dividing cells during the Sphase of the cell cycle.^[25] Nestin, a class VI intermediate filament protein, is considered as a NSC/NPC biomarker during development of the CNS.^[26] DCX is a microtubule-associated protein expressed by NPCs and immature neurons in embryonic and adult cortical structures, and used increasingly as a migration biomarker for neurogenesis.^[27,28] Polysialic acid (PSA) is a linear homopolymer of alpha2-8-N-acetylneuraminic acid and the NCAM is the primary vector for it in vertebrates. PSA-NCAM participates in neural plasticity and neurogenesis, which is particularly considered toward cell migration.^[29] NeuN, a homologue to sex-determining genes in Caenorhabditis elegans, is a neuronal nuclear antigen that is commonly used as a hallmark of neuronal differentiation during neurogenesis development.^[30,31] GFAP, being described as one of the markers of astrocytic differentiation in vertebrates, is an intermediatefilament protein expressed uniquely in astrocytes and vulnerable to reactive gliosis that follows injuries to the CNS.^[32]

Chinese herbal medicine (CHM) has been widely used to treat neurological disorders such as stroke,^[33] Alzheimer disease,^[34] Parkinson disease,^[35] migraine,^[36] depression, anxiety, and insomnia^[37] in the young and/or the old. In addition, a wealth of active ingredients from herbs has been reported for their benefits to neural repair.^[33] Of these bioactive components of CHM, studies showed that they have potential effects of promoting neurogenesis, neurite outgrowth, and synaptogenesis in ischemic stroke.^[38,39] Systematic review of preclinical animal data could inform the planning and improve the likelihood of success of future clinical trials, identify where there is a need for further basic research, preclude unnecessary study replication, and contribute to both reduction and refinement in animal experimentation.^[40] In addition, it might offer us with credible and solid new evidence on the neurogenesis effect in preclinical experiment to select the optimal requirements for drug administration for clinical trials. Thus, we conducted a preclinical systematic review of bioactive components of CHM as neurogenesis agent in animal models of ischemic stroke.

2. Methods

2.1. Ethical approval

All analyses were based on previous published studies; thus, no ethical approval and patient consent are required.

2.2. Database and literature search strategies

The databases, including PubMed, China National Knowledge Infrastructure, WanFang Database, and VIP Database for Chinese Technical Periodicals, were used for the literatures. To identify studies of bioactive components of CHM for neurogenesis after experimental ischemic stroke, we electronically operated each database from the inception up to November 2015. We also hand-searched a list of Chinese and English journals that may publish potentially eligible studies. Our search strategy included the following: ("stroke" OR "ischemia" OR "ischemic injury") AND ("neurogenesis" OR "neural regeneration" OR "nerve regeneration" OR "neuroregeneration" OR "proliferation") AND ("herbal" OR "Chinese medicine" OR "nature product" OR "active components" OR "bioactive compounds"). Chinese databases were also searched using the above search terms in Chinese.

2.3. Inclusion criteria

To prevent bias, inclusion criteria were prespecified as the following: experimental study of neurogenesis in ischemic stroke; animal model; the bioactive component of CHM was administered; control group was not administrated with any other CHM; the primary measured outcome was one of neurogenesis markers, including BrdU, Nestin, DCX, PSA-NCAM, NeuN, and GFAP.

2.4. Data extraction

The following details were extracted from each included study: the first author's name, publication year, category of bioactive components of CHM, type of models, the anesthetic method used during the induction of model; individual data for each study, including animal number, species, sex, weight; information on treatment including timing for initial treatment, type and method of treatment procedure, and duration of treatment; outcome measures including BrdU, Nestin, DCX, PSA-NCAM, NeuN, and GFAP, and the time point of outcome assessments; neurobehavioral assessment and infarct volume. We extracted data for mean value, standard deviation, and number of animals per group if appropriate. Meta-analysis was preformed if there were enough data of outcomes. Data extraction was performed by 2 independent authors.

2.5. Quality assessment

Based on the Collaborative Approach to Meta-Analysis and Review of Animal Data from Experimental Studies (CAMAR-ADES) 10-item quality checklist^[41] and the methodology described by Macleod et al,^[42,43] we modified "comparison" as the assessment of outcome in treatment and control groups after treatment with any bioactive components of CHM. The aggregate methodological quality score was calculated by applying a 10-item modified scale as following: publication in a peer-reviewed journal, control of temperature, random allocation to treatment or control, blinded induction of model, blinded assessment of outcome, use of an anesthetic without intrinsic neurogenesis activity, animal model (aged, diabetic, or hypertensive), performing a sample size calculation, compliance with animal welfare regulations, and a statement of potential conflicts of interest. One point was awarded for each item. We resolved any disagreement through discussion or consultation with corresponding author.

3. Results

3.1. Study inclusion

We identified 826 potentially relevant articles from the 5 databases, in which 27 records were excluded because of

duplicates. After going through the titles and abstracts, we excluded 727 articles with at least one of following reasons: case report or review; not an animal research; and not the researches on neurogenesis of ischemic stroke. We then screened the remaining 72 articles, which reported the efficacy of bioactive components of CHM for ischemic stroke. Forty-two studies were excluded because of single Chinese herb or formulas or animal trials without disease model. Ultimately, 30 eligible studies were identified. Detailed information was shown in Figure 1.

3.2. Characteristics of included studies

The basic characteristics of included studies are shown in Table 1. Thirty studies included were published between 2003 and 2015.^[44–73] The animal species included Sprague–Dawley rats for 21 studies,^[44,45,47–53,56–58,61–65,68–70,73] Westar rats for 7 studies,^[46,54,55,59,60,66,67] Mongolian gerbils and Kunning mice in each study.^[71,72] The weight of rats varied from 180 to 375 g. Chloral hydrate was used in 17 studies to induce anesthesia,^[44,45,48–54,57,58,65,69,70–73] pentobarbital was used in

Table 1	and a state											
Ine cnarat		iuaea stuales.						Intervention				
Study (years)	Type of herbal or bioactive compound	Species (sex, n)	Weight, g	Anesthetic	Model	Ischemic time (min)	Induced method	Treatment group	Control group	Outcome measure	Treat group vs. model control group Mean±SE (95% Cl)	Intergroup differences
Zheng et al, 2013 ⁽⁴⁴⁾	Bilobalide	SD rat (male, 12/12)	230-270	3.5% Chloral hydrate (0.1 mL/kg, i.p.)	MCAO	60	Modified Longa 1989	5, 10 mg/kg, i.g., once daily for 3 days o	Sodium arboxymethyl cel- lulose	Neurological deficits score (Bederson test)	1. 1.41±0.53 (1.11, 1.71) (5mg), 1.23 ±0.48 (0.96, 1.50) (10mg) vs. 2.41± 0.52 (2.12, 2.70)	P<0.01 (5, 10 mg/kg)
										BrdU/MAP-labeled cells	2. NR	P< 0.05 (10mg/kg)
Wang et al, 2014 ^[45]	Gyperosides	SD rat (male, 9/11)	280-350	10% Chloral hydrate (3 mL/kg, i.p.)	MCAO	120	Modified Longa 1989	200, 400 mg/kg, i.g., once daily for 10	Saline	(upalitaterial contex) Neurological deficits score (Bederson test)	1. 1.64 \pm 0.24 (1.50, 1.78) vs. 1 \pm 0 (1, 1)	1. <i>P</i> < 0.05 (400 mg/ kg)
								days		Infarction volume	2. 10.06±2.63% (7.75, 12.37) vs.	2. P< 0.05 (400 mg/
										BrdU-positive cells (SVZ)	$3.135.6\pm12.45$ (121.51, 149.69) vs.	3. $P < 0.05$ (400 mg/
										Nestin/DCX-labeled cells (SVZ)	63.33±/.36 (35, /1.66) 4. 169.3±10.98 (156.88, 181.72) (200 mg); 211.67±25.18 (183.18, 240.16) (400 mg) vs. 82.67±10.17 (71.16,	kg) 4. P< 0.01 (200, 400 mg/kg)
											94.16) 5. 158.67 ± 4.67 (153.39, 163.95) (200mg): 275.33 ± 19.7 (253.04, 297.62) (400mg) vs. 84.5 ± 15.5 66.06 ± 107.04)	5. P< 0.01 (200, 400 mg/kg)
										5.Nestin/GFAP-labeled cells (SVZ)	(00.30, 102.04)	
Girbovan et al, 2015 ^[46]	Resveratrol	Westar rat (male, 8/8/7 for 7 days groups, 11/12/10 for 85 days	325-375	1.5% Halothane (inhalation)	Transient global ischemia	10	CCA0AC + VAIO	 10 mg/kg, i.p., once daily for 21 days 	Saline	Escape latency (Morris)	1. NR	P<0.01 (7 days post- ischemia, 85 days post-ischemia)
		(il outps)								DCX/PSA-NCAM-labeled	2. NR	P< 0.05 (7 days post- ischemia, 85 days post-ischemia)
He et al, 2015 ^[47]	Total saponins of Panax notoginseng	SD rat (male, 6/6)	250-290	1% Sodium pentobar- bital (50mg/kg, i.p.)	Transient global ischemia	30	CCAOAC + VAIO	75 mg/kg, i.p., once daily for 1, 7 and 14	Saline	cells (DG) DCX/NeuN-positive cells (olfactory bulb)	NR	P<0.01 (7 days, 14 days)
Liu et al, 2015 ^[48]	Ginsenoside Rd	SD rat (male, 6/6)	220-240	3.5% Chloral hydrate (i.p.)	MCAO	06	Modified Longa 1989	days 1, 2.5, and 5mg/kg/, i.p., once daily for 3	Vehicle	Neurological deficits score (Bederson test)	1. NR	1. $P < 0.05 \text{ (5 mg/kg)}$
								uays		Infarction volume	2. NR	2. P<0.05 (2.5, 5
										BrdU/DCX-labeled cells	3. NR	3. P<0.05 (5 mg/kg)
										Nestin/GFAP-labeled	4. NR	4. P<0.05 (5 mg/kg)
Sun et al, 2013 ^[49]	EGb 761	SD rat (male, 6/6)	220-250	10% Chloral hydrate	MCAO	60	Modified Longa	0.525 mg/kg, LVI, once daily for 7 days	Saline	Neurological deficits score (Rederson test)	1. NR	P<0.01 (7 days)
2							-			Infarction volume (7, 14 davs)	2. NR	P<0.05 (14 days)
										BrdU/PSA-NCAM-labeled cells (DG region)	3. NR	P<0.01 (7 days) P<0.05 (14 days) 3. P<0.05
Liu et al, 2013 ^[50]	Curcumin	SD rat (male, 5/5)	250-280	10% Chloral hydrate	MCAO	120	Modified Longa	300 mg/kg, i.p., twice	Corn oil	Brdu-positive cells (SVZ)	1. 50.60 ± 12.60 (42.79, 58.41) vs. 21 0 ± 5 23 /17 76 24 24	P<0.01 (7 days)
0103							000	ualy for 7 uays		Infarct volume	2. 67.80 ± 11.05 (60.95, 74.65) vs. 155.60 ± 11.26 (148.62, 162.58)	P<0.01 (7 days)
Cheng et al, 2013 ^[51]	Curcumin	SD rat (male, 5/5)	250-280	10% Chloral hydrate (350mg/kg, i.p.)	MCAO	120	Modified Longa 1989	300 mg/kg, i.p., twice daily for 7 days	Com oil	Brdu-positive cells (SVZ)	1. NR	P<0.05 (7 days)
Long et al,	Soy Isoflavones	SD rat (male, 6/6)	250-350	10% Chloral hydrate	MCAO	120	Modified Longa	60 mg/kg, once daily	*	BrdU/DCX cells (SVZ) Neurological deficits	2. NR 1. 2.40±0.52 (2.08, 2.72) vs. 2.90± 0.33 /3.72 3.10)	P<0.05 (7 days) P<0.01 (24 h)
ZULI: 1				(suumg/kg, I.p.)			1404	TOF 37 Uays		score (zear runga) Brdu-positive cells (hippocampus)	0.32 (2./ ∪, 3.1 ∪) 2. 537±60 (488.99, 585.01) vs. 416± 21 (399.20, 432.80)	P<0.01 (7 days)

