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Abstract

Voluntary control of visually-guided upper extremity movements involves neuronal activity in multiple areas of
the cerebral cortex. Studies of brain-computer interfaces (BCIs) that use spike recordings for input, however,
have focused largely on activity in the region from which those neurons that directly control the BCI, which we
call BCI units, are recorded. We hypothesized that just as voluntary control of the arm and hand involves ac-
tivity in multiple cortical areas, so does voluntary control of a BCI. In two subjects (Macaca mulatta) performing
a center-out task both with a hand-held joystick and with a BCI directly controlled by four primary motor cor-
tex (M1) BCI units, we recorded the activity of other, non-BCI units in M1, dorsal premotor cortex (PMd) and
ventral premotor cortex (PMv), primary somatosensory cortex (S1), dorsal posterior parietal cortex (dPPC), and
the anterior intraparietal area (AIP). In most of these areas, non-BCI units were active in similar percentages
and at similar modulation depths during both joystick and BCI trials. Both BCI and non-BCI units showed
changes in preferred direction (PD). Additionally, the prevalence of effective connectivity between BCI and
non-BCI units was similar during both tasks. The subject with better BCI performance showed increased per-
centages of modulated non-BCI units with increased modulation depth and increased effective connectivity
during BCI as compared with joystick trials; such increases were not found in the subject with poorer BCI per-
formance. During voluntary, closed-loop control, non-BCI units in a given cortical area may function similarly
whether the effector is the native upper extremity or a BCI-controlled device.

Key words: brain-computer interface; effective connectivity; posterior parietal cortex; premotor cortex; primary
motor cortex; primary somatosensory cortex

Significance Statement

Reaching to and grasping a visible object involves neuronal activity in multiple areas of the cerebral cortex.
Whether neurons in these areas are engaged similarly when a subject controls a brain-computer interface
(BCI) remains unknown. We found similar unit activity in multiple cortical areas as subjects performed a cen-
ter-out task with either a hand-held joystick or a BCI controlled by only four BCI units in the primary motor
cortex (M1). Like the four BCI units, non-BCI units in most cortical areas showed changes in their preferred
direction (PD) between joystick and BCI trials, with similar modulation depths and effective connectivity. We
suggest that a given cortical area may function similarly during voluntary closed-loop control of either the
upper extremity or a BCI.
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Introduction
Voluntary control of movement involves many parts of

the central and peripheral nervous system. In the mam-
malian cerebral cortex, active regions include the primary
motor cortex (M1), dorsal premotor cortex (PMd), ventral
premotor cortex (PMv), primary somatosensory cortex
(S1), dorsal posterior parietal cortex (dPPC), and anterior
intraparietal area (AIP; Rizzolatti et al., 1998; Grafton,
2010). While neural activity in M1 is primarily responsible
for movement execution, concurrent activity in these ad-
ditional frontal and parietal areas may be involved in re-
ceiving information on goal/target selection for movement
planning, in computing feedforward models of the ex-
pected movement, and in processing feedback from the
ongoing movement (Shadmehr and Krakauer, 2008).
Brain-computer interfaces (BCIs) now are being devel-

oped not only to control prosthetic arms (Hochberg et al.,
2012; Wodlinger et al., 2015; Lebedev and Nicolelis,
2017; Andersen et al., 2019), but also to investigate nerv-
ous system function (Jarosiewicz et al., 2008; Law et al.,
2014; Sadtler et al., 2014; Moxon and Foffani, 2015;
Golub et al., 2018; Oby et al., 2019; Zhou et al., 2019). The
majority of BCI studies to date that employ neuron record-
ings have focused on analyzing the activity of those neu-
rons that contribute directly to the decoded BCI output,
which we refer to as “BCI units.” These BCI units com-
prise only a small fraction of the neuronal population ac-
tive locally, however. Other simultaneously recorded
neurons, which we refer to as “non-BCI units,” have been
found to be active along with BCI units, sometimes
changing their patterns of activity in ways similar to the
BCI units (Hwang et al., 2013; Arduin et al., 2014; Law et
al., 2014). With few exceptions (Koralek et al., 2012;
Bridges et al., 2020), however, these non-BCI units have
been in the same cortical area as the BCI units.
Yet just as voluntary control of natural upper extremity

movement requires the participation of cortical areas be-
yond M1, controlling a closed-loop BCI is likely to require
the activity of neurons beyond the BCI units. The BCI
units at least must receive processed visual information
on the location of the goal/target, and probably are af-
fected by processed visual feedback on the motion of the
effector as well. Decisions about when to initiate the next
trial, when to start the motion of the effector, and when to
stop, all must reach the BCI units. The firing of the BCI
units may also be processed as efference copy, being
compared with an internal model of the expected feed-
back. Indeed, as human subjects learned to modulate
high-g ECoG potentials at one electrode in the motor or

premotor cortex, strong parallel activation in prefrontal,
premotor, and posterior parietal cortex appeared and
then diminished as learning progressed (Wander et al.,
2013). Whether features of unit activity such as preferred
direction (PD) and modulation depth change in non-BCI
units distributed across multiple cortical areas remains
unknown.
We hypothesized that controlling a BCI would entail ac-

tivity not only of the BCI units but also of non-BCI units
distributed throughout the multiple cortical areas that par-
ticipate in natural control of upper extremity movement.
Furthermore, if controlling a BCI required changes in
the natural activity patterns of the BCI units, then the ac-
tivity patterns of non-BCI units, in terms of PD, modula-
tion depth, and effective connectivity, potentially could
change as well. We therefore trained monkeys already ex-
perienced in a joystick-controlled center-out task to per-
form a similar task with a novel BCI. Rather than using a
BCI decoder optimized to incorporate the natural tuning
of large numbers of M1 neurons (Athalye et al., 2017;
Zhou et al., 2019), we chose a BCI decoder that used only
four M1 neurons, each assigned arbitrarily to drive veloc-
ity in the one of the four cardinal directions. We consid-
ered it likely that this decoder, while difficult to learn,
would require novel patterns of coactivation among the
BCI units and out-of-manifold reorganization involving
non-BCI units as well (Fetz, 1969; Moritz et al., 2008;
Nazarpour et al., 2012; Law et al., 2014; Oby et al., 2019).
Moreover, rather than pursuing extensive BCI training to
achieve performance equivalent to that with the hand-
held joystick, we chose instead to train a more permissive
task less extensively but repeatedly with different sets of
BCI units, enabling us to distinguish consistent versus in-
consistent features in the activity of non-BCI units. After
the monkeys acquired a preselected level of proficiency
with each set of BCI units, we compared the activity of
non-BCI units in M1, PMd, PMv, S1, dPPC, and AIP dur-
ing joystick control versus BCI control.

