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Machine learning‑based 
suggestion for critical interventions 
in the management of potentially 
severe conditioned patients 
in emergency department triage
Hansol Chang1,2,4, Jae Yong Yu2,4, Sunyoung Yoon2, Taerim Kim1 & Won Chul Cha1,2,3*

Providing timely intervention to critically ill patients is a challenging task in emergency departments 
(ED). Our study aimed to predict early critical interventions (CrIs), which can be used as clinical 
recommendations. This retrospective observational study was conducted in the ED of a tertiary 
hospital located in a Korean metropolitan city. Patient who visited ED from January 1, 2016, to 
December 31, 2018, were included. Need of six CrIs were selected as prediction outcomes, namely, 
arterial line (A-line) insertion, oxygen therapy, high-flow nasal cannula (HFNC), intubation, Massive 
Transfusion Protocol (MTP), and inotropes and vasopressor. Extreme gradient boosting (XGBoost) 
prediction model was built by using only data available at the initial stage of ED. Overall, 137,883 
patients were included in the study. The areas under the receiver operating characteristic curve for 
the prediction of A-line insertion was 0·913, oxygen therapy was 0.909, HFNC was 0.962, intubation 
was 0.945, MTP was 0.920, and inotropes or vasopressor administration was 0.899 in the XGBoost 
method. In addition, an increase in the need for CrIs was associated with worse ED outcomes. The CrIs 
model was integrated into the study site’s electronic medical record and could be used to suggest early 
interventions for emergency physicians.
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ABP	� Arterial blood pressure
AI	� Artificial intelligence
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DOA	� Dead on arrival
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SpO2	� Oxygen saturation
XGBoost	� Extreme gradient boosting

Clinical decision support systems based on artificial intelligence (AI)-related algorithms are evolving rapidly1. 
As of 2020, the Food and Drug Administration has approved several AI-based algorithms in diverse medical 
fields2. These algorithms are especially used to support the analysis of test results, such as imaging interpreta-
tions. While clinical AI algorithms have also been developed, relatively few provide support for decision-making.

AI has particular potential in the emergency department (ED) owing to the need for proper distribution of 
resources and accurate decision-making3. Analyzing clinical data and predicting condition severity are needed for 
effective ED operation, for which AI may be applied to improve clinical prediction4–6. Several studies have intro-
duced AI-based triage systems and methods for predicting disease outcomes5,7,8. Considering the time sensitivity 
and necessity for emergency care in the ED, the role of these AI-based decision support systems might expand.

In the ED, timely and appropriate interventions as well as adequate screening of the severity of a patient’s con-
dition are important in critically ill patients9–12, especially as these patients need intensive care13. ED resources, 
however, are limited. Therefore, rapid screening and timely, appropriate, and focused interventions are vital for 
critical patients in the ED environment, especially when it is crowded and delayed recognition and treatment of 
critical patients can result in mortality14,15.

However, previously reported models of predicted outcomes or clinical course prediction such as ICU admis-
sion or mortality and did not guide the deductive process for critical patients, such as the exact procedures 
or prescription of medications16–20. Thus, decisions regarding intervention are made entirely by the clinician’s 
judgment based on his or her experiences. Clinical result prediction might be insufficient to improve the clinical 
outcome, because action should be required. For instance, without the proper administration of inotropes or 
transfusion in a hemorrhagic shock patient, the patient will deteriorate and will be unable to compensate21–23. 
However, early and proper management and transfusion may help stabilize the patient and allow for further 
evaluation and management and finally might be able to improve outcome. Outcome prediction might be helpful 
for predicting patient course, but does not support the exact decision of action for care. The actual management 
action itself, inotropes or transfusion improved patient status.