	. model control Intergroup ± SE (95% CI) differences	9, 0.51) vs. 1.33 ± P<0.01 (7 days) 22, 1.44)	(235.67, 275.83) P<0.01 (7, 14, 21 ±17.71 (156.98, days) ±24.92 (291.21, s. s. 251.25±4.92 ; 320.60±25.19 (1 days) vs. 194.33 8.89, 209.77)	NR P<0.05 (14 days)	NR $P < 0.01$ (3, 7 days) NR $P < 0.05$ (14 days)	P < 0.05 (3, 7 days) P < 0.01 (14 days) D < 0.05	NR $P < 0.05 (1, 3, 5)$ days)	NR P<0.05 (12 h; 1, 2, 3 5 10 dave)	NR $P < 0.05$ (3 days; 10, 20, 40 mg/kg) 20, 40 mg/kg)	139.94, 182.66) (1 P< 0.01 (1, 3, 7, 14, 70 (26.64, 32.56); 21 days) 36 175 241 (3 davs)	34, 34.267, 540.54 34, 34.261, 2490.± 1.241 (7. days) vs. 11.221 (1. days) vs. 42, 162.981; 168.0 42, 162.981; 132.5 42, 162.981; 132.5 42, 162.981; 132.5 42, 162.981; 132.5	34, 34, 26, 25, 25, 25, 25, 25, 25, 25, 24, 26, 25, 24, 26, 25, 25, 168, 0, 27, 162, 28, 168, 0, 27, 162, 29, 122, 55, 27, 121, 25, 25, 27, 121, 25, 25, 27, 121, 26, 28, 101, 67, $P < 0.05$ [21 days] v.	$\begin{array}{c} 34, 34, 26, 249, 249, 249, 249, 249, 249, 249, 249$	34, 34, 265, 2490, \pm 27, 46, 2490, \pm 27, 163, 389, 168, 0 11, 29, 1(4 days) vs. 16, 29, 101, 67 16, 29, 101, 67 P<0.05 (21 days) P<0.05 (21 days) P<0.05 (21 days)	34, 34, 265, 7, 9, 00, 0, 1 24, 17, 249, 18, 0 27, 163, 38); 18, 0 17, 29, 14, 1439, 18, 2 17, 29, 14, 1439, 18, 2 10, 74, 12, 1439, 18, 2 16, 33, 101, 67, $P < 0.05$ (21 days) P < 0.05 (21 days) P < 0.05 (21 days) 7, 1, 94) vs. 21, 9 \pm 38, 08) vs. 22, 8 \pm 13, 71, 94) vs. 21, 9 \pm 13, 71, 94) vs. 21, 9 \pm 13, 71, 94) vs. 21, 9 \pm 18)	$\begin{array}{c} 34, 34, 26, 7, 56, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98$	$\begin{array}{c} 34, 34, 26, 54, 95, 54, 95, 54, 95, 54, 95, 54, 95, 54, 95, 56, 56, 56, 56, 56, 56, 56, 56, 56, 5$	34, 25, 2490.± 1.24 (7 days) vs. 2, 162, 38); 168.0 1.1, 32) (1 days) vs. 42, 162, 38); 132.5 10, 12, 12, 1433 vs. 66, 38, 101.67 $P < 0.05$ (21 days)	34, 34, 26, 249, 54 11, 26, 17, days) vs. 22, 162, 38); 168, 0 11, 29, 1(4 days) vs. 16, 29, 1(1, 67) 11, 29, 1(4 days) vs. 16, 29, 1(1, 67) 17, 19, 4, vs. 21, 9, ± 38, 101, 67) P<0.05, 21, days) P<0.05, 21, days) 17, 19, vs. 21, 9, ± 38, 103, vs. 21, 9, ± 23, 7, 49, 17, 403, s. 23, 7, 49, 17, 403, s. 23, 7, 49, 17, 403, s. 23, 7, 49, 17, 403, s. 24, 17, 603, 12, 13, 14, 28, ± 23, 17, 103, 12, 13, 14, 14, 28, ± 17, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} 1.24 & (7 \ days) \ ws \\ 2. \ (52.38) & (80.0 \\ 1.24 & (7 \ days) \ ws \\ 2. \ (52.38) & (80.0 \\ 1.22 & (12.38) & (12.5 \\ 0.74 & (21 \ days) \ ws \\ 0.74 & (21 \ days) \ ws \\ 0.71 & (137 \ days) & (21 \ days) \end{array} \end{array} \right) \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ P < 0.05 & (21 \ days) \ ws \\ P < 0.05 & (21 \ days) \end{array} \end{array} \right) \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ P < 0.05 & (21 \ days) \ ws \\ P < 0.05 & (21 \ days) \end{array} \end{array} \right) \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ P < 0.05 & (21 \ days) \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} 1.24 & (7.26.3) & (5.26.3) &$
	Treat group vs. m Utcome measure group Mean \pm SE	Veurological deficits 1. 0.40 ± 0.13 (0.29, 0 or (modified Beder- 0.13 (1.22, - 0.13 (1.22, - 0.13)))	sor/.4a longa) u-positive cells (SVZ) 2. 255.75 ± 22.91 (2: 10 \u0365.75 ± 22.91 (2: 168.02); 310.41 ± 2. 329.591 (14.043) \u03e5; 313.09; 32 (229.41, 273.09); 22 ± 17.62 (17.889)	teurological deficits ore (monthed Bader-	S01) U-positive cells (SVZ) 2. NR VNeuN+cells 3. NR ((psilateral infarct areal	U+/GFAP+cells (SVZ)	1. NR teurological deficits to modified NSS)	tin-positive cells 2. NR	1. NR	u positive cells 2. 161.3 ± 26.70 (139 /20ma/kar SVZ) davi vs. 29.6 ± 3.70 ℓ	$\begin{array}{c} 16338 \pm 14.30 \\ 16338 \pm 14.30 \\ 16338 \pm 14.30 \\ 182.676 \\ 271.22 \\ 282.876 \\ 271.22 \\ 282.816 \\ 213.02 \\ 213.02 \\ 213.02 \\ 229.9 \\ (141.04.193.02 \\ 213.02 \\ 2$	(20) (13.8 ± 14.3 (15.2 %) 15.3 ± 14.3 (15.2 %) 27.3 ± 25.7 (15.2 %) 27.3 ± 25.1 (13.2 %) 148.3 ± 15.1 (13.2 %) 148.3 ± 15.1 (13.2 %) 191.9 ± 29.9 (144.06, 191.9 ± 29.9 (144.06, 191.9 ± 29.9 (144.06, 191.9 ± 29.7 ± 21.9 %) 193.7 ± 22.8 (114.26, 150.7 ± 22.8 (114.26, 150.7 ± 22.8 %)) 194.0 ± 16.4 ± 20.5 ± 20.7 ± 22.8 (114.26, 150.7 ± 22.8 %)) 194.0 ± 16.4 ± 20.5 ± 20.7 ± 22.8 (114.26, 150.7 ± 22.8 %)) 194.0 ± 16.4 ± 20.5 ± 20.7 ± 22.8 %) 194.0 ± 16.4 ± 20.5 ± 20.7 ± 22.8 %) 194.0 ± 16.4 ± 20.5 ± 2	(20) (15, 21, 22) (15, 25, 27) (15, 28, 24, 27) (15, 26, 27) (15,	(20mg/kg,	(20) (15.3 ± 14.3 (15.2 %) 15.3 ± 14.3 (15.2 %) 27.1 2 ± 25.0 (28.3 ± 27.1 2 ± 27.1 2 ± 14.3 ± 14.1 (13.2 %) 13.1 3 ± 29.1 (13.2 %) 13.1 7 ± 29.1 (113.2 %) 13.1 7 ± 29.1 (114.2 %) 13.1 7 ± 29.1 (114.2 %) 13.1 7 ± 21.4 % (15.1 %) 14.4 % (114.2 %) 13.1 7 ± 21.4 % (15.1 %) 14.4 % (114.2 %) 15.1 (13.1 2 %) 13.1 7 ± 21.4 % (13.1 %) 14.4 % (13.1 %) 2.6 % (13.1 %) 2.6 % (13.1 %) 3.6 % (13.1 %) 4.7 % (13.1 %) 4.3 ± 3.1 % (13.1 %) 4.4 % (13.1 %) 13.1 % (13.1 %)	(20) (15.24) (15.24) (15.25) ((20) (15.24) (15.24) (15.25) ((20) (15.26) (15.26) (15.26) (15.27) (15.34) (15.26) (15.26) (15.27) (15.34) (15.26) ((20) (13.24) (13.24) (13.27) ((20) (153.8) (152.6) ((20) (132, 24, 27, 25, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27
ntion	Control t group group 0	. i.p., 3 DMSO+saline N kiy until soc	Brdi	id, i.p., Saline N Nill sacri- soc	Brdd. Brdd	Brdl	g i.p. Saline N	Nest	40 mg/kg, Saline taily until	Brdu		Bardt	Bardt	Brd Brd Its Its Its	Brdt Brdt 1(2) 15	0 Brdt (prosit p	0 Brdt Brdt (prosti pro	Dmg/kg, BrdL BrdL brst tipst tipst tipst BrdL Saline Sco N Saline BrdL Sto The The	0 mg/kg, Brdt (1,5%) (0 mg/kg, Birdt (βist) (psit foe N so N so N he foe	Brdt Brdt (Brdt (Brdt (Brdt (Pasline Brdt (Brdt (Br
Interver	Induced method Treatment	Nagasawa 1989 50 mg/kg, times week	88001	Modified Longa 25mg/kg/ 1989 twice daily u	22		Modified Longa 40 mg/k 1989		Modified Longa 10, 20, or 4 1989 i.p., once di soorifi							Modified Longa 20, 60, 18 1989 i.g., and d	Modified Longa 20, 60, 18 1989 i.g., and d	Modified Longa 20, 60, 180 1989 i.g. once d	Modified Longa 20, 60, 18 1989 i.g., once d sacrifi	Modified Longa 20, 60, 18 1989 i.g., once d sacrifi	Modified Longa 20. 60. 18t 1989 i.g., ance d sacrifi
	Ischemic Model time (min)	MCA0 90		MCAO Permanent			MCA0 120		MCA0 120							06 OKOM	MCAD	MCAO	MCAO 90	MCAO 90	00 00 00
	jht, g Anesthetic	-270 10% Chloral hydrate (350mg/kg, l.p.)		-300 10% Chloral hydrate (350 mg/kg, i.p.)			-300 1% Pentobarbital sodium (30mg/kg,	(-d-)	-220 2.5% Sodium pento- barbital (i.p.)							-270 10% Chinal hydrate (0.4 mUKg. i.p.)	-270 10% Chincal hydrate (0.4 mUkg, i.p.)	-270 10% Chiloral hydrate (0.4 mUkg, 1.p.)	-270 10% Chloral hydrate (0.4 mUkg, i.p.)	-270 10% Chloral hydrate (0.4 mUkg, i.p.)	-270 10% Chinal hydrate (0.4 mUkg. i.p.)
erhal or	tive Species und (sex, n) Weit	etin SD rat (male, 5/5) 230		ial sapo- Wistar rat (male, 250 \$ 8/8)			de Rb1 Wistar rat (male, 250 4/4)		lpyrazine SD rat (male, 6/6) 180							ed glyco- SD rat (male, 7/7) 250	lid glyco- SD rat (male, 777) 256	di glyco- SD rat (male, 7/7) 250	id glyco- SD rat (male, 7/7) 250	id glyco-SD rat (male, 7/7)	id glyco- SD rat (male, 7/7) 250
Type of he	bioact bioact Study (years) compo	Zhang et al, Querce 2011 ^[53]		Zheng et al, Ginseng tot: 2011 ^[54] nins			Gao et al, Ginsenosic 2010 ^[55]		Xiao et al, Tetramethyl 2010 ^[56]							Yao et al, 2009 ^[57] side	Yao et al, 2009 ^[57] side	Yao et al, 2009 ^[57] Somel initioi	Yao et al, 2009 (sr) side	Yao et al, 2009 Sri	Yao et al, 2009 ^[57] side