Materials and Methods
Subjects
Two male rhesus monkeys, Q and P (weighing 9–11 kg),

were subjects in the present study. All procedures for the
care and use of these nonhuman primates followed the
National Institutes of Health Guide for the Care and Use of
Laboratory Animals and were approved by the University
Committee on Animal Resources at the University of
Rochester, Rochester, New York.

Center-out task
Each monkey initially was trained to perform a two-di-

mensional center-out task using a joystick held with the
right hand to control the position of a cursor. The base of
the joystick was inclined 30° toward the primate chair in
which the monkey was seated. When centered, the joy-
stick knob was positioned 20 cm in front of and 5 cm
below the monkey’s right shoulder. The monkey then
could reach all positions within a 20� 20 cm hand work-
space. An LCD screen positioned 90 cm in front of the
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monkey at eye level displayed both the cursor and the tar-
gets in a square visual workspace divided into 1000
“screen units” horizontally and 1000 screen units
vertically.
Trials began when the circular center target turned

green (Fig. 1A). The monkey then positioned the cursor
(white “1”) within the center target (Fig. 1B) and kept the
cursor there for a 500 ms center hold epoch (Fig. 1C).
Rather than traditional circular peripheral targets, we used
eight segments of an annulus, eliminating the possibility
that the cursor could pass between targets. When the
center hold epoch ended, the center target turned gray
and one of the eight peripheral targets turned green (Fig.
1D), providing a Go cue that instructed the monkey to
move the cursor out of the center target within 2000ms
and into the instructed peripheral target within another
2000ms, without entering any other peripheral target (Fig.
1E). The center target and the other seven peripheral tar-
gets then disappeared, and monkey was required to keep
the cursor in the peripheral target for a final hold epoch
lasting 600ms (Fig. 1F). The end of the final hold period
was designated a Success event. Successful trials were
rewarded with a drop of water. If any of these conditions
was not met, however, the trial was aborted immediately, the
entire display turned red, and a 1500 ms error timeout fol-
lowed. Every trial was followed by a 1500ms intertrial interval,
after which the center target re-appeared and the subject
then could initiate the next trial. Trials were presented in
blocks including 1 each of the eight peripheral targets pre-
sented in a random order that was re-randomized between

blocks. To prevent the monkey from rejecting trials involving
particular targets, error trials were repeated until performed
successfully. The entire behavioral task was controlled by
custom software running on a PC which also sent behavioral
event marker codes into the collected data stream.

Microelectrode arrays
Once each monkey was trained to perform the center-out

task, floating microelectrode arrays (FMAs; MicroProbes for
Life Sciences) were implanted in six cortical areas using pro-
cedures described in detail previously (Mollazadeh et al.,
2011; Rouse and Schieber, 2016). Figure 2 shows the loca-
tion of the arrays implanted in M1, PMd, PMv, S1, dPPC,
and AIP. Note that our dPPC arrays recorded from themedi-
al intraparietal area (MIP) in the anterior bank of the intrapar-
ietal sulcus as well as adjacent parts of area PE on the
surface of the postcentral gyrus (Bakola et al., 2017;
Rajalingham and Musallam, 2017; De Vitis et al., 2019).
Except for AIP, all these areas are known to be active during
center-out movements (Georgopoulos et al., 1982; Kalaska
et al., 1983; Prud’homme et al., 1994; Batista and Andersen,
2001; Stark et al., 2007; Rajalingham and Musallam, 2017;
De Vitis et al., 2019). For Monkey Q, two 32-channel FMAs
were implanted in each of the six cortical areas, and an addi-
tional 16-channel FMA was implanted in M1. For Monkey P,
six 16-channel FMAs were implanted in M1, five in PMd,
three in PMv, three in S1, two in dPPC, and three in AIP; and
an additional 32-channel array was implanted in dPPC. The
length of electrodes varied from 1 to 8 mm. All electrodes

Figure 1. Center-out task. The monkey controlled the movement of the cursor (white “1”) from the center to the peripheral target in
the follow task sequence: A, The center target turned green. B, The monkey positioned the cursor in the center target. C, The mon-
key maintained the cursor in the center target for an initial center hold epoch. D, The center target turned gray as a Go Cue, and si-
multaneously one of the eight peripheral targets turned green, instructing a cursor movement to that target. E, The monkey moved
the cursor into the instructed (green) target. F, Except for the instructed, green target, the display then turned black and the monkey
thereafter maintained the cursor in the green target for a final hold epoch, the end of which completed a successful trial.

Figure 2. Location of arrays. A, Monkey Q. B, Monkey P. Array locations and cortical sulci were redrawn from intraoperative photo-
graphs. CS, central sulcus; AS, arcuate sulcus; SPS, superior precentral sulcus; IPS, intraparietal sulcus. Orientation arrows: M, me-
dial; C, caudal.
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were made from 70% Pt and 30% Ir and had a nominal im-
pedance of 0.4–0.6 MV at the time of implantation.

Neural data acquisition
Neural data were collected with two 128-channel

Plexon data acquisition systems (Plexon Inc.) and one
128-channel Cerebus data acquisition system (Blackrock
Microsystems). For Monkey Q, all implanted electrodes
could be recorded simultaneously with the three recording
systems. For Monkey P, however, one of the Plexon sys-
tems was not available, and the total number of implanted
electrodes (384) was greater than the number of recording
channels available (256). Premotor and parietal arrays there-
fore were grouped separately and recorded on alternate
days along with the M1 arrays (group 1: M1, PMv, and PMd
arrays; group 2: M1, S1, AIP, dPPC arrays).
Signals from each FMA were amplified by a head stage

(gain 20� for the Plexon systems, 2� for the Cerebus sys-
tem) and further amplified by the data acquisition hard-
ware before being digitized and stored to disk by the host
PCs for each system. For the Plexon systems, spike
waveforms that crossed a threshold selected interactively
on-line were sampled at 40 kHz using Sort Client (Plexon),
with additional sorting off-line. For the Cerebus system,
broadband signals were sampled at 30 kHz, and spikes
were extracted off-line and sorted with custom MATLAB
(MathWorks) scripts. Both single units and multi-units
were included in analyses, whereas any sorted units
with a signal-to-noise ratio (SNR), 2.5 were discarded.
Behavioral event marker codes generated by the task
control PC were used to synchronize the data recorded
by different acquisition systems for analysis.