Additionally, clinicians may experience difficulty making decisions in a timely ED environment, such as 
crowding or a lack of resources, and experience24,25. Predicting outcomes alone may not be sufficient; decision 
on clinical procedures and actions should be made. Therefore, in this study, we aimed to predict the need for a 
suggestion of actual interventions in patients with critical conditions. Therefore, in this study, we aimed to predict 
the need for a suggestion of actual interventions in patients with critical conditions.

Results
Between 2016 and 2018, 223,585 patients have visited study site ED. Among them, Out-hospital Cardiac Arrest, 
Dead on arrival, patient without record of initial treatment, left without being Seen, patient without Korean 
Triage and Acuity Scale (KTAS), Injured patient and age under 18 was excluded. A total of 137,883 patients met 
the pre-specified criteria and were included in the final analysis (Supplementary Fig. 1). Among these patients, 
9.3% (12,922) received at least one of critical interventions (CrIs). The percentage of the total population and 
its corresponding number of patients that received CrIs are as follows: 1.0% (1355) for arterial line (A-line) 
insertion, 7.6% (10,577) for oxygen therapy, 0.42% (581) for high-flow nasal cannula (HFNC), 0.64% (878) for 
intubation, 0.05% (66) for massive transfusion protocol (MTP), and 2.52% (3471) for inotropes or vasopressor 
administration.

Almost all characteristics differed between critical care and non-critical care patients. The median patient 
ages were 67.0 and 57.0 years, respectively. Composite adverse outcomes were more likely to occur in patients 
who receives CrIs (25.4% and 1.6%, respectively). The demographic characteristics are summarized in Table 1. 
Number of missing data and frequecy of each variable are presented in the Supplemental Table 1.

Supplementary Fig. 2 shows time differences between emergency room visits and each CrIs. The median 
hours of each CrIs from ER visit were 3.44, 1.91, 5.70, 1.60, 2.92, and 3.78 for A-line insertion, inotropes, HFNC, 
intubation, MTP, and oxygen therapy, respectively.

Table 2 summarizes the area under the receiver operating curve (AUROC) and area under the precision-recall 
curve (AUPRC) for each CrIs using the evaluation method with 95% Confidential intervals (CI). The AUROC of 
predictions of need was 0.913, 0.909, 0.962, 0.945, 0.920, and 0.899 for A-line insertion, oxygen therapy, HFNC, 
intubation, MTP, and inotropes, respectively. The AUPRC was very different for each CrIs, owing to differences 
in their prevalence. The AUROC and AUPRC results for other input factors are depicted in Supplementary 
Table 1, which illustrates the prediction results of AUROC and AUPRC with 95% CI according to the machine 
learning methods.

Figure 1 shows the feature importance of each CrIs. Age group and KTAS were the most impactful for A-line 
insertion, oxygen therapy, and intubation, while vital signs such as Respiratory Rate (RR) and Oxygen Saturation 
(SpO2) were the most relevant for HFNC and MTP.

According to the model based on cut-offs determined by the Youden index, the sensitivities were 0.85, 0.81, 
0.88, 0.90, 0.99, and 0.84 and the specificities were 0.75, 0.85, 0.88, 0.86, 0.86, and 0.82 for A-line insertion, 
oxygen therapy, HFNC, intubation, MTP, and administration of inotropes and vasopressors, respectively. Other 
details are shown in.

Supplementary Fig. 3 illustrates the well-calibrated relationship between observed and predicted results for 
each CRIs model, except for the MTP. MTP also displayed a similar trend, despite the fact that it had a greater 
degree of variation when compared to other procedures, owing to its low prevalence.
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Supplementary Table 2, which illustrates the prediction results of AUROC and AUPRC with 95% CI accord-
ing to other input factors.

Table 3 shows the odd ratios (OR) of adverse outcomes in the ED according to the number of predicted CrIs. 
Compared to patients who were predicted to have 0 CrIs, that of patients who were predicted to have one CrIs 
was 3.10, that of two CrIs was 5.40, that of three CrIs were 6.83, that of four CrIs was 11.23, that of six CrIs was 
23.05, and that of six CrIs was 33.43. As the predicted number of CrIs increased, the OR of adverse outcomes 
also increased.