5

Li et al. Medicine (2016) 95:40

	Tyne of herhal or							Intervention				
Study (years)	bioactive compound	Species (sex, n)	Weight, g	Anesthetic	Model	Ischemic time (min)	Induced method	Treatment group	Control group	Outcome measure	Treat group vs. model control group Mean±SE (95% Cl)	Intergroup differences
										60, 180 mg/kg; ipsilateral striatum) BrdU+/GFAP+ cells (20, 60, 180 mg/kg; insilateral striatum)	4. NR	P < 0.01 (7, 14, 28 days; 180mg/kg)
												P<0.01 (14, 28 days; 60mg/kg) P<0.05 (7 days; 60 mg/kg) P<0.05 (14, 28 days; P<0.05 (28 days; 60 mg/kg) P<0.01 (14 days; 60 mg/kg) P<0.01 (14 days; 60 P<0.01 (14 days; 60 P<0.05 (180mg/kg, P<0.05 (180mg/kg, P<0.03 (days) P<0.03 (da
Zhong et al, 2007 ^{B8]}	Salvianolic acid B	SD rat (male, 6/6)	260-300	10% Chidral htydrate (0.35mL/kg, i.p.)	MCAO	120	Longa 1989	1, 10mg/kg, i.p., once daily until sacri- fice	Saline	1. Brdu-positive cells (7 days; 1, 10 mg/kg; SVZ, SGZ)	1. 210±11 (2012, 218.8) (1mg, SVZ) 300±27 (278.40, 321.60) (10mg, SVZ) vs. 125±21 (108.20, 141.80) (52N): 19±2 (17.4, 206) (1mg, 53Z), 47±4 (43.8, 50.2) (10mg, 53Z), sc.16±3 (13.6, 18.4)	zo uoys) P<0.01 (7 days; 1, 10mg/kg; SVZ)
											(10.0, 10.4)	P < 0.01 (7 days; 10 mg/kg; SGZ)
Cui et al, 2007A ^[59]	Ginsenoside RgI	Wistar rat (male 5/ 5)	250-300	*	MCAO	Permanent	Longa 1989	20 mg/kg, i.p., twice daily until sacrifice	Saline	Brdu-positive cells (SVZ)	1. 14.1 ±1.5 (12.79, 15.41) (1 day) vs. 11.7±1.5 (10.65, 12.55) 288.8±3.3 (23.77, 29.03) (3 days) vs. 21.3±2.7 (18.93, 23.67) 23.10±4.2 (31.42, 38.78) (7 days) vs. 26.40±3 (23.77, 29.03) (2 16±2.7 (16.32, 23.39) (14 daw) vs. 16.8±1.2 (15.75, 77.85)	P<001 (1, 3, 7, 14 days)
										BrdU/GFAP cells (SVZ)	o NR	P<0.01 (14 days)
Cui et al, 2007B ^{leol}	Ginsenoside RgI	Wistar rat (male 5/ 5)	250-300	*	MCAO	Permanent	Longa 1989	20 mg/kg, i.p., twice dally	Saline	Brdu-positive cells (SGZ)	$\begin{array}{c} 1. \ \ \text{where} \\ 1. \ \ \text{d}_{1} - 0.5 \ \ (4.26, \ 5.14) \ (1 \ \ \text{d}_{3}) \ \ \text{w.} \ \ 3.9 \\ \pm 0.4 \ \ (3.55, \ \ 4.25); \ 9.6 \pm 1.1 \ \ (8.6064, \ 10.65); \ 10.561 \ \ (3.17, \ 12.99); \ \ (1.7 \pm 10.96; \ \ 3.17, \ 11.46); \ \ (1.7 \pm 10.96; \ \ 3.17, \ \ 3.99); \ \ (1.7 \pm 10.96; \ \ 3.17, \ \ 3.99); \ \ (1.7 \pm 10.96; \ \ 3.17, \ \ 3.99); \ \ (1.7 \pm 10.96; \ \ 3.17, \ \ 3.99); \ \ (1.7 \pm 10.96; \ \ 3.17, \ \ 3.99); \ \ (1.7 \pm 10.96; \ \ 3.17, \ \ 3.99); \ \ (1.7 \pm 10.96; \ \ 3.17, \ \ 3.99); \ \ (1.7 \pm 10.96; \ \ 3.17, \ \ 3.99); \ \ (1.7 \pm 10.96; \ \ 3.17, \ \ 3.99); \ \ (1.7 \pm 10.96; \ \ 3.17, \ \ 3.99); \ \ (1.7 \pm 10.96; \ \ 3.17, \ \ 3.99); \ \ (1.7 \pm 10.96; \ \ 3.17, \ \ 3.99); \ \ (1.7 \pm 10.96; \ \ 3.17, \ \ 3.99); \ \ (1.7 \pm 10.96; \ \ 3.17, \ \ 3.99); \ \ (1.7 \pm 10.96; \ \ 3.17, \ \ 3.99); \ \ (1.7 \pm 10.96; \ \ 3.17, \ \ 3.99); \ \ (1.7 \pm 10.96; \ \ 3.17, \ \ 3.96; \ \ (1.7 \pm 10.96; \ \ 3.17, \ \ 3.96; \ \ (1.7 \pm 10.96; \ \ 3.17, \ \ 3.96; \ \ (1.7 \pm 10.96; \ \ 3.17, \ \ 3.96; \ \ (1.7 \pm 10.96; \ \ 3.17, \ \ 3.96; \ \ (1.7 \pm 10.96; \ \ 3.17, \ \ 3.96; \ \ (1.7 \pm 10.96; \ \ 3.17, \ \ 3.96; \ \ (1.7 \pm 10.96; \ \ 3.17, \ \ 3.96; \ \ (1.7 \pm 10.96; \ \ 3.17, \ \ 3.96; \ \ (1.7 \pm 10.96; \ \ 3.17, \ \ 3.96; \ \ (1.7 \pm 10.96; \ \ 3.17, \ \ 3.96; \ \ (1.7 \pm 10.96; \ \ 3.17, \ \ 3.96; \ \ 3.17, \ \ 3.96; \ \ 3.17, \ \ 3.96; \ \ 3.17, \ \ 3.96; \ \ 3.17, \ \ 3.96; \ \ 3.17, \ \ 3.96; \ \ 3.17, \ \ 3.96; \ \ \ 3.17, \ \ 3.96; \ \ 3.17, \ \ 3.96; \ \ 3.17, \ \ 3.96; \ \ 3.17, \ \ 3.96; \ \ 3.17, \ \ 3.96; \ \ 3.17, \ \ 3.96; \ \ 3.17, \ \ 3.96; \ \ 3.17, \ \ 3.96; \ \ 3.17, \ \ 3.96; \ \ 3.17, \ \ 3.96; \ \ 3.17, \ \ 3.96; \ \ 3.17, \ \ 3.96; \ \ 3.17, \ \ 3.96; \ \ 3.17, \ \ 3.96; \ \ 3.17, \ \ 3.17$	P<0.01 (1, 3, 7, 14 days)
										Nestin-positive cells (SG2) BrdU/nestin cells (SG2)	2. 7.6±0.8 (6.9, 8.3) (1 day) vs. 4.7 ± 158±1.1 (14.84), (6.6) (3 days) vs. 158±1.1 (14.84), (6.6) (3 days) vs. 10.4±0.9 (8.61, 11.19); 27.3±2.0 (25.55, 29.05) (7 days) vs. 21.1±1.4 (19.87, 22.33); 13.2±1.2 (12.15, 14.29) (14 days) vs. 6.2±0.5 (5.76, 6.64) 3. 2.4±0.7 (1.79, 3.01) (1 day) vs. 1.6 ±0.5 (1.16, 2.04); 13.8±2.6 5.05 (1.16, 2.04); 13.8±2.6	P<0.01 (1, 3, 7, 14 days) P<0.01 (1, 3, 7, 14 days)
											(11.5.4, 10.09) (4 mays) vs. $(1.1.5.4, 10.09)$ (4 mays) vs. $(17.3.8)(5.70, 8.50); 16.7\pm3.1 (13.39, 19.42) (7 days)vs. 11.5\pm2.4 (9.40, 13.60); 5.3\pm1.3(4.16, 6.44) (14 days) vs. 3.8\pm1.1(0.24, 17.5)$	
Qi et al, 2007 ^[61]	Ligustrazine	SD rat (male, 6/6)	260-300	*	MCAO	120	Longa 1989	40 mg/kg, i.p., once daily until sacrifice	Saline	Brdu-positive cells (SVZ)	(2:04, 4.70) 1.NR	P< 0.01 (1, 3 days)