BCI control
BCI experiments were performed 6–14months after surgi-

cal implantation of microelectrode arrays. Daily recording
sessions started with;200 joystick-controlled trials, followed
by trials in which the monkey’s arm was restrained in the pri-
mate chair and the cursor was controlled through a BCI.
Neural data were recorded continuously throughout both joy-
stick-controlled and then BCI-controlled trials.
To control the BCI, four units were chosen randomly from

a pool of ;10–20 candidate M1 units (either single units or
multi-units) that had been recorded stably on-line for at least
5d. These four units were assigned randomly by a MATLAB
script to drive cursor velocity in the four cardinal directions:
rightward, leftward, upward, or downward. The directional as-
signment of each of these BCI units was made without con-
sideration of its PD during joystick trials.
The firing rate of each BCI unit controlled the output of

a separate linear velocity decoder that moved the cursor
in the assigned cardinal direction. The output of each ve-
locity decoder at time t, v tð Þ, was calculated as:

v tð Þ ¼ Affiffiffiffiffiffiffiffiffiffiffiffiffi
FR80%

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
FR20%

p �
ffiffiffiffiffiffiffiffiffiffiffiffi
FR tð Þ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
FR20%

p� �
� A

2
;

(1)

where FR tð Þ is the instantaneous firing rate of the BCI unit
estimated using spike counts in 10 ms bins convolved

with a 500 ms Gaussian filter and A is an empirical value
set to 6 screen units per 10ms. Square-root transforma-
tion of the unit’s firing rate was used to reduce variance
(Kihlberg et al., 1972; Ashe and Georgopoulos, 1994;
Rouse and Schieber, 2016). The 80th and 20th percentiles
of the BCI unit’s firing rate distribution, FR80% and FR20%,
were estimated initially from the cumulative distribution of
firing rates recorded during joystick-controlled trials be-
fore beginning the BCI task each day. To adjust for firing
pattern changes between joystick control and BCI con-
trol, FR80% and FR20% were updated after the first 5min of
BCI control using the cumulative distribution of firing rates
during that interval. To prevent surges on individual BCI-
unit decoders, v tð Þ was limited to the range of63 screen
units/10ms. The cursor’s horizontal and vertical velocities
then were determined independently, each in a “push-
pull” fashion based on the output of the four velocity de-
coders driven separately by the four BCI units (vright, vleft,
vup, vdown):

vhorizontal ¼ vright � vleft (2)

vvertical ¼ vup � vdown: (3)

For example, if vright = 2.5, vleft = �0.3, vup = �0.2, vdown =
�2.3, then vhorizontal = 2.8, vvertical = 2.1, and the resultant cur-

sor velocity was 3.5 (¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:8212:12

p
) screen units/10ms at

37° [= tan�1ð2:1=2:8)]. Cursor position was updated every
10ms.

BCI training
As expected from previous work (Law et al., 2014;

Sadtler et al., 2014; Oby et al., 2019), learning to control
the cursor with four arbitrarily assigned M1 units proved
challenging for both monkeys. We therefore relaxed the
criteria for successful trial completion to a level at which
the monkeys persevered in learning to control the BCI
rather than becoming excessively frustrated. The center
hold epoch was reduced to 20ms; the final hold epoch
was reduced to 50ms; the subjects were allowed up to
5000ms to move the cursor out of the center target once
the peripheral target had appeared, and 5000ms more to
move the cursor into the correct peripheral target after
leaving the center target. In addition, during the move-
ment to the peripheral target (Fig. 1E), the subjects were
allowed to enter peripheral targets other than the in-
structed target. Each monkey then could be trained
over several days to control the BCI using the four M1
units each acting in their arbitrarily assigned direction. If
a BCI unit driving cursor motion in a given direction was
lost to isolation during this period, we assigned another
M1 unit to that direction using the same criteria de-
scribed above.
Figure 3 illustrates the progress of BCI training in se-

quential blocks of 50 correctly performed trials. Training
began with a one-dimensional (1D) BCI task, initially pre-
senting only the upward and downward targets (Fig. 3, 1D
vertical) and then only the rightward and leftward targets
(Fig. 3, 1D horizontal). One-dimensional training continued
for 5d (block 33) until the monkey performed successfully
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in ;80% of the trials for each dimension separately.
Thereafter, the monkey was trained to control two-dimen-
sional cursor movement to all eight peripheral targets,
reaching a plateau of relatively stable performance with
success rates.80% after another few days (block 58). As
the success rate rose, the response time, from the Go cue
until the end of the final hold epoch, fell.
We refer to the set of four M1 units selected to simulta-

neously control the BCI as a BCI-unit “assignment.” Once
a subject had reached a stable plateau at success
rates.80% and data had been collected with one such
assignment, a new BCI-unit assignment was selected
randomly using the criteria described above, with the
additional restriction that a given M1 unit was not as-
signed to control the same direction in more than one
assignment. The BCI training process then was re-
peated, starting with one-dimensional BCI training and
progressing to two-dimensional training, and additional
data were collected after the monkey’s performance
again had reached a plateau at success rates.80%.
Monkey Q was trained to this level with five different

BCI-unit assignments, and Monkey P with three. Initial
one-dimensional training required an average of 5.66
3.1d (mean6 SD across BCI-unit assignments) for Monkey
Q and 5.76 0.6d for Monkey P. Two-dimensional training
then required another 6.46 1.1d for Monkey Q and
9.06 3.6d for Monkey P.