The CrIs model was integrated into the electronic medical record at the study site and used to determine the 
need for each intervention (Fig. 2). The number of CrIs was displayed alongside the KTAS. Additionally, a pop-
up window indicates which interventions should be considered and their associated properties during a patient’s 
initial visit to the ED. The Youden index was used to determine the recommended threshold for each model.

Discussion
This study varies from earlier research in that CrIs were defined as the predictive outcome utilizing only tri-
age variables that may be collected immediately after a patient enters the emergency department (ED) without 
requiring laboratory results and still shows a high AUROC. In addition, this prediction result demonstrated that 

Table 1.   Basic characteristics of the study population between patients who received at least one critical 
intervention and those who did not receive any intervention. CrIs critical interventions, SD standard 
deviation, SBP systolic blood pressure, DBP diastolic blood pressure, PR pulse rate, RR respiratory rate, TEMP 
temperature, SpO2 peripheral capillary oxygen saturation, KTAS Korean Triage Acute Scale, GW general ward, 
ED emergency department, ICU intensive care unit, Composite Adverse Outcome ICU admission or ED death. 
a p-values were calculated using independent t-tests for continuous variables and chi-square tests for categorical 
variables.

aAt least one CrIs
(n = 12,922)

Without CrIs
(n = 124,911) p-valuea

Age, median [IQR] 67.0 [57.0, 77.0] 57.0 [42.0, 68.0] < 0.001

Sex, n (%) < 0.001

 Male 7659 (59.3%) 59,893 (47.9%)

 Female 5263 (40.7%) 65,018 (52.1%)

SBP (mmHg), median [IQR] 119.0 [98.0, 141.0] 128.0 [112.0, 145.0] < 0.001

DBP (mmHg), median [IQR] 69.0 [56.0, 82.0] 77.0 [67.0, 87.0] < 0.001

PR (beats/min), median [IQR] 102.0 [85.0, 118.0] 86.0 [75.0, 100.0] < 0.001

RR (breaths/min), median [IQR] 20.0 [18.0, 22.0] 18.0 [18.0, 20.0] < 0.001

Temperature (°C), median [IQR] 37.1 [36.6, 37.7] 36.8 [36.5, 37.3] < 0.001

SpO2 (%), median [IQR] 96.0 [93.0, 98.0] 98.0 [97.0, 99.0] < 0.001

KTAS, n (%) < 0.001

 1 1044 (8.1%) 336 (0.3%)

 2 2964 (22.9%) 8436 (6.8%)

 3 7364 (57.0%) 58,777 (47.1%)

 4 1400 (10.8%) 48,118 (38.5%)

 5 150 (1.2%) 9244 (7.4%)

Mental status, n (%) < 0.001

 Alert 10,900 (84.4%) 122,895 (98.4%)

 Verbal 723 (5.6%) 1285 (1.0%)

 Pain 696 (5.4%) 627 (0.5%)

 Unresponsive 603 (4.7%) 104 (0.1%)

Mode of arrival, n (%) < 0.001

 Ambulance 6886 (53.3%) 21,241 (17.0%)

 Other 6036 (46.7%) 103,670 (83.0%)

Discharge, n (%) < 0.001

 Home 2593 (20.1%) 89,905 (72.0%)

 ED death 569 (4.4%) 28 (0.0%)

 Transfer 1171 (9.1%) 2706 (2.2%)

 Admission 8589 (66.5%) 32,272 (25.8%)

Admission, n (%) < 0.001

 ICU 2717 (31.6%) 1964 (6.1%)

 GW 5872 (68.4%) 30,308 (93.9%)

Composite adverse outcome 3,286 (25.4%) 1992 (1.6%) < 0.001
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the number of predicted CrIs was associated with adverse patient outcomes in ED. Intensive care unit (ICU) 
admission or ED death increases in patient with at least one CrIs done (Table 1). Table 3 shows that the number 
of predicted CrIs was associated with ICU admission and in-hospital mortality, even after adjusting for other 
variables. As critical patients generally require interventions, our finding suggests that CrIs also might be used 
to assess or predict the severity of patients’ conditions in the emergency department.