Medicine

	Intergroup differences	1. P<0.01 (7, 14, 21 days)	1. P<0.01 (7, 14, 21 days; cortex) P<0.05 (7 14 21	P < 0.01 (7, 14 days)	P<0.05 (7, 14, 28 days) P<0.05 (7, 14 days)	1. $P < 0.05$ P < 0.05 P < 0.05	P<0.05 (21 days) P<0.01 (21 days)	P<0.05	<i>P</i> <0.001 (14 days) <i>P</i> <0.001 (14 days)	P< 0.05 (3, 4, 5 days)	P<0.01	P<005 (3, 7, 14 days) 7, 14
	Treat group vs. model control group Mean±SE (95% CI)	$\begin{array}{c} 1. \ 190.30\pm2.66 \ (187.29, \ 193.31) \ (7\\ \ days) \ vs. \ 119.44\pm3.57 \ (115.44\\ \ 123.52) \ 264.39\pm2.96 \ 261.24, \ 287.94) \ (44\ days) \ vs. \ 212.05\pm7.06\\ \ (204.06, \ 220.04) \ 305.54\pm2.51\\ \ (200.46, \ 220.04) \ 305.54\pm2.51\\ \ (302.70, \ 308.38) \ (21\ days) \ vs. \ 147.64\\ \ \pm \ 0.64\ (147.12, \ 148.56) \end{array}$	1. NR	1, 180.13±3.87 (175.75, 184.51) (7 days) vs. 134.56±0.61 (133.87, 135.29; 203.72±2.561 (200.77, 206.67) (14.days) vs. 151.96±4.39 (146.99, 156.33)	NR NR	-1. NR 2. NR 3. NR	2. 3.8±4.3 (18.93, 28.67) vs. 12.9± 6.3 (5.77, 20.03) 11.5±3.8 (7.2, 15.8)	vs. 4.8±2.6 (1.86, 7.74) 3. 20.05±10.35 (13.64, 26.46) vs. 38.23±24.29 723 18 553 281	1. 10.2 ± 3.0 1. 10.2 ± 3.1 (8.63, 11.77) vs. 17.6 ± 5.7 (14.72, 20.48) 2. 362 ± 76.3 (323.39, 400.61)	vs. 295±63.1 (1.1.77, 326.93) 1. 49.332±1444 (557, 67.09) (3 days, vs. 63.25±141.35 (51.17, 74.73) abys, vs. 63.25±41.35 (51.17, 74.73) 32.82±12.47 (22.84, 42.80) (4 days) vs. 53.97±954 (46.34, 61.60); 19.41 ±6.37 (14.3, 24.51) (50) vs. 46.37 ±14.91 (54.44, 56.30)		2. 62.81 \pm 18.63 (47.90, 77.72) vs. 36.27 \pm 13.63 (47.90, 77.72) vs. 36.27 \pm 13.84 (25.20, 47.34) (0.67 (1.80, 2.88) (0.67 (1.80, 2.88) (0.67 (1.80, 2.88) (0.67 (1.80, 2.88) (0.67 (1.80, 2.88) (0.67 (1.90, 17.71)) (0.67 (1.90, 17.71)) (0.69 (1.90, 17.71)) (0.69 (1.90, 17.71) (0.69 (1.90, 17.71)) (0.69 (1.90, 17.71)) (0.69 (1.90, 17.71) (0.69 (1.90, 17.71)) (0.69 (1.90, 12.86) (1.94, 23.86 (7.64) (1.93, 23.71) (0.64 (2.95) (1.94, 23.86 (7.64) (1.93, 27.71)) (0.64 (2.95) (1.94, 23.86 (7.64) (1.93, 25.70) (0.64 (2.126) (2.66) (1.65 (2.60) (1.65 (2.76) (1.62 (2.76) (1.62 (2.76) (1.62 (2.76) (1.62 (2.76) (1.63 (2.70) (1.64 (2.25) (2.60) (1.18) (1.64 (2.25) (2.60) (1.18) (1.18) (1.94 (2.25) (2.61 (2.26) (1.13) (1.18) (1.94 (2.25) (2.61 (2.26) (1.13) (1.18) (1.13) (1.1
	Outcome measure	1. Brdu-positive cells (SC2)	1. Brdu-positive cells	1. Brdu-positive cels (SVZ)	Brdu-positive cells (bor- der zone of infarct) BrdU/nestin cells (border zone of infarct)	BrdU-positive cells (SGZ) Escape latency (Morris) Time spent in target outartrant	BrdU-positive cells (SGZ) BrdU-NeuN positive cells	Escape latency (Morris)	Escape latency (Morris) BrdU-positive cells (SVZ)	Escape latency (Morris)	Residence time in the target quadrant	Pratom-rouss lumber Buld-positive cells (DG, SV2)
	Control group	Saline	Saline	Saline	Saline	Distilled water	Saline		Saline	Saline		
Intervention	Treatment group	80 mg/kg, i.p., once daily until sacrifice	80 mg/kg, i.p., once daily until sacrifice	80 mg/kg, i.p., once dály until sacrífice	50 mg/kg, i.p., once daily until sacrifice	50 mg/kg, i.p.; once daily for 4 weeks	50 mg/kg, i.p.; once daily for 3 weeks		i.p.; for 2 weeks	100 mg/kg, i.g., twice daily until sacrifice		
	Induced method	Modified Longa 1989	Modified Longa 1989	Modified Longa 1989	Modified Longa 1989	CCA0AC + VAIO	CCAOAC + VAIO		CCAOAC + hypo- tension	CCAOAC + hypo- tension		
	Ischemic time (min)	Permanent	Permanent	Permanent	120	Q	Q		10	50		
	Model	MCAO	MCAO	MCAO	MCAO	Transient global ischemia	Transient global ischemia		Transient global ischemia	Transient global ischemia		
	Anesthetic	Pentdarbital (40 mg/ kg, l.p.)	10 g/L Pentobarbital (40 mg/kg, i.p.)	10 g/L Pentobarbital (40 mg/kg, i.p.)	5% Chloral hydrate (6 mL/kg, i.p.)	Sodium pentobarbital (i.p.)	Sodium pentobarbital (i.p.)		*	3.5% Chloral hydrate (1 mL/100g)		
	Weight, g	230-260	220-260	220–260	250-300	200–250	200-250		240-260	230±20		
	Species (sex, n)	SD rat (male, 3/3)	SD rat (male, 3/3)	SD rat (male, 3/3)	SD rat (male 5/5)	Wistar rat (male, 4/4)	Wistar rat (male, 3/3)		SD rat (female, 15/ 15)	SD rat (male, 5/5)		
Tune of herhel or	bioactive compound	Ligustrazine	Ligustrazine	Ligustrazine	Protoparaxotriol apo- nins	Salvianolic acid B	Baicalin		Puerarin	Baicalin		
	Study (years)	Qiu et al, 2006A ^{62]}	Qiu et al, 2006B ^{63]}	Qiu et al, 2006C ⁽⁶⁴)	Hu et al, 2004 ⁽⁶⁵⁾	Zhuang et a, 2012 ^{660]}	Zhuang et al, 2013 ^[67]		Li et al, 2012 ^[58]	Li, 2011 ^[69]		