Experimental design and statistical analyses
For each BCI-unit assignment, we analyzed neural data

collected once the subjects were performing the two-di-
mensional BCI task at a success rate.80%. We selected
for analysis sessions in which the subject had performed
at least 400 BCI trials successfully. These sessions also
included;200 successfully performed joystick-controlled
trials. To compare equal numbers of trials during BCI ver-
sus joystick control, in each analyzed session we identi-
fied the maximum number of successful trials to each
target common to both BCI control and joystick control.
For Monkey P, comparing across cortical areas also re-
quired analyzing two different sessions, one in which pre-
motor areas had been recorded and another in which
parietal areas had been recorded, and we therefore found
the maximum number of successful trials common to
both tasks in both sessions. We then randomly selected
that number of trials for analysis from each type of task in
each session, which typically selected all the joystick trials
but only;30% to 50% of the BCI trials.
Chronically implanted microelectrode arrays often re-

cord some of the same units repeatedly in daily sessions
over months. To prevent the same unit from being in-
cluded repeatedly in our analyses, we identified unit
recordings that probably originated from the same neuron
recorded on different days. The similarity of units re-
corded from the same electrode was evaluated using
four metrics: pairwise cross-correlograms, autocorrelo-
grams, waveform shape, and mean firing rate (Fraser and
Schwartz, 2012; Downey et al., 2018). A decision bound-
ary of whether two unit recordings came from the same
neuron was drawn using a quadratic classifier under the
assumption that the data could be modeled as a mixture
of multivariate Gaussians. When two or more units were
labeled as having been recorded from the same neuron
across days, we retained for the present analyses only the
unit with the highest SNR and excluded the others. In this
manner 103 of 531 units recorded from Monkey Q and
212 of 823 units from Monkey P were excluded from the

Table 1: Number of units analyzed for each BCI assignment

Monkey Q Monkey P
i ii iii iv v Total i ii iii Total

BCI units 4 | 4 | 4 4 | 4 | 4 4 | 4 | 2 4 | 4 | 3 4 | 4 | 4 20 | 20 | 17 4 | 4 | 3 4 | 4 | 4 4 | 4 | 2 12 | 12 | 9
Non-BCI
M1 38 | 30 | 11 30 | 26 | 14 34 | 30 | 15 23 | 20 | 10 35 | 35 | 25 160 | 141 | 75 102 | 87 | 61 125 | 89 | 32 104 | 73 | 29 331 | 249 | 122
PMd 9 | 6 | 4 21 | 18 | 7 12 | 10 | 2 8 | 7 | 5 16 | 15 | 8 66 | 56 | 26 28 | 25 | 18 23 | 17 | 11 30 | 27 | 16 81 | 69 | 45
PMv 23 | 16 | 3 16 | 12 | 3 10 | 8 | 4 17 | 10 | 9 20 | 18 | 10 86 | 64 | 29 23 | 11 | 6 24 | 11 | 3 14 | 9 | 1 61 | 31 | 10
S1 7 | 4 | 4 4 | 2 |0 7 | 3 |1 5 | 2 |0 5 | 4 | 2 28 | 15 | 7 14 | 13 | 8 22 | 16 | 6 18 | 8 | 1 54 | 37 | 15
dPPC 5 | 0 | 0 9 | 5| 3 3 | 2 | 1 11 | 7 | 0 10 | 6 | 2 38 | 20 | 6 15 | 12 | 6 6 | 3 | 1 13 | 3 | 2 34 | 18 | 9
AIP 8 | 5 |3 7 | 4 | 2 5 | 4 | 2 5 | 4 | 3 5 | 5 | 2 30 | 22 | 12 8 | 6 | 2 16 | 9 | 2 14 | 10 | 2 38 | 25 | 6

The three values in each cell give the number of: unique units | units modulated significantly during joystick and/or BCI trials | units modulated significantly during
both joystick and BCI trials.

Figure 3. BCI training. Success rates (A) and mean response
times (B) are shown in sequential blocks of 50 successfully per-
formed trials over 10 daily training sessions. As success rates
increased, response times (from the appearance of the Go cue
until the cursor had been in the target for 50ms) decreased.
The number of blocks of 50 successful trials varied from one
training day to the next. Data from Monkey Q, assignment ii.
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following analyses. The left number in each cell of Table 1
gives the number of unique units remaining for analysis in
each cortical area for each of the five assignments from
monkey Q and three from monkey P.

Task-related modulation
Neuron firing rates in several cortical areas often

show cosine tuning as subjects perform a center-out
task (Georgopoulos et al., 1982; Kalaska et al., 1983;
Prud’homme et al., 1994; Moran and Schwartz, 1999).
We therefore considered a unit to be modulated in rela-
tion to the center-out task if its firing rate was fit by a
classical cosine tuning function:

f uð Þ ¼ a1 b � cos u � u PDð Þ (4)

at a significance level of p, 0.05 (F test; MATLAB “re-
gress” function). In Equation 4, f uð Þ is the firing rate when
the peripheral target was centered at u � (the eight periph-
eral targets in Fig. 1D were assigned to 0° to 315° at 45°
intervals); a is the baseline firing rate, b is the absolute
modulation depth, and u PD is the PD of the unit. Each unit
was tested for a cosine fit separately using joystick trials
and using BCI trials. The center and right numbers of
each cell in Table 1 give the numbers of units significantly
cosine-tuned in joystick and/or BCI trials, and in both joy-
stick and BCI trials, respectively.

PD change (DPD)
We estimated the DPD between joystick trials and BCI

trials for each unit that was cosine tuned in both tasks by
calculating the difference between the unit’s PD during
joystick trials (u PD Joystick) and BCI trials (u PD BCI):

DPD ¼ u PD BCI � u PD Joystick: (5)

To determine the statistical significance of each unit’s
DPD, we employed a bootstrap procedure (Chestek et al.,
2007). For each unit, we calculated a distribution of PDs
by randomly sampling with replacement 1000 times for
joystick trials and for BCI trials separately. For each of
these two distributions, the mean was subtracted, pro-
ducing a zero-mean distribution of PDs for joystick trials
and for BCI trials. Then a distribution of BCI – joystick
DPDs was gathered by randomly selecting one PD from
the zero-mean BCI trial distribution and one from the
zero-mean joystick distribution, calculating the difference,
and repeating 1000 times, providing a bootstrap DPD dis-
tribution for that unit under the null hypothesis of no BCI –
joystick difference (i.e., both with mean=0). The actual
DPD for that unit then was compared with this bootstrap
DPD distribution. If the actual DPD was higher than the
97.5th percentile or lower than the 2.5th percentile of the
bootstrap DPD distribution, we considered the unit to
have had a significant DPD. This process was repeated
for each unit separately.
We also examined DPDs at the population level to de-

termine if the entire population rotated to some degree
coherently in the same direction resulting in a net change,
or whether different units changed in random directions

with no net change in the population. If the median of ac-
tual DPDs was significantly different from 0° (circular
rank-sum test, circ_medtest function, MATLAB CircStat
toolbox; Berens, 2009), we considered that the population
had a significant degree of coherent rotation.