This study did not focus on predicting adverse outcomes, but instead focused on prompt interventions, which 
can support major clinical decisions and potentially improve patients’ outcomes. Recent review in literatures 
demonstrated that major predictors for AI are patient’s conditions as recognizing clinical conditions, predicting 
disease evolution, or predicting outcome26–28. In recent years, several AI-related studies have concentrated on 

Table 2.   Results of prediction need of CrIs AUROC and AUPRC with 95% CIs according to the machine 
learning method (XGBoost). Cut-off value of prediction model for calculating Spec, Sen, PPV, NPV was set by 
youden index. XGBoost extreme gradient boosting, HFNC high-flow nasal cannula, MTP massive transfusion, 
AUROC area under the receiver operating characteristic curve, AUPRC area under the precision-recall curve, 
CI confidence interval, Sen Sensitivity, Spec Specificity, PPV Positive predict value, NPV Negative Predict value.

AUROC (CI) AUPRC (CI) Sen (95% CI) Spec (95% CI) PPV (95% CI) NPV (95% CI)

A-line 0.913
(0.899–0.927)

0.121
(0.112–0.130)

0.866
(0.822–0.907)

0.821
(0.785–0.854)

0.042
(0.035–0.049)

0.998
(0.998–0.999)

Oxygen
therapy

0.909
(0.904–0.916)

0.576
(0.570–0.583)

0.812
(0.780–0.846)

0.853
(0.819–0.881)

0.313
(0.275–0.353)

0.982
(0.979–0.985)

HFNC 0.962
(0.948–0.976)

0.207
(0.189–0.230)

0.922
(0.873–0.964)

0.906
(0.865–0.941)

0.043
(0.029–0.061)

0.999
(0.999–0.999)

Intubation 0.945
(0.932–0.958)

0.193
(0.180–0.203)

0.891
(0.817–0.940)

0.865
(0.818–0.946)

0.047
(0.032–0.091)

0.999
(0.998–0.999)

MTP 0.920
(0.849–0.991)

0.014
(0.011–0.018)

0.878
(0.722–1.00)

0.896
(0.871–0.982)

0.005
(0.002–0.015)

0.999
(0.999–1.00)

Inotropics and vasopressors 0.899
(0.888–0.911)

0.388
(0.379–0.399)

0.826
(0.783–0.863)

0.827
(0.788–0.868)

0.104
(0.08–0.125)

0.995
(0.993–0.996)

Figure 1.   Feature importance of the input factors for the random forest plot of predictive variables for each 
critical intervention. These included demographic information such as age group and sex and initial nursing 
assessment information such as categorized vital signs and severity.
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clinical decision-making, action-based learning, such as using reinforcement learning26,29. This study suggests 
actions, not only decisions, in which it is distinct from those of earlier research30–33.

Furthermore, by suggesting interventions directly and separately, this model may support clinician decision 
and action more in specific way. For less experienced clinicians or those working in crowded emergency depart-
ments, clinician decision-making and prioritization are difficult to be in good quality24,25. These suggestions might 
help reassure clinicians about initiating interventions, identifying necessary interventions that are missed, or 
reconsidering interventions. These critical interventions should be performed selectively and carefully because 
delays can be harmful and result in deterioration of patient or unnecessary procedures can result in wastage 
of ED resources, may harm patients, and may delay the proper treatment of other patients due to limited ED 
resources30–33. Prediction result might support clinical decision and allowing the selective and efficient use of 
resources. In future study, suggestions for these actions by AI should also be compared to those by physicians.