	Intergroup differences	P<0.05 (7 days) P<0.05 (7 days; 4 mgAg; CA1) P<0.05 (2, 4 mgAg)			1. <i>P</i> < 0.05 (5 mg/kg, 7 days)	P<0.05 (5, 10mg/kg, 11 days) P<0.05 (10mg/kg, 21 days) P<0.05 (5 mg/kg, 40 days)	1, P < 0.05 (10, 20 mg/kg, 7, 11 days)	2.P>0.05 (10, 20 mg/kg, 7, 11, 21 days)
	Treat group vs. model control group Mean	1. 41.50±9.17 (32.51, 50.49) (2.ng, D6), 55.50±7.78 (478, 83.12) (4.ng, D6) w 15.50±7.05 (8.59, 22.41); 28.75±6.40 (20.43, 33.02) (2.ng, 0.41) 51.00±14.14 (37.14, 63.14, 63) (4.ng, CA1) w. 5.50±4.43 (1.16, 9.84)	2. 5±2.45 (2.60, 7.40) (2mg, D6), 6± 1.41 (4.62, 7.38) (4mg, D6) vs. 45 ±5.69 (-1.08, 10.03); 1±0 (1, 1) (2mg, CA) 5.00±1.41 (3.62, 6.38) (4mg, CA1) vs. 0±0 (0, 0);	3. 34.25±5.61 (28.75, 39.75) (2 mg, DG), 35.25±2.22 (33.07, 37.43) (4 mg, DG) x 23.00±3.16 (19.9, 26.1); 7.25±2.87 (4.44, 10.06) (2 mg, QA), 26.25±12.38 (14.12, 38.38) (4 mg, CA) vs. 6.5±5.92 (0.7, 12.3)	1. 407.9±56.3 (362.85,452.95) (11 days, 5mg) 311.2±31.7 (285.84, 336.56) (11 daws.10.m01 w. 209.2 + 29.2	(185.84, 232.56)	 1. 12.7 ±1.0 (11.90, 13.50) (7d, 10 mg), 31.42.9 (12.33, 13.82 (7 days, 20mg) vs: 11.2 ±1.63 (12.33, 13.82 (7 days, 10) mg), 13.4 ±1.9 (12.33, 13.82 (7 days, 10) mg), 14.2 ±1.2 (13.34, 15.26) (11 days, 10) mg), 14.2 ±1.2 (13.34, 15.26) (11 days, 10) mg), 14.2 ±1.2 (13.44, 14.16) mg), 13.2 ±1.2 (13.45, 12.16) mg), 10.0 mg), 05.0 ±1.7 (4.68, 17.14) mg), 10.0 mg), 05.0 ±17.3 (44.06, 71.74); 06.5 ±29.6 (19.48, 22) mg, 19.0 (11 days, 20mg) vs. 57.9 ±17.3 (44.06, 71.74); 06.5 ±29.6 (24.48, 20) mg, 13.4 (30.18, 51.62) (21 days, 10 mg), 41.9 ±17.3 (51.62) (21 days, 20 mg) vs. 34.8 ±1.1 (32.56) (21 days, 20 mg) 20.0 (11 days, 20 mg) vs. 34.8 ±1.1 (32.56) (21 days, 20 mg) 	
	Outcome measure	BrdU-positive cells (2, 4 mg/kg: SGZ, CA1) BrdU/GFAP-positive cells (2, 4 mg/kg: SGZ, CA1) BrdU/MAP-2 positive cells (SGZ and CA1)			1. BrdU-positive cells (5,10 mg/kg; SGZ)		Neurological evaluations based on 6 tests	BrdU-positive cells (10, 20mg/kg; SGZ)
	Control group	Saline			Saline		Saline	
Intervention	Treatment group	2, 4 mg/kg, i.p., once daly until sacrifice			5 and 10 mg/kg, i.p., once daily until sacri- fice		10, 20mg/kg, i.p., once daly until sacri- fice	
	Induced method	CCADAC + VAIO			CCADAC		Modified Longa 1989	
	Ischemic time (min)	σ			Q		ຣີ	
	Model	Transient global ischemfa			Transient forebrain ischemla		MOAO	
	Anesthetic	10% Chloral hydrate (350 mg/kg, i.p.)			Trichloroacetaldehyde monohydrate (300 mg/kg, i.p.)		10% Chical hydrate (0.35 mL/100g)	
	Weight, g	250-300			60-80		80- 195	
	Species (sex, n)	SD rat (male, 5/5)			Mongolian gerbil (male, 4/4)		Kunming mouse (male, 6/6)	
Type of herbal or	bioactive compound	Astragaloside IV			Ginsenoside Rg1		L-3-r-butyphthalide	
	Study (years)	Wang et al, 2009 ^{P0I}			Shen et al, 2003 ^[71]		Hou, 2007 ^{7/21}	

8

	Time of hodded on							Intervention				
Study (years)	i ype or nergal or bioactive compound	Species (sex, n)	Weight, g	Anesthetic	Model	Ischemic time (min)	Induced method	Treatment group	Control group	Outcome measure	Treat group vs. model control group Mean	Intergroup differences
Yang et al,	L-3-n-butylphthalide	SD rat (male, 12/	*	Chloral hydrate (400	MCAO	120	Modified Longa	30 mg/kg, i.g., once	Vegetable oil	Escape latency (Morris)	1. NR	P < 0.05
r		(7)		mg/kg)			1989	aaliy tor 28 aays		BrdU-positive cells (DG)	2. NR	P < 0.01
										BrdU/NeuN positive cells	3. NR	P < 0.01
										(Dd) BrdU/GFAP positive cells (DG)	4. NR	P > 0.05
				-		-						

CA1 = corru ammonis 1, CCAOAG = common carotid arteries occluded with aneurysm clips, DG = dentate gyrus, DMSO = dimethyl sulfoxide, i g= intragastrical administration, i.p = intraperitoneal administration, LM = lateral ventricle injection, MCAO = middle cerebral arteries were irreversibly occluded. Represents the lack of information. www.md-journal.com

8 studies,^[47,55,56,62-64,66,67] halothane was used in 1 study,^[46] and the remaining 4 studies did not report what kind of anesthetic was used.^[59-61,68] Sixteen of 22 studies employed middle cerebral artery occlusion (MCAO) as the model of brain ischemia with the occlusion time varying from 1 to 2 hours.^[44,45,48–53,55–58,61,65,72,73] whereas the remaining 6 studies utilized permanent MCAO model.^[54,59,60,62-64] Seven studies were transient global ischemic models induced by using common carotid arteries occlusion plus irreversibly vertebral arteries occlusion or common carotid arteries occlusion plus hypotension.^[46,47,66–70] Transient forebrain ischemic model was induced by using common carotid arteries occlusion in 1 study.^[71] Common carotid arteries were completely blocked ranging from 6 to 30 minutes in the 8 studies. The treatment was administrated via intraperitoneal injection in 23 studies.^[46–48,50,51,53–56,58–68,70–72] intragastric administration in 6 studies,^[44,45,52,57,69,73] and lateral ventricle injection in 1 study.^[49] The treatment effect was estimated by using 3 different kinds of neurogenesis outcome measures: 26 studies reported proliferation data as BrdU and/or Nestin markers;^[44,45,50–73] 5 studies reported migration data as PSA-NCAM or DCX biomarker;^[45,46,48,49,51] and 10 studies reported differentiation data as NeuN or GFAP biomarker.[45,47,48,54,56,57,59,67,70,73] Neurobehavioral assessment was reported in studies.^[44-46,48,49,52-55,57,66-69,72,73] Infarct volume was reported in 5 studies.^[45,48-50,56] All experiments solely adopted certain kind of bioactive components of CHM in the treatment group and corresponding vehicle in the control group. Twenty-one bioactive components of CHM assessed their effects on neurogenesis after experimental ischemic stroke as follows: ligustrazine-treated in 4 studies,^[61–64] ginsenoside Rgl-treated in 3 studies,^[59,60,71] curcumin-treated in 2 studies,^[50,51] salvianolic acid B used in 2 studies,^[58,66] baicalin used in 2 studies,^[67,69] L-3n-butylphthalide used in 2 studies,^[72,73] and bilobalide,^[44] gypenosides,^[45] resveratrol,^[46] total saponins of Panax noto-ginseng,^[47] ginsenoside Rd,^[48] EGb 761,^[49] soy lsoflavones,^[52] quercetin,^[53] ginseng total saponins,^[54] ginsenoside Rb1,^[55] tetramethylpyrazine,^[56] cornel iridoid glycoside,^[57] protoparax-otriol aponins ^[65] protoparaxotriol aponins,^[65] puerarin,^[68] and astragal side IV^[70] used in each out of the remaining studies (Table 2).

3.3. Study quality

The score of study quality checklist items ranged from 2 of 10 to 7 of 10. Of whom, One study got 7 of 10 points,^[48] 3 studies got 6 of 10 points,^[46,47,55] 5 studies got 5 of 10 points,^[49–51,57,67] 12 studies got 4 of 10 points,^[52,56,62,65] and 5 studies got 2 of 10 points.^[59–61,68,71] All the included studies were peer-reviewed and formally published, except 2 studies that were online master's theses.^[69,72] Control of temperature as room temperature and rectal temperature of rats was described in 18 studies.^[46–51,53,55,58–60,63,64,66,67,69,70,72] Random allocation was described in 22 studies.^[44–55,57,58,61–65,69,70,72] Except 4 studies with no-report of anesthetic used,^[59–61,68] all the included trials using anesthetics were without significantly intrinsic neuroprotective activity. Two studies declared outcome assessment with blindness.^[44,48] None of the included studies described the blindness of model induction and a sample size calculation. An appropriate animal model that is relevant to the clinical situation such as aged animals, hyperglycemia, or hypertension was not used in all the studies.