Normalizedmodulation depth (nMD)
To compare the modulation of units with different base-

line firing rates, we calculated a nMD for each unit that
was significantly cosine-tuned during each task sepa-
rately (joystick or BCI) using the unit’s absolute modula-
tion depth during that task (b ; Eq. 4):

nMD ¼ b � 2
FR80% � FR20%

: (6)

Unlike the values used for BCI units on-line (Eq. 1), here
FR80% and FR20%are the 80th and 20th percentiles, re-
spectively, of the overall firing rate distribution pooling
data from both joystick and BCI trials. This nMD for either
joystick trials or BCI trials therefore could be.1 if the unit
was modulated intensely in one of the tasks and had rela-
tively low firing rates during the other. In general, the high-
er the nMD, the more intensely the unit was modulated.

Effective connectivity analysis
To examine effective connectivity among simultane-

ously recorded units, we used Granger causality adapted
for point processes (Kim et al., 2011; Balasubramanian et
al., 2017). This adaptation replaces the standard multivari-
ate vector autoregressive models with point process likeli-
hood functions, where the point process of a spike train is
characterized by the logarithm of a conditional intensity
function (CIF) modeled with a generalized linear model
(GLM). To optimize both the temporal resolution of the
models and the ability to detect effective connectivity at
various latencies, CIFs were calculated with durations
from 3 to 99ms in 3 ms steps, and the resulting GLM that
provided the best approximation of the spike trains was
selected using Akaike’s information criterion (AIC). The
optimal spike histories determined in this way had a me-
dian duration of 12ms and 90th percentile of 51ms.
For each unit, i, the point process likelihood then was

modeled first with covariates including the spiking history
of that unit and all other simultaneously recorded units,
characterized by a parameter vector, g i, and second with
the same covariates but excluding the spiking history of
another unit, j, characterized by parameter vector de-
noted, g j

i. The log-likelihood ratio for these two models
then is, Cij:

Cij ¼ log
Liðg j

iÞ
Liðg iÞ

: (7)

Because excluding the information provided by unit j
can only degrade the modeling of unit i and decrease the
likelihood Liðg j

iÞ relative to Liðg iÞ, the ratio of likelihoods is
always�1 and the log likelihood ratio is always�0, theo-
retically being=0 if unit j has no effect on unit i and
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increasingly,0 the stronger the effect. A Granger causal-
ity measure (GCM), Uij, then can be calculated as:

Uij ¼ �sign g j
i

� �
Cij; (8)

where positive values indicate an excitatory effect of unit j
on unit i and negative values indicate an inhibitory effect.
This analysis was performed using all Q simultaneously

recorded spike trains from 750ms before to 2250ms after
the Go cue in each analyzed trial, providing a Q � Q ma-
trix of GCMs, the Uij, i.e., the strength of the effect of jth

unit on the ith unit. Significance testing was performed on
the Cij, the distribution of which approaches the x2 distri-
bution for large Q. The Benjamini–Hochberg procedure
was applied to control the false discovery rate at 0.05.
The Granger connectivity of each unit j to unit i then was
classified as (1) no significant connectivity, (2) signifi-
cant excitatory connectivity, or (3) significant inhibitory
connectivity.
We performed a simulation to examine the extent that

identifying effective connectivity in this way would be in-
fluenced by the modulation depth of the unit pair being
tested. We simulated a population of 30 units: 15 units
with a relatively low nMD of 0.35 and 15 with a relatively
high nMD of 0.75. For each unit, we generated spike trains
in 1 ms bins for 10 trials to each of the eight targets, all
lasting 1 s. Each unit was assigned a randomly generated
PD with a baseline firing rate, FRbaseline, drawn from a uni-
form distribution in the range [10, 30] Hz. The average
FRbaseline thus was 20Hz for both low nMD and high nMD
populations. Spikes of unit i for a simulated trial with a tar-
get located at u � were generated using a commonly used
procedure (Koch, 2004; Kim et al., 2011). At each 1 ms
time step, a random number uniformly distributed in the
range [0, 1] was generated and compared with a thresh-
old, d i

u , based on cosine directional tuning with the unit’s
baseline firing rate (FRi

baselineÞ, modulation depth (MDi),
and PD (u i

PDÞ:

d i
u ¼ 1000

FRi
baseline 1MDi � cosðu � u i

PDÞ
: (9)

If the randomly generated number was smaller than d i
u ,

a spike was simulated to occur in that 1 ms bin unless a
spike had occurred in the one preceding bin (1 ms refrac-
tory period).
Within this population of 30 neurons, we created 12 arti-

ficial connections: three excitatory connections and three
inhibitory connections from a low nMD unit to another low
nMD unit, and three excitatory connections and three in-
hibitory connections from a high nMD unit to another high
nMD unit. The target unit of each excitatory (or inhibitory)
connection was assigned a 50% higher (or lower) likeli-
hood of firing a spike at time t if the trigger unit had fired a
spike at any time in the range from 10 to 6 ms before t. We
then ran 1000 simulations using the methods described
above (Eqs. 7, 8), for each simulation seeding the popula-
tion with re-randomized FRi

baseline and u i
PD. All 12 artificial

connections were detected in every simulation. Of the 858
potential false positive connections tested for which no
artificial connection was present (858=302 potential

connections, minus 30 self-connections, minus 12 true posi-
tives), no more than 13 false positives were detected (13/
858=0.015) in any of one the 1000 simulations, with an av-
erage false positive rate of 0.0021 across the 1000 simula-
tions, all within our accepted false discovery rate of 0.05.
Furthermore, the false positive rate among the low-low nMD
pairs averaged across simulations was 0.0020; among low-
high pairs, 0.0019; among high-low pairs, 0.0021; and
among high-high pairs 0.0025. These false positive
rates were significantly different among the four con-
nection groups (p, 0.005, Kruskal–Wallis tests), be-
cause of a higher false positive rate among high-high
pairs compared with low-low pairs (p, 0.005, post hoc
Kruskal–Wallis tests with Bonferroni correction).
Although the difference of ;0.0005 (five false positives
in 10,000 tests) between low-low pairs and high-high
pairs might have contributed an extra high-high false
positive connection to the populations tested (;1000
tests per population) in Results below, such a small dif-
ference would not have altered any of the findings
described.