The results of this study may also help guide clinicians by prediction making before test results are available, as 
the variables used in this study can be obtained in the ED to allow early prediction. This finding is also supported 
by the fact that most CrIs were performed in the initial stage of ED stay. In most cases of critical patient care in 
the ED, appropriate and timely treatment is important. Under or delayed treatment can lead to high mortality, 
especially in critical patient care34–36. Therefore, our prediction model can help resuscitate critically ill patients.

Finally, this model was integrated into the real world as Fig. 2. The number of CrIs indicates the anticipated 
number of interventions and can be used as a secondary severity scaling tool. Additionally, the new integrated 
CrIs model identifies which procedures should be considered during a patient’s initial visit to the ED and makes 
specific recommendations regarding specific interventional actions. Additional validation and monitoring user’s 
opinion is needed in future.

Table 3.   Adjusted risk factors for the number of critical interventions according to clinical outcome, defined 
as in-hospital mortality or intensive care unit admission. CrI Odds ratios were adjusted for age group, sex, 
KTAS, AVPU, route of ER visit, method of transportation, and categorized vital signs in phase.

Number of CrIs n

Risk factor analysis

Odds ratio 95% CI p-value

0 27,668 1 (ref)

1 4364 3.10 2.51–3.82 < 0.001

2 1904 5.40 4.28–6 83 < 0.001

3 2082 6.83 5.53–8.43 < 0.001

4 1535 11.23 9.16–13.75 < 0.001

5 3122 23.05 19.88–26.74 < 0.001

6 675 33.43 27.10–41.23 < 0.001

Figure 2.   Integration of CrIs into the study site’s electronic medical record. We developed the CrIs model in the 
study site’s electronic medical record. The threshold was determined using the Youden index. (A) The Korean 
Triage Acuity Score; (B), the Critical Intervention Score, indicates the number of Critical Interventions that are 
predicted to be required. (C) A box containing the exact prediction value and recommendation appears when 
the number icon in the CrIs column is clicked.
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However, there are some limitations in our study. First, the study was a single-center retrospective study, and 
thus, may have had a selection bias. Therefore, caution is required when applying these findings to other hospi-
tals. Second, six CrIs that are well known to be related to resuscitation and critical care were selected. However, 
no guidelines indicate the interventions that are needed in critically ill patients and when these interventions 
should be performed. A consensus is needed to standardize the CrIs that are required in critical care and when 
they should be performed. Third, incidence of six CrIs is modest and imbalanced. As a result, all CrIs predictions 
had a low AUPRC and positive predict value. The majority of candidates have a low likelihood and incidence of 
outcome in the medical area because the majority of medical outcomes, including CrIs, occur in an unhealthy 
state. As this is a study based on real-world data, this imbalance may be a constraint. Rather than that, our model 
exhibits a high degree of specificity and sensitivity. Several more machine-learning-based prediction studies in 
the medical profession make the similar point37. It is important for users to understand the limitation and bias 
of AI algorithms in real practical settings. Finally, this study does not consider patients who are seriously ill and 
receiving palliative care. Because they may require life-sustaining treatments, they may refuse life-sustaining 
care or critical interventions. These individuals may become bias of the secondary outcome survey because they 
were admitted to the general ward for palliative care rather than the intensive care unit, despite their severe 
condition and need for interventions. Users of the system, such as emergency physicians should be aware of the 
potential bias of the algorithm.

This study suggests a new point of view regarding the prediction of required care and interventions for critical 
patients by predicting the need for specific intervention in the early stage of the ED stay rather than predicting 
the endpoint of the ED process.

Methods
We built models to predict interventions performed in the ED, including A-line insertion, oxygen therapy, HFNC, 
intubation, massive transfusion protocol MTP, and administration of inotropes and vasopressors.