		Main biological source					
Bioactive compounds	Latin name	Enalish name	Chinese name (Pinvin)	Effective dose	Model of neurological disease	Neurogenesis activity	Reference
Total saponins of Panax notodinsend	Radix Notoginseng	Sanchi	Sanqi	75 mg/kg	Ischemic brain injury	Increase cell migration and differentiation of offactory bulb	He et al, 2015 ^[47]
Resveratrol Ginsenoside Rd	Veratrum album Radix Ginseng	White hellebore Ginsenoside	Baililu Renshen	1 mg/kg, 10 mg/kg 5 mg/kg	Ischemic brain injury Ischemic brain injury	decrease cell migration of hippocampus Increase cell proliferation, migration and differentiation of hippocampus	Girbovan et al, 2015 ^[46] Liu et al, 2015 ^[48]
Bilobalide Gypenosides	Folium Ginkgo Gynostemma pentaphyllum	Ginkgo leaf Herba gynostemmatis	Yinxing Jiaogulan	10 mg/kg 200 mg/kg, 400 mg/kg	lschemic brain injury Ischemic brain injury	unremation or inpocampus Increase cell proliferation in ipsilateral cortex Increase cell proliferation, migration and differentiation of hippocampus	Zheng et al, 2013 ^[44] Wang et al, 2013 ^[45]
EGb 761	(i nund.) Makino Folium Ginkgo	peruaprıyılı Ginkgo leaf	Yinxing	0.525 mg/kg	Ischemic brain injury	Increase cell proliferation and migration of hippocampus	Sun et al, 2013 ^[49]
Curcumin	Rhizoma Curcumae Longae	Turmeric	Jianghuang	300 mg/kg	Ischemic brain injury	Promote cell proliferation and migration of SVZ	Liu et al, 2013 ^[50] ; Cheng et al, 2013 ^[51]
Soy Isoflavones Quercetin Ginseng total saponins	Glycine Max Flos Sophorae Radix Ginseng	Soybean Sophora flower bud Ginseng	Dadou Huaimi Renshen	60 mg/kg 50 mg/kg 25 mg/kg	Ischemic brain injury Ischemic brain injury Ischemic brain injury	Promote cell proliferation in hippocampus Promote cell proliferation of SVZ Increase cell proliferation and differentiation	Long et al, 2011 ^[52] Zhang et al, 2011 ^[53] Zheng et al, 2010 ^[54]
(Girsenoside Rb1 ginsenoside Rgl	Radix Ginseng Radix Ginseng	Ginseng Ginseng	Renshen Renshen	40 mg/kg 5 mg/kg; 20mg/ kg;	Ischemic brain injury Ischemic brain injury	Increase cell proliferation Promote cell proliferation and differentiation in hippocampus and SVZ	Gao et al, 2010 ^[55] Cui et al, 2007B ^[59] ; Cui et al, 2007B ^[60] ; Shen et al, 20078 ^[60] ; Shen
Tetramethylpyrazine	Rhizoma Ligustici	Szechwan lovage	Chuanxiong	20 mg/kg	Ischemic brain injury	Increase cell proliferation and differentiation	Xiao et al, 2010 ^[56]
Cornel iridoid glycoside	Fructus Corni	Asiatic cornelian cherry fruit	Shanzhuyu	60 mg/kg; 180 ma/ka	Ischemic brain injury	Increase cell proliferation and differentiation	Yao et al, 2008 ^[57]
Salvianolic acid B	Radix Salviae Mittiorrhizae	Danshen root	Danshen	10 mg/kg; 50 mg/ kg	Ischemic brain injury	Increase cell proliferation in SVZ and SGZ	Zhong et al, 2007 ^[58] ; Zhuang et al, 2012 ^[66]
Ligustrazine	Rhizoma Ligustici Chuanxiong	Szechwan lovage rhizome	Chuanxiong	40 mg/kg; 80 mg/ kg	Ischemic brain injury	Increase cell proliferation in SVZ and SGZ	Qi et al, 2006 ^[61] , Qiu et al, 2006A ^[62] , Qiu et al, 2006B ^[63] , Qiu et al, 2006B ^[63] , Qiu
Protoparaxotriol aponins	Radix Notoginseng	Sanchi	Sanqi	50 mg/kg	Ischemic brain injury	Increase cell proliferation in border area of infarct	Hu et al, 2004 ^[65]
Puerarin Astragaloside IV	Radix Puerariae Radix Astragali seu Hedvsari	Kudzuvine root Milkvetch root	Gegen Huangqi	2 mg/kg; 4 mg/kg	Ischemic brain injury Ischemic brain injury	Increase cell proliferation in SVZ Increase cell proliferation and differentiation in hiboccampus	Li et al, 2012 ^[68] Wang et al, 2009 ^[70]
Baicalin L-3-n-butylphthalide	Radix Astragali seu Hedysari —	Milkvetch root Celery seed	Huangqi Dingbentai	50 mg/kg; 100 mg/kg 10 mg/kg; 20 mg/ kg;30 mg/kg	Ischemic brain injury Ischemic brain injury	Increase cell proliferation and differentiation in SVZ and SGZ Increase cell proliferation and differentiation in SGZ and DG zone	Li, 2011 ^[69] , Zhuang et al, 2013 ^[67] Hou, 2007 ^[72] , Yang et al, 2015 ^[73]

Bioactve compounds of included studies.

Table 2

Table 3 Risk of bias of included studies

Study	A	В	C	D	E	F	G	н	I	J	Total
Zheng et al, 2013 ^[44]	+	_	+	_	+	+	_	_	_	_	4
Wang et al, 2013 ^[45]	+	_	+	_	_	+	_	_	+	_	4
Girbovan et al, 2015 ^[46]	+	+	+	_	_	+	_	_	+	+	6
He et al, 2015 ^[47]	+	+	+	_	_	+	_	_	+	+	6
Liu et al, 2015 ^[48]	+	+	+	_	+	+	_	_	+	+	7
Sun et al. 2013 ^[49]	+	+	+	_	_	+	_	_	+	_	5
Liu et al, 2013 ^[50]	+	+	+	_	_	+	_	_	+	_	5
Cheng et al, 2013 ^[51]	+	+	+	_	_	+	_	_	+	_	5
Long et al, 2011 ^[52]	+	_	+	_	_	+	_	_	_	_	3
Zhang et al, 2011 ^[53]	+	+	+	_	_	+	_	_	_	_	4
Zheng et al, 2010 ^[54]	+	_	+	_	_	+	_	_	+	_	4
Gao et al, 2010 ^[55]	+	+	+	_	_	+	_	_	+	+	6
Xiao et al, 2010 ^[56]	+	_	_	_	_	+	_	_	+	_	3
Yao et al, 2008 ^[57]	+	_	+	_	_	+	_	_	+	+	5
Zhong et al, 2007 ^[58]	+	+	+	_	_	+	_	_	_	_	4
Cui et al, 2007A ^[59]	+	+	_	_	_	?	_	_	_	_	2
Cui et al, 2007B ^[60]	+	+	_	_	_	?	_	_	_	_	2
Qi et al, 2006 ^[61]	+	_	+	_	_	?	_	_	_	_	2
Qiu et al, 2006A ^[62]	+	_	+	_	_	+	_	_	_	_	3
Qiu et al, 2006B ^[63]	+	+	+	_	_	+	_	_	_	_	4
Qiu et al, 2006C ^[64]	+	+	+	_	_	+	_	_	_	_	4
Hu et al, 2004 ^[65]	+	_	+	_	_	+	_	_	_	_	3
Zhuang et al, 2012 ^[66]	+	+	_	_	_	+	_	_	+	_	4
Zhuang et al, 2012 ^[67]	+	+	_	_	_	+	_	_	+	+	5
Li et al, 2012 ^[68]	+	_	_	_	_	+	_	_	_	_	2
Li, 2011 ^[69]	_	+	+	_	_	+	_	_	+	_	4
Wang et al, 2009 ^[70]	+	+	+	_	_	+	_	_	_	_	4
Shen et al, 2003 ^[71]	+	_	_	_	_	+	_	_	_	_	2
Hou, 2007 ^[72]	_	+	+	_	_	+	_	_	+	_	4
Yang et al. 2015 ^[73]	+	_	_	_	_	+	_	_	+	+	4

Studies fulfilling the criteria of: A, peer reviewed publication; B, control of temperature; C, random allocation to treatment or control; D, blinded induction of model; E, blinded assessment of outcome; F, use of anesthetic without significant intrinsic neuroprotective activity; G, animal model (aged, diabetic, or hypertensive); H, sample size calculation; I, compliance with animal welfare regulations; J, statement of potential conflict of interests. +=Yes, -=No, ?=unclear.

regulations.^[45–51,54–57,66,67,69,72,73] Seven studies manifested no potential conflicts of interest.^[46–48,55,57,67,73] The methodological quality of each study was summarized in Table 3.

3.4. Effectiveness

3.4.1. Neurobehavioral assessment. Sixteen studies reported neurobehavioral assessment.^[44–46,48,49,52–55,57,66–69,72,73] Neurological deficits' score was assessed in 10 studies by using either Longa criterion, Bederson criterion, or neurological severity score, which indicated that bioactive components of CHM including bilobalide,^[44] gypenosides,^[45] ginsenoside Rd,^[48] EGb 761,^[49] soy Isoflavones,^[52] quercetin,^[53] ginseng total saponins,^[54] ginsenoside Rb1,^[55] cornel iridoid glycoside,^[57] and butylphthalide^[72] showed significant lower neurological deficiency (P < 0.01 or P < 0.05). The remaining 6 studies performing Morris water-maze test showed that resveratrol,^[44] salvianolic acid B,^[66] baicalin,^[67,69] puerarin,^[68] and butylphthalide^[73] significantly decreased escape latency and increased residence time in the target quadrant (P < 0.05).

3.4.2. Infarct volume. Of the 5 studies reporting infarct volume, the bioactive components of CHM including gypenosides,^[45] ginsenoside Rd,^[48] EGb 761,^[49] curcumin,^[50] and tetramethyl-pyrazine^[56] in treatment groups significantly reduced infarct volume when compared with the corresponding control groups (P < 0.05).