Results
Behavioral performance during joystick and BCI trials
In each session, the monkey performed the center-out

task first using the joystick and then the BCI, both within
;2 h. Monkey Q was trained to proficient BCI perform-
ance, sessions with�400 successfully performed BCI tri-
als at a success rate�80%, with five different BCI-unit
assignments, Monkey P with three. For each assign-
ment, we selected for the present analyses a session
recorded once the monkey had been performing at this
level consistently. For Monkey Q the selected sessions
were recorded 16, 9, 10, 7, and 10 d after training with a
new BCI-unit assignment began; for Monkey P, in
which two sessions were required to record from all
cortical areas, after 16/17, 10/11, and 13/14 d. Across
these analyzed sessions, monkey Q performed at a
higher success rate during BCI trials than during joy-
stick trials (BCI, 94.76 1.4%; joystick, 76.66 3.6%; p,
1e-16, x2 test), whereas Monkey P’s success rates
were similar (BCI, 85.76 5%; joystick, 86.565.7%;
p = 0.32, x2 test). Although Monkey P performed at a
higher success rate than Monkey Q during joystick tri-
als (p,5e-12, x2 test), Monkey Q performed at a high-
er success rate than Monkey P during BCI trials
(p, 1e-16).
Although both monkeys met our criteria for proficient

BCI control during these analyzed sessions, their per-
formance in BCI trials was not equivalent to that in joy-
stick trials. As detailed in Materials and Methods,
because our arbitrary assignment of BCI units to the four
cardinal directions made learning to use each decoder
quite challenging, we relaxed the criteria for successful
performance of BCI trials as compared with joystick trials.
Figure 4 compares the cursor trajectories of five success-
ful joystick trials and five successful BCI trials (thin lines)
involving each of the eight targets, as well as the average
over 20 trials each (thick lines), all from the same session.
Whereas the cursor moved in relatively straight paths in
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individual joystick trials, in individual BCI trials the trajec-
tories often were convoluted, although on average di-
rected to the target.
We quantified these differences by measuring the path

length and the response time, both from the time of the
Go cue to the Success, in all analyzed trials. Pooling
across the analyzed sessions from each monkey, path
lengths were longer during BCI trials in both monkeys
[Monkey Q, joystick, 4866 104 screen units (mean6 SD),
BCI, 7556 348 screen units, p, 5e-44, Wilcoxon rank-
sum test; Monkey P, joystick, 5076 110 screen units,
BCI, 8636 423 screen units, p, 5e-47]. Response times
also were longer in BCI trials for Monkey P (joystick,
1.316 0.20 s; BCI, 2.2061.19 s; p, 5e-29, Wilcoxon
rank-sum test), although not for Monkey Q (joystick,
1.446 0.33 s; BCI, 1.6660.84 s, p=0.16). These per-
formance measures also showed additional differences
between monkeys. During joystick trials Monkey P had
shorter paths and response times than Monkey Q (path
lengths: p, 5e-3, response times: p, 1e-9, Wilcoxon
rank-sum tests), while during BCI trials Monkey Q had
shorter paths and response times than Monkey P (path
lengths: p, 5e-4, response times: p, 5e-11). Although
Monkey P’s joystick performance was superior in every
measure to that of Monkey Q, Monkey Q’s BCI perform-
ance was superior to that of Monkey P.

Neurons in multiple cortical areas were modulated
during both joystick and BCI trials
We tested each analyzed unit for cosine tuning sepa-

rately during joystick trials and during BCI trials, using the
unit’s firing rate averaged from the Go cue to Success in
each analyzed trial. The leftmost pair of bars in Figure 5
shows the percent of BCI units and the other pairs of bars
the percent of non-BCI units in each cortical area that
were cosine tuned during the joystick task (white) and
during the BCI task (gray) averaged across all BCI-unit as-
signments in each monkey. Colored circles with connect-
ing lines show the percentages in each assignment
separately. With a few exceptions, 25% (arbitrarily chosen
level, dashed horizontal line) or more of the sorted units in

each cortical area were modulated during both tasks in
each assignment. Task-related modulation of non-BCI
units thus was common in all six cortical areas not only
during joystick control of the cursor, but also during BCI
control.
On average, 75–80% of the BCI units in each monkey

were modulated significantly during joystick trials (Fig. 5,
BCI units, white bar), whereas during BCI trials 100% of
the BCI units were modulated significantly for every BCI
assignment in both monkeys (Fig. 5, BCI units, gray bar).
Did the percentage of modulated non-BCI units also in-
crease during BCI control? In monkey Q, this percentage
tended to increase during BCI control as compared with joy-
stick control. This increase was significant when non-BCI

Figure 5. Percent of units modulated significantly with the cen-
ter-out task during joystick trials and during BCI trials. A,
Monkey Q. B, Monkey P. Bars represent the percentages of
units across all assignments during joystick trials (white) or BCI
trials (gray), while colored lines compare percentages during
joystick trials (open circles) versus BCI trials (filled circles) in in-
dividual BCI assignments. Because all BCI M1 units were
modulated during the BCI task, closed circles overlap for those
units at 100%. Open circles and colored lines also overlapped
at 100% for BCI units during joystick trials for Monkey Q in as-
signments i and ii.

Figure 4. Cursor paths in joystick trials (A) and BCI trials (B).
Each trial started within the center target (blue circle) and ended
in one of the eight peripheral targets (between the red and yel-
low circles). Thin lines show the cursor paths to each target
(colors blue to brown) from five successful trials, and thick lines
represent cursor paths averaged across 20 successful trials to
each target (time normalized between Go Cue and Success
events). Squares and solid dots show the cursor positions at
the time of Go Cue and Success, respectively. Data from
Monkey Q, assignment iii.
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units were pooled across sessions and across all 6 cortical
areas (McNemar’s test, p, 1e-7). Post hoc pairwise testing
for individual cortical areas showed significant increases
among non-BCI units in M1, PMd, and AIP (McNemar’s test
with Bonferroni correction, p, 0.0083=0.05/6 cortical
areas). Monkey P, however, did not show any significant
changes in the percentage of non-BCI units modulated dur-
ing BCI control versus joystick control. Monkey Q but not
Monkey P thus had more modulated non-BCI units in some
cortical areas during BCI control than during joystick control.
In monkey Q, this increase in modulated units may have
contributed to superior performance during BCI trials as
compared with Monkey P.