This study was approved by the Institutional Review Board (IRB) of the Samsung Medical Center (IRB No. 
2021-03-132). The need for informed consent was waived by the institutional Review Board (IRB) of the Samsung 
Medical Center Samsung Medical Center because of the retrospective, observational, and anonymous nature of 
the study. All methods were performed in accordance with the relevant guidelines and regulations. It was not 
appropriate or possible to involve patients or the public in the design, or conduct, or reporting, or dissemination 
plans of our research public were not involved in the design, or conduct, or reporting, or dissemination plans 
of this research.

Study setting and population.  This retrospective study was conducted in the ED of a tertiary hospi-
tal located in a metropolitan city. The hospital has approximately 1960 inpatient beds. The annual number of 
patients in the ED was approximately 80,000.

We included patients who visited the ED between January 1, 2016, and December 31, 2018 and excluded those 
who visited without receiving treatment or who left without being seen by a clinician, those with injury, those 
aged < 18 years, and those who were dead on arrival (DOA); patients who were DOA were excluded because there 
was no need to predict the clinical outcomes. Out Hospital Cardiac arrest patients were also excluded because 
they present ED as arrest state, and need immediate intervention, including advanced cardiac life support, and 
there is no need for clinical support for the prediction.

Primary outcome.  The primary outcomes of this study included several critical interventions (CrIs) that 
are performed in the ED of the study center, which are closely related to the resuscitation of critical patients, 
including Arterial line insertion, oxygen therapy, High flow nasal cannula (HFNC), intubation, Massive transfu-
sion protocol (MTP), and administration of inotropes and vasopressors38,39. Selected interventions are closely 
related to the airway, controlling the work of breathing, (intubation), circulation, (A-line, inotropes and vaso-
pressors, Massive Transfusion), adequate oxygen delivery (Oxygen therapy, High flow nasal canula, intubation), 
and achieving the endpoint of resuscitation (Arterial line monitoring), which is closely related to cardiopulmo-
nary resuscitation39,40.

An A-line is needed for arterial blood pressure (ABP) monitoring; Oxygen therapy delivers oxygen patients 
who has oxygen demand; HFNC is used for oxygen delivery of > 15 L per minute (L/min); intubation for securing 
the airway or applying mechanical ventilation; and MTP for large volume transfusions, including the adminis-
tration of six pack each of red blood cells, single donor platelets, and fresh frozen plasma with a level-1 device. 
Inotropes and vasopressors are administered for cardiopulmonary resuscitation and blood pressure maintenance 
during shock. Each resuscitation intervention is required for different purposes41,42.

Secondary outcomes.  The secondary outcome was defined as mortality in the ED or ICU admission. We 
analyzed the association between the value of CrIs prediction and clinical results in the ED.

Predictors selection.  We built a prediction and risk factor model based on data from 137,883 patients who 
visited the ED between January 1, 2016, and December 31, 2018. Triage data, which can be obtained shortly after 
a patient arrives, was used to predict the need for CrIs early on. Vital information such as body temperature, 
systolic blood pressure, diastolic blood pressure, respiratory rate, pulse rate, and oxygen saturation, obtained in 
the triage stage, was used as a predictor. In addition, the mode of arrival, KTAS, and mental status measured 
initially, which was mandatory when patients visited the ED, were used to build the model.

The mode of arrival refers to the type of transportation used to come to the hospital, for example, via ambu-
lance or on foot. KTAS is a five-level triage system based on the patient’s chief complaint and symptom severity. 
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It is utilized by a trained nurse or doctor during triage. It is used nationwide and has mandatory value in the 
emergency room in Korea.

We selected only information obtained during the initial triage as mentioned previously, and therefore 
excluded laboratory test and imaging test results. Vital signs were monitored after entering the ED was also 
excluded. This is because our study aimed to predict the need for CrIs in the initial stage of ED and laboratory 
or other tests take time to provide results (Supplementary Fig. 3).