3.4.3. Neurogenesis outcomes. Twenty-six of all the included studies reporting proliferation data as BrdU and/or Nestin showed that bilobalide,^[44] gypenosides,^[45] curcumin,^[50,51] soy lsoflavones,^[52] quercetin,^[53] ginseng total saponins,^[54] ginsenoside Rb1,^[55] tetramethylpyrazine,^[56] cornel iridoid glycoside,^[57] salvianolic acid B,^[58,66] ginsenoside Rg1,^[59,60,71] ligustrazine treated in 4 studies,^[61–64] protoparaxotriol aponins,^[65] baica-lin,^[67,69] puerarin,^[68] astragaloside IV,^[70] and L-3-n-butylph-thalide^[73] significantly increased the expression of BrdU and/or Nestin in rats/mice brain after ischemic injury (P < 0.05, or P < 0.01), with exception in 1 study (P > 0.05).^[72]

Of the 5 studies separately adopting PSA-NCAM and DCX markers to assess the migration of NSCs, 4 bioactive components of CHM including gypenosides,^[45] ginsenoside Rd,^[48] EGb 761,^[49] and curcumin^[51] significantly promoted the expression of PSA-NCAM and DCX in dentate gyrus, SVZ, or olfactory bulb (P < 0.05). The remaining 1 study reported that resveratrol significantly attenuated the expression of DCX/PSA-NCAM in DG region (P < 0.05).^[46]

Of the 10 studies reporting differentiation data as NeuN or GFAP, 5 studies demonstrated that bioactive components of CHM including total saponins of panax notoginseng,^[47] ginseng total saponins,^[54] tetramethylpyrazine,^[56] cornel iridoid glycoside,^[57] and baicalin^[67] had significant effect on improving the expression of NeuN in ipsilateral infarct area, SGZ, or olfactory bulb (P < 0.05); 7 studies reported that bioactive components of CHM including gypenosides,^[45] ginsenoside Rd,^[48] tetrameter

thylpyrazine,^[56] cornel iridoid glycoside,^[57] ginsenoside Rgl,^[59] and astragaloside IV^[70] had significant effect on promoting the expression of GFAP in SVZ, striatum, ipsilateral infarct area, or SGZ region (P < 0.05), whereas ginseng total saponins showed no significant effect on GFAP expression after ischemic stroke (P > 0.05).^[54]

4. Discussion

4.1. Principle finding of the study

To our knowledge, this is the first preclinical systematic review evaluated the efficacy of bioactive components of CHM for neurogenesis. The present study showed that bioactive components of CHM can improve neurological dysfunction, reduce infarct volume, and promote endogenous neurogenesis, including proliferation, migration, and differentiation of NSCs after ischemic stroke.

4.2. Limitations

In the present study, some limitations have been identified. First, in spite of systematic search strategy, other language studies have not been taken into consideration except English and Chinese studies, which may lead to certain degree of selective bias.^[74] Furthermore, except the 3 studies of Hou,^[72] Girbovan et al,^[46] and Zheng et al^[54] in respect of proliferation, migration, and differentiation outcome, respectively, all the included studies concluded positive results. Some negative studies missed inevitability, as authors or researchers were unlikely to put effort in publishing negative results and positive ones would be more acceptable in publishing. Thus, the overall effect in this review may be overestimated. Second, study quality was considered as low, which indicated that the results should be explained with caution. The quality of the included studies was a significant predictor of outcome. The dominance of positive studies might imply presence of flaws in randomization and blinding.^[75] Third, as high heterogeneities were inherent in the included studies, meta-analyses of the outcome measures can hardly be performed, which effectively pools into single quantitative estimate and summary effect size based on statistical techniques, otherwise.

4.3. Implication for further studies

The most critical step in the fundamental recovery of brain function was reconstruction of neuronal networks, including neuritic regeneration and synaptic reconstruction.^[76] None of the included studies investigated whether the newborn neurons integrated into neuronal networks with functional properties. Therefore, further research should pay close attention to the newborns physiological function by electrophysiology and other methodologies.

In the present study, none of the included studies reported the blindness of model induction and a sample size calculation. Randomization was declared in most of the included studies, whereas none of them reported details of how the animals were randomized. Landis et al^[77] suggested the core standards of rigorous study design including randomization, blinding, sample-size estimation, and the handling of all data should be depicted in detail. None of models were established on aged, diabetic, or hypertensive animals. The relevance of animal models with normal physiological conditions to human conditions remains

dubious.^[78] We suggest that the ARRIVE^[79] should be used as a guideline when designing and reporting preclinical animal studies.

In conclusion, bioactive components of CHM may improve neurological dysfunction, reduce infarct volume, and promote endogenous neurogenesis, including proliferation, migration, and differentiation of NSCs after ischemic stroke. However, evidences are supported but limited because only a few studies were available for each descriptive analysis. Further research is needed to update supporting the evidence in this area.

References

- Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 1992;255:1707–10.
- [2] Temple S. The development of neural stem cells. Nature 2001; 414:112–7.
- [3] Doetsch F, Garcia-Verdugo JM, Alvarez-Buylla A. Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J Neurosci 1997;17:5046–61.
- [4] Eriksson PS, Perfilieva E, Björk-Eriksson T, et al. Neurogenesis in the adult human hippocampus. Nat Med 1998;4:1313–7.
- [5] Gage FH. Mammalian neural stem cells. Science 2000;287:1433-8.
- [6] Ming GL, Song H. Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 2011;70:687–702.
- [7] Goldman S. Stem and progenitor cell-based therapy of the human central nervous system. Nat Biotechnol 2005;23:862–71.
- [8] Van Praag H, Kempermann G, Gage FH. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci 1999;2:266–70.
- [9] Kempermann G, Kuhn HG, Gage FH. More hippocampal neurons in adult mice living in an enriched environment. Nature 1997;386:493–5.
- [10] Brown J, Cooper-Kuhn CM, Kempermann G, et al. Enriched environment and physical activity stimulate hippocampal but not olfactory bulb neurogenesis. Eur J Neurosci 2003;17:2042–6.
- [11] Moraga A, Pradillo JM, García-Culebras A, et al. Aging increases microglial proliferation, delays cell migration, and decreases cortical neurogenesis after focal cerebral ischemia. J Neuroinflam 2015;12:87.
- [12] Arvidsson A, Collin T, Kirik D, et al. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 2002;8:963–70.
- [13] Zhang RL, Chopp M, Roberts C, et al. Stroke increases neural stem cells and angiogenesis in the neurogenic niche of the adult mouse. PloS One 2014;9:e113972.
- [14] Gould E, McEwen BS, Tanapat P, et al. Neurogenesis in the dentate gyrus of the adult tree shrew is regulated by psychosocial stress and NMDA receptor activation. J Neurosci 1997;17:2492–8.
- [15] Jacobs BL, van Praag H, Gage FH. Adult brain neurogenesis and psychiatry: a novel theory of depression. Mol Psychiatr 2000;5:262–9.
- [16] Parent JM. Adult neurogenesis in the intact and epileptic dentate gyrus. Prog Brain Res 2007;163:529–40.
- [17] Bingham B, Liu D, Wood A, et al. Ischemia-stimulated neurogenesis is regulated by proliferation, migration, differentiation and caspase activation of hippocampal precursor cells. Brain Res 2005;1058:167–77.
- [18] Ogita K, Nishiyama N, Sugiyama C, et al. Regeneration of granule neurons after lesioning of hippocampal dentate gyrus: evaluation using adult mice treated with trimethyltin chloride as a model. J Neurosci Res 2005;82:609–21.
- [19] Schultze B, Korr H. Cell kinetic studies of different cell types in the developing and adult brain of the rat and the mouse: a review. Cell Tissue Kinet 1981;14:309–25.
- [20] Smith CM, Luskin MB. Cell cycle length of olfactory bulb neuronal progenitors in the rostral migratory stream. Dev Dynam 1998;213:220–7.
- [21] Zhang RL, Zhang ZG, Lu M, et al. Reduction of the cell cycle length by decreasing G1 phase and cell cycle reentry expand neuronal progenitor cells in the subventricular zone of adult rat after stroke. J Cere Blood Flow Met 2006;26:857–63.
- [22] Nowakowski RS, Lewin SB, Miller MW. Bromodeoxyuridine immunohistochemical determination of the lengths of the cell cycle and the DNAsynthetic phase for an anatomically defined population. J Neurocytol 1989;18:311–8.