Non-BCI units in multiple cortical areas changed PD
during BCI trials
Given that the firing rate of most of BCI units and many

non-BCI units modulated with both joystick and BCI trials,
we compared the PD of individual units that were signifi-
cantly cosine-tuned during both tasks (Table 1, right num-
ber in each cell). Figure 6 shows, for example, the change
in PD (DPD = PDBCI – PDJoystick) for the four BCI units
(blue) and the 29 non-BCI M1 units (red) from a single ses-
sion, along with the bootstrapped distribution of the com-
bined population (BCI and non-BCI units) expected if
there were no changes in PDs.
All four BCI units in this illustrated session had a signifi-

cant DPD between joystick and BCI trials. Across all as-
signments, only one of the 26 BCI units that were tuned

during both tasks did not show a significant change in the
PD between joystick and BCI trials. Did the PDs of BCI
units change toward the cardinal directions to which they
had been assigned arbitrarily by the decoder? Knowing
the direction assigned to each BCI unit, we calculated the
absolute value of the difference between that assigned di-
rection and the PD of each BCI unit during joystick trials
and again during BCI trials. Across all 26 testable BCI
units, this absolute assigned-preferred direction difference
was significantly smaller for BCI than for joystick trials
(Monkey Q, p, 5e-5; Monkey P, p, 0.05, Wilcoxon
rank-sum tests). As might have been expected, there-
fore, the PDs of BCI units on average changed toward
their assigned directions.
Of the 29 non-BCI units illustrated in Figure 6, the PDs

of 21 (72%) also changed significantly. And pooling
across assignments, the majority of the non-BCI units in
each cortical area in each monkey showed significant
changes in PD with the exceptions of dPPC and AIP in
Monkey Q (Table 2). Changes in PD thus were common
among non-BCI units in both monkeys.
Systematic changes in PD at the population level can pro-

vide insight into the strategy used to perform a BCI task. In
particular, an average DPD significantly different from 0° sug-
gests a re-aiming strategy in that most PDs are shifted in the
same direction. Re-aiming may provide a useful strategy
when the directions assigned to BCI units on average consti-
tute a relatively consistent rotation of their natural PDs. The
four BCI units used here in a given assignment were too few
to assess consistent rotation statistically, however. We there-
fore classified each BCI unit with a significant DPD as having
a DPD, 180°, DPD = 180°, or DPD. 180°. Five of the eight
BCI-unit assignments included at least one BCI unit with
DPD, 180° and at least one with DPD. 180°, making a re-
aiming strategy unlikely.
For populations of non-BCI units pooled across all cort-

ical areas or within individual cortical areas, a median
DPD significantly different from 0° was found in only one
of the eight assignments (Qiii, circular rank-sum test,
p, 0.05/8 assignments). Significant differences from 0°
were not found in any of the individual cortical areas for
any of the BCI-unit assignments. The DPDs of individual
non-BCI units thus occurred in various directions and am-
plitudes, resulting in no net DPD for any population.
Considering the non-BCI units as a surrogate indicator,
these findings suggest that, except perhaps in one as-
signment, the directions assigned to BCI units did not
provide a consistent rotation of their natural PDs as as-
sessed during joystick trials.

nMD increased in some cortical areas during BCI
control
As might have been expected of the BCI units, all of

which became modulated during BCI trials, their average

Figure 6. DPDs in a single session. Lines indicate the DPD of
the four BCI units (blue) and 29 non-BCI units (red) in polar co-
ordinates. The yellow histogram represents the bootstrapped
probability distribution of DPDs under the null hypothesis of no
change. All four BCI units, as well as 72% of the non-BCI units,
had a significant DPD during BCI trials compared with joystick
trials. At the population level, the DPD among non-BCI units
was not significantly different from 0°. Data from Monkey Q,
BCI assignment ii.

Table 2: Percent of units with a significant joystick versus BCI change in PD

BCI units Non-BCI M1 PMd PMv S1 dPPC AIP All
Monkey Q 100% 84% 81% 52% 86% 33% 42% 72%
Monkey P 89% 77% 67% 60% 87% 78% 67% 74%
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modulation depth also increased during BCI trials as com-
pared with joystick trials in each monkey. As illustrated in
Figure 7, left, this increase in average nMD among BCI
units occurred consistently in all sessions in both mon-
keys. At the level of individual units, nMD increased in 17
of the 20 BCI units in Monkey Q and eight of 12 units in
Monkey P during BCI as compared with joystick trials.
Similarly, among non-BCI units nMD often increased dur-
ing BCI trials, although less consistently than among BCI
units. Figure 7 shows that in each cortical area except
dPPC, the median nMD of non-BCI units increased during
BCI trials in three or more of the five assignments for
Monkey Q, and in two or more of the three assignments
for Monkey P. We therefore compared nMD during joy-
stick versus BCI trials for non-BCI units in all six cortical
areas. For this comparison, we included units that
showed significant modulation during either joystick or
BCI trials, or both (Table 1, center number in each cell).

Pooling across all assignments and cortical areas, the
median nMD of non-BCI units was greater during BCI tri-
als than during joystick trials in monkey Q, although the
trend fell short of significance in Monkey P (Monkey Q,
p, 5e-11; Monkey P, p=0.058; Wilcoxon signed-rank
tests). Post hoc testing for each cortical area separately
(Fig. 7, gray vs white bars) showed significant increases in
M1, PMd, and PMv in Monkey Q (Wilcoxon signed-rank
test with Bonferroni correction, p,0.05/6). As for the in-
crease in the percentage of non-BCI units that were
modulated during BCI trials in Monkey Q, this increase in
modulation depth may have contributed to superior per-
formance during BCI trials as compared with Monkey P.
Modulation depth also varied to some degree among

cortical areas. Pooling the data across assignments we
found no significant differences in nMD among cortical
areas during joystick trials in either monkey (Monkey Q,
p=0.73; Monkey P, p=0.09; Kruskal–Wallis tests). During
BCI trials, however, the variation in nMD among cortical
areas was significant in each monkey (Monkey Q, p,5e-
3; Monkey P, p, 1e-3, Kruskal–Wallis tests). Post hoc
pairwise comparisons revealed that in Monkey Q the me-
dian nMD of non-BCI units in M1 or in PMv was signifi-
cantly larger than in dPPC, and in Monkey P the median
nMD of non-BCI units in M1 or in PMd was larger than
in dPPC (p, 0.0083=0.05/6, Kruskal–Wallis tests with
Bonferroni correction for six cortical areas). Differences in
nMD between cortical areas thus appeared during BCI tri-
als that were not present during joystick trials. Modulation
in M1 and premotor areas became larger than that in
dPPC, which may have reflected increased modulation in
frontal motor areas and/or a decrease in proprioceptive
feedback to dPPC during BCI trials as compared with joy-
stick trials.