Data collection.  Variables derived from information available in the initial ED triage were included in 
the development of CrI model. This data was gathered during the initial triage assessment by a nurse. In initial 
triage, patient information is gathered in accordance with the National Emergency Department Information 
System (NEDIS), which includes Patient data included demographic information such as age and sexual orienta-
tion, as well as information about the ED visit, such as systolic and diastolic blood pressure, pulse rate, respira-
tory rate, body temperature at arrival, oxygen saturation, KTAS, mental status, and mode of arrival.

Information about whether CrIs were performed on each patient in the ED was also collected. Information 
about A-line insertion, oxygen therapy, HFNC, and intubation was obtained using a flow chart (Supplementary 
Fig. 4), which was recorded in real-time and integrated into the electronic medical record system of the study 
center. Information on MTP was obtained via cross-matching of the prescription code of red blood cells and 
level-1 device, which is used for massive transfusion. Prescription codes were used to obtain information about 
the administration of inotropes and vasopressors, including epinephrine, norepinephrine, dopamine, dobu-
tamine, and vasopressin.

We collected patient information from the clinical data warehouse of the study site.

Data preprocessing.  Some continuous variables were transformed into categorical variables for ease of 
interpretation and nonlinearity. Ages were grouped into 18–40 years, 40–60 years, 60–80 years, and others. The 
mode of arrival was categorized as public ambulance, private ambulance, and others. The route of arrival was 
created by direct admission, transfer, and others. Vital signs were categorized as either normal (systolic blood 
pressure, 100–150 mmHg; diastolic blood pressure, 60–90 mmHg; pulse rate, 50–100 bpm; RR, 12–20 breaths/
min; body temperature, 36–37.5  °C; SpO2, 95%–100%) or abnormal if these values were not in the normal 
range43,44. KTAS was used as the original five-level category. Mental status information was collected and divided 
into four categories: AVPU levels were categorized into alertness, responsive to verbal stimuli, responsive to pain 
stimuli, and unresponsive. Information about the mode of arrival was divided into two categories: patients who 
arrived in an ambulance and those who did not.

Information about each CrIs was divided into binary categories whether done or not and processed separately 
by each of the six CrIs. Time information about when CrIs was performed was also processed separately.

Information about the results after ED stay was categorized as death, ICU admission, general ward (GW) 
admission, transfer to another hospital, and return to home.

Missing data handling.  As mentioned previously, patient data is collected in accordance with NEDIS sys-
tem rules. As some features are mandatory field for the NEDIS system, it must be filled in. However, the patient 
who did not underwent medical care, such as left without being seen, came for medical cortication or was 
deleted due to registration failure, can have missing vital value, was initially excluded. Except this situation, vital 
sign recording is mandatory at the study site, and all patients including minor trauma patients should have them 
completed. Only when it is very urgent situation, and need urgent entrance in emergency room, triage nurse can 
enter vital sign as ‘uncheckable’. Therefore, we classified ‘uncheckable’ as abnormal. If it is very urgent situation 
and patient who should be enter ED immediately, triage nurse can enter vital sign as uncheckable. On the other 
case, if value of vital sign is too low or too high and is out of range it can also entered as ‘uncheckable’. Therefore, 
we classified ‘uncheckable’ as abnormal because in the study center, patients with high acuities, such as impend-
ing arrest or respiratory failure, usually skip the full vital sign measurement in the triage for immediate entrance 
in the ED and urgent care.

Model development.  The prediction model of CrIs was developed by Extreme Gradient Boosting 
(XGBoost) and the risk factor model was made with multiple logistic regression based on data from 137,883 
patients who visited the ED between January 1, 2016, and December 31, 2018.

We chose the XGBoost algorithm because it is a fast and scalable machine learning algorithm. Several reasons 
led us to choose the XGBoost algorithm: it is a fast and scalable machine learning technique for gradient boosting 
mechanisms based on multiple decision trees. First, XGBoost ’s benefits have been validated in previous studies45. 
Second, It used the ensemble method, in which new trees are focused on the error from previous tree models46,47. 
Third, the XGBoost algorithm can handle nonlinear interactions between input and output variables48. Finally, 
XGBoost can avoid overfitting by including a regularization term in its objective function48.