- [24] Abe K, Yamashita T, Takizawa S, et al. Stem cell therapy for cerebral ischemia: from basic science to clinical applications. J Cere Blood Flow Met 2012;32:1317–31.
- [25] Taupin P. BrdU immunohistochemistry for studying adult neurogenesis: paradigms, pitfalls, limitations, and validation. Brain Res Rev 2007;53:198–214.
- [26] Lendahl U, Zimmerman LB, McKay RD. CNS stem cells express a new class of intermediate filament protein. Cell 1990;60:585–95.
- [27] Brown JP, Couillard-Després S, Cooper-Kuhn CM, et al. Transient expression of doublecortin during adult neurogenesis. J Comp Neurol 2003;467:1–0.
- [28] Couillard-Despres S, Winner B, Schaubeck S, et al. Doublecortin expression levels in adult brain reflect neurogenesis. Eur J Neurosci 2005;2:1–4.
- [29] Bonfanti L. PSA-NCAM in mammalian structural plasticity and neurogenesis. Prog Neurobiol 2006;80:129–64.
- [30] Mullen RJ, Buck CR, Smith AM, et al. a neuronal specific nuclear protein in vertebrates. Development 1992;116:201–11.
- [31] Balaram P, Kaas JH. Towards a unified scheme of cortical lamination for primary visual cortex across primates: insights from NeuN and VGLUT2 immunoreactivity. Front Neuroanat 2014;8:81.
- [32] Brenner M, Kisseberth WC, Su Y, et al. GFAP promoter directs astrocytespecific expression in transgenic mice. J Neurosci 1994;14:1030–7.
- [33] Kim H. Neuroprotective herbs for stroke therapy in traditional eastern medicine. Neurol Res 2005;27:287–301.
- [34] Wu JG, Wang YY, Zhang ZL, et al. Herbal medicine in the treatment of Alzheimer's disease. Chin J Integr Med 2015;21:102–7.
- [35] Wang Y, Xie CL, Lu L, et al. Chinese herbal medicine paratherapy for Parkinson's disease: a meta-analysis of 19 randomized controlled trials. Evid Based Complement Alternat Med 2012;2012:534861.
- [36] Esposito M, Carotenuto M. Ginkgolide B complex efficacy for brief prophylaxis of migraine in school-aged children: an open-label study. Neurol Sci 2011;32:79–81.
- [37] Sarris J, Panossian A, Schweitzer I, et al. Herbal medicine for depression, anxiety and insomnia: a review of psychopharmacology and clinical evidence. Eur Neuropsychopharmacol 2011;21:841–60.
- [38] Tohda C, Kuboyama T, Komatsu K. Search for natural products related to regeneration of the neuronal network. Neurosignals 2005;14:34–45.
- [39] More SV, Koppula S, Kim IS, et al. The role of bioactive compounds on the promotion of neurite outgrowth. Molecules 2012;17:6728–53.
- [40] Murphy SP, Murphy AN. Pre-clinical systematic review. J Neurochem 2010;115:805.
- [41] Sena E, van der Worp HB, Howells D, et al. How can we improve the preclinical development of drugs for stroke? Trends Neurosci 2007;30:433–9.
- [42] Macleod MR, O'Collins T, Howells DW, et al. Pooling of animal experimental data reveals influence of study design and publication bias. Stroke 2004;35:1203–8.
- [43] Macleod MR, O'Collins T, Horky LL, et al. Systematic review and metaanalysis of the efficacy of melatonin in experimental stroke. J Pineal Res 2005;38:35–41.
- [44] Zheng YQ, Liu JX, Xu L, et al. Study on effect of weinaokang and bilobalide on autophagy and neurogenesis induced by focal cerebral ischemia reperfusion. Chin J Chin Mater Med 2013;38:2182–6.
- [45] Wang XJ, Sun T, Kong L, et al. Gypenosides pre-treatment protects the brain against cerebral ischemia and increases neural stem cells/ progenitors in the subventricular zone. Int J Dev Neurosci 2014;33:49–56.
- [46] Girbovan C, Kent P, Merali Z, et al. Dose-related effects of chronic resveratrol administration on neurogenesis, angiogenesis, and corticosterone secretion are associated with improved spatial memory retention following global cerebral ischemia. Nutr Neurosci 2015;98:2993–3000.
- [47] He X, Deng FJ, Ge JW, et al. Effects of total saponins of Panax notoginseng on immature neuroblasts in the adult olfactory bulb following global cerebral ischemia/reperfusion. Neural Regen Res 2015;10:1450-6.
- [48] Liu XY, Zhou XY, Hou JC, et al. Ginsenoside Rd promotes neurogenesis in rat brain after transient focal cerebral ischemia via activation of PI3K/ Akt pathway. Acta Pharmacol Sin 2015;36:421–8.
- [49] Sun L, Zhuang W, Xu X, et al. The effect of injection of EGb 761 into the lateral ventricle on hippocampal cell apoptosis and stem cell stimulation in situ of the ischemic/reperfusion rat model. Neurosci Lett 2013;25:123–8.

- [50] Liu S, Cheng JH, Han Z, et al. Neuroprotection and neurogenesis effect on focal ischemia repercussion injury from curcumin. J Wenzhou Med Coll 2013;43:171–4.
- [51] Cheng JH, Liu S, Han Z, et al. Curcumin promotes proliferation and migration of neural stem cells in cerebral isehemic rats by regulating Notch signaling. Chin J Pathophysiol 2013;29:878–82.
- [52] Long J, Zhang L, Yuan DP, et al. Effects of soy lsoflavones on the Hippocampus neurogenesis of rats with cerebral lschemia and reperfusion. J Nanjing T C M Univ 2011;27:49–54.
- [53] Zhang LL, Cao Q, Hu ZY, et al. Effect of quercetin on neural stem cell proliferation in the subventricular zone of rats after focal cerebral ischemia-reperfusion injury. J South Med Univ 2011;31:1200–3.
- [54] Zheng GQ, Cheng W, Wang Y, et al. Ginseng total saponins enhance neurogenesis after focal cerebral ischemia. J Ethnopharmacol 2011;133:724–8.
- [55] Gao XQ, Yang CX, Chen GJ, et al. Ginsenoside Rb1 regulates the expressions of brain-derived neurotrophic factor and caspase-3 and induces neurogenesis in rats with experimental cerebral ischemia. J Ethnopharmacol 2010;132:393–9.
- [56] Xiao X, Liu Y, Qi C, et al. Neuroprotection and enhanced neurogenesis by tetramethylpyrazine in adult rat brain after focal ischemia. Neurol Res 2010;32:547–55.
- [57] Yao RQ, Zhang L, Wang W, et al. Cornel iridoid glycoside promotes neurogenesis and angiogenesis and improves neurological function after focal cerebral ischemia in rats. Brain Res Bull 2009;79:69–76.
- [58] Zhong J, Tang MK, Zhang Y, et al. Effect of salvianolic acid B on neural cells damage and neurogenesis after brain ischemia-reperfusion in rats. Acta Pharm Sin 2007;42:716–21.
- [59] Cui RT, Pu CQ, Liu JX, et al. Effects of ginsenoside Rgl on proliferation and differentiation of neural stem cells in the subventricular zone in adult rats after focal cerebral ischemia. Chin J Geriatr Heart Brain Vessel Dis 2007;9:707–9.
- [60] Cui RT, Pu CQ, Liu JX, et al. Effects of ginsenoside Rg1 on the proliferation of neural stem cells in rats with focal cerebral ischemia. Med J Chin P L A 2007;32:842–5.
- [61] Qi CF, Zhang JS, Tian YM, et al. Effect of ligustrazine on cell proliferation in subventricular zone in rat brain with focal cerebral ischemia- reperfusion injury. J Centr South Univ (Med Sci) 2007;32:396–400.
- [62] Qiu F, Liu Y, Zhang PB, et al. Effects of ligustrazine on hippocampal dentate gyrus cell proliferation after focal cerebral ischemia in adult rats. J South Med Univ 2006;26:1400–3.
- [63] Qiu F, Liu Y, Zhang PB, et al. The effect of ligustrazine on cells proliferation in cortex and striatum after focal cerebral ischemia in adult rats. J Chin Med Mater 2006;29:1196–200.
- [64] Qiu F, Liu Y, Qian YH, et al. Effect of ligustrazine on cell proliferation in subventricular zone of lateral cerebral ventricle after adult rat suffering from focal cerebral ischemia. J Sichuan Univ (Med Sci Ed) 2006;37:726–9. 780.
- [65] Hu XS, Zhou DM, Zhou D, et al. Effect of PTS on expression of cell proliferation following focal cerebral ischemia-reperfusion in rats. West Chin Med J 2004;19:458–9.
- [66] Zhuang P, Zhang Y, Cui G. Direct stimulation of adult neural stem/ progenitor cells in vitro and neurogenesis in vivo by salvianolic acid B. PLoS One 2012;7:e35636.
- [67] Zhuang PW, Cui GZ, Zhang YJ, et al. Baicalin regulates neuronal fate decision in neural stem/progenitor cells and stimulates hippocampal neurogenesis in adult rats. C N S Neurosci Ther 2013; 19:154–62.
- [68] Li ZW, Mu Y, Guo HN, et al. Effects of puerarin on learning ability and neurogenesis of neural stem cells in adult rats after transient forebrain ischemia. Shanxi Med J 2012;41:14541519.
- [69] Li ZH. Effect of baicalin on proliferation of endogenous neural stem cells in global cerebral ischemia/re-perfusion rats (2011). Avaiable at: http:// cdmd.cnki.com.cn/Article/CDMD-10631–1011173856.htm.(Accessed 9th Mar 2016).
- [70] Wang C, Zhang YJ, Feng Y, et al. Effect of astragaloside IV on neurogenesis in adult hippocampus of rats after transient forebrain ischemia. Chin Tradit Herb Drug 2009;40:754–8.
- [71] Shen L, Zhang J. Ginsenoside Rg1 increases ischemia-induced cell proliferation and survival in the dentate gyrus of adult gerbils. Neurosci Lett 2003;344:1–4.
- [72] Hou TJ. Effects of butylphthalide on endogenous neural stem cells proliferation in mice with cerebral ischemia and reperfusion (Master thesis) 2007. Available at: http://epub.cnki.net/kns/brief/default_result. aspx.

- [73] Yang LC, Li J, Xu SF, et al. L-3-n-butylphthalide promotes neurogenesis and neuroplasticity in cerebral ischemic rats. CNS Neurosci Ther 2015;21:733–41.
- [74] Guyatt GH, Oxman AD, Montori V, et al. GRADE guidelines: 5. Rating the quality of evidence-publication bias. J Clin Epidemiol 2011; 64:1277–82.
- [75] Jansen Of Lorkeers SJ, Eding JE, Vesterinen HM, et al. Similar effect of autologous and allogeneic cell therapy for ischemic heart disease: systematic review and meta-analysis of large animal studies. Circ Res 2015;116:80–6.
- [76] Tohda C, Kuboyama T, Komatsu K. Search for Natural Products Related to Regeneration of the Neuronal Network. Neurosignals 2005;14:34–45.
- [77] Landis SC, Amara SG, Asadullah K, et al. A call for transparent reporting to optimize the predictive value of preclinical research. Nature 2012;490:187–91.
- [78] Wiebers DO, Adams HPJr, Whisnant JP. Animal models of stroke: are they relevant to human disease? Stroke 1990;21:1–3.
- [79] NC3Rs Reporting Guidelines Working GroupAnimal research: reporting in vivo experiments: the ARRIVE guidelines. J Physiol 2010; 588:2519–21.