We built six separate and independent models for each CrIs, not a six-class prediction model, because each 
CrIs has a different use, and may be used together for same patient to treat specific condition. For example, in 
hemorrhagic shock patient, A-line will be used for monitoring, while MTP also can used for fast transfusion. 
However, these models shared the same input variables as model features. Additional feature selection was not 
made because we had already selected very few predictor candidates initially. The study aimed to predict the 
need for CrIs in the initial stage, when little information is available.

We divided patients into time periods for model development and validation. The model was developed using 
data from patients who visited the ED between 2016 and 2017. Validation of the model was conducted using 
data from patients who visited the ED in 2018.A random search was performed using tenfold cross-validation to 
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obtain the best hyperparameters for each CrIs. To optimize the performance, we considered the maximum tree 
depth, the minimum amount of data in a node, gamma, subsampling ratio, number of predictors, and learning 
rate. The considered and selected hyperparameters are listed in Supplementary Table 3.

Moreover, we also implemented other traditional machine learning methods for comparison. Addition-
ally, we performed L2 regularized logistic regression, random forest, and essential ANN (three layers) with the 
default setting.

The software implemented for model development and validation were R (version 4.1.0), Python program-
ming language (version 3.8.5), Tensorflow framework (version 2.3.1), and scikit-learn (version 0.23.2).

We calculated the AUROC and AUPRC validation datasets. To obtain 95% CI, we implemented 1000 boot-
straps for each metric. We also used feature importance radiation plots in a random forest to determine the 
variables affecting the performance of each CrIs. For practical application, the cut-off for each CrIs model was 
determined based on the trade-off between sensitivity, specificity, and other possible resources. Candidate cut-
offs were calculated with the highest AUROC according to the Youden index, which was the maximum value 
of the average sensitivity and specificity49. Based on this cut-off, false-positive and false-negative findings were 
identified for each CrIs model.

The calibration plot, which shows how well the prediction probabilities from each model were calibrated, was 
visualized for the identification of agreement between the predictions and observed outcomes.

Sensitivity analysis.  We performed the same analysis with other input factors for the sensitivity analysis. 
We considered two other types of input, including the presence of the laboratory order and use of laboratory test 
results, as follows:

(A)	 Variables derived from information available in the initial ED triage
(B)	 A) + presence of lab order

Model integration.  The CrIs model was integrated into the electronic medical record (EMR) at the study 
site. The hospital’s home-grown EMR, DARWIN refers ‘data analytics and research window for integrated 
knowledge’. Initial triage inputs were collected in the DARWIN and transferred every 10 min to the interim 
database (HANA DB), which houses the CRIs models. Finally, each probability was computed and integrated 
into the DARWIN system (Supplementary Fig. 5).

Statistical analyses.  Descriptive statistics were used for the demographic features and characteristics of 
ED visits. Categorical variables are expressed as counts and percentages of the total number of data available 
within the database, and continuous variables are expressed as means and standard deviations. Comparison 
tests were performed using t-tests and chi-square tests at the 5% significance level. Statistical analysis for infer-
ring the composite outcome of odds ratio (OR) was conducted using multiple logistic regression with a logit 
link function. We selected variables that showed significance in the univariate logistic regression at a 5% level 
of significance.

For each CrI, we identified the time difference of ED visits and compared the time of action. In addition, we 
analyzed the association between the results of CrIs prediction and ED adverse outcomes by calculating the OR.

Data availability
Data was available in study site clinical data warehouse. The datasets generated and analyzed during the current 
study are not publicly available due dataset includes although is de-identified, part of patient information, but 
are available from the corresponding author on reasonable request.
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