Effective connectivity during joystick and BCI trials
The changes observed in the percent of units modu-

lated, their PDs, and their nMDs suggest that non-BCI
units in multiple cortical areas participated indirectly in
controlling the BCI, either influencing the activity of the
BCI units, or being influenced by the BCI units, or both.
We therefore compared effective connectivity among
both BCI and non-BCI units during joystick trials and dur-
ing BCI trials. We evaluated pairwise effective connectiv-
ity among all BCI units (Table 1, top row, left number) and
all non-BCI units that were modulated significantly during
both joystick and BCI trials (Table 1, other rows, right
number in each cell) using Granger causality adapted for
point process models (Kim et al., 2011; Balasubramanian
et al., 2017), as described in Materials and Methods.
Figure 8 shows the Granger connectivity matrices from an
example session, computed using equal numbers of joy-
stick (Fig. 8A) and BCI (Fig. 8B) trials. Among the 29 simul-
taneous recorded units, pairs with excitatory effective
connectivity from the trigger unit (abscissa) to the target
unit (ordinate) are indicated by a red square and those
with inhibitory connectivity by a dark blue square.
Comparing effective connectivity during joystick versus

BCI trials shows that changes occurred both within and
between cortical areas, and both with BCI and with non-

Figure 7. nMD of significantly modulated units during joystick
trials versus BCI trials. A, Monkey Q. B, Monkey P. Bars repre-
sent the median nMD among units across all assignments dur-
ing joystick trials (white) or BCI trials (gray), while colored lines
compare median nMDs during joystick trials (open circles) ver-
sus BCI trials (filled circles) in individual BCI assignments.
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BCI units. For the example session shown in Figure 8, the
number of connected pairs increased in many instances,
for example, from the BCI units to non-BCI units in M1,
from non-BCI units in M1 to other non-BCI units in M1,
and from non-BCI M1 units to those in PMv, while de-
creasing in others, for example from PMv units to other
PMv units). Overall, the fraction of significantly connected
pairs in this session was greater during BCI than during
joystick trials.
Pooling across sessions and across cortical areas in

Monkey Q, the fraction of unit pairs with effective con-
nectivity was significantly larger during BCI trials (Fig.
9A, left, gray bar) than during joystick trials (Fig. 9A, left,
white bar) in Monkey Q (p, 1e-13, McNemar’s test) but
not in Monkey P (Fig. 9B, left, p. 0.6). The increase dur-
ing BCI trials remained evident in Monkey Q when exci-
tatory (p,5e-8) and inhibitory (p, 5e-6) connections

were considered separately (Fig. 9A, right), but the frac-
tion of neither excitatory (p.0.1) nor inhibitory (p.0.4)
connections changed in Monkey P (Fig. 9B, right). In
Monkey Q, this increase in effective connectivity during
BCI trials was present in four of the five individual assign-
ments (Fig. 9A, colored lines). Again, increased effective
connectivity may have contributed to Monkey Q’s supe-
rior performance during BCI trials as compared with
Monkey P.

Non-BCI units with effective connectivity to or from a
BCI unit
Non-BCI units with effective connectivity either to or

from a BCI unit might influence BCI control more strongly
than those without such connections. An increase of
modulation depth in a non-BCI unit with effective

Figure 8. Granger connectivity matrices in a single session. Granger connectivity was evaluated separately during joystick trials (A)
and during BCI trials (B). Each red or blue cell indicates significant excitatory or inhibitory connectivity from a trigger unit (abscissa)
to a target unit (ordinate). White cells indicate no significant connectivity between the pair. Black lines separate groups of BCI units
and non-BCI units from different cortical areas. Data from Monkey Q, assignment iii.

Figure 9. The fraction of unit pairs with significant effective connectivity during joystick-controlled trials (white bars) and BCI-con-
trolled trials (gray bars) for Monkey Q (A) and Monkey P (B). For each monkey, overall fractions are shown to the left and the frac-
tions with excitatory or inhibitory connectivity are shown separately to the right. White and gray bars represent fractions pooled for
each monkey across assignments (with p values from McNemar’s tests), while colored lines represent the individual BCI-unit
assignments.
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connectivity to a BCI unit, for example, might have a
greater impact on that BCI unit than the same increase in
a non-BCI unit without such connectivity. We therefore di-
vided the non-BCI units into two groups: Connect1 units
had significant excitatory or inhibitory connectivity, either
as a trigger or as a target, with at least one BCI unit;
Connect– units had no significant effective connectivity
with any of the BCI units, although Connect– units might
or might not have effective connectivity with other non-
BCI units. Table 3 gives the percentages of Connect1
units in each cortical area, pooled across assignments in
each monkey, for both joystick and BCI trials, and further
subdivides the Connect1 units into those being the trig-
ger for versus the target of connectivity with a BCI unit.
In both monkeys, pooling across cortical areas revealed

an overall increase in the percent of Connect1 units dur-
ing BCI trials as compared with joystick trials (Monkey Q,
36% vs 21%, p, 0.005; Monkey P, 35% vs 27%,
p, 0.05, McNemar’s test). Post hoc pairwise testing,
however, found no significant differences in any of the 6
individual cortical areas in either monkey (McNemar’s
tests with Bonferroni correction for six tests, p. 0.05/6).
Nor did the percent of Connect1 units differ significantly
among cortical areas in either monkey during joystick tri-
als (Monkey Q, p. 0.05; Monkey P, p. 0.8, x2 tests) or
during BCI trials (Monkey Q, p. 0.4; Monkey P, p.0.2,
x2 tests). Although not demonstrable for individual corti-
cal areas, in both monkeys the overall percentage of non-
BCI units with effective connectivity to or from BCI units
increased during BCI as compared with joystick control.
Non-BCI units providing effective connections to BCI

units might play a different role than those receiving effec-
tive connections from BCI units. We therefore classified
Connect1 non-BCI units into those with effective connec-
tivity to a BCI unit (Connect1trigger) and those with effective
connectivity from a BCI unit (Connect1target). Note that
these classes are not mutually exclusive because, although
each unit pair can have only one effective connection, the
same non-BCI unit could have an effective connection to
one BCI unit and receive an effective connection from
another BCI unit. Percentages of Connect1trigger and
Connect1target units are given in Table 3, pooling across
assignments for each monkey. When pooling across corti-
cal areas in each animal separately, the percentage of
Connect1trigger units was not significantly different from

the percentage of Connect1target units either during joy-
stick trials or during BCI trials (p. 0.05, McNemar’s tests).
Nor were significant differences found for any of the indi-
vidual cortical areas during either joystick or BCI trials
(McNemar’s test with Bonferroni correction for six tests,
p. 0.05/6). Thus, similar percentages of non-BCI units in
each cortical area provided effective connections to and
received effective connections from BCI units during each
task.
As described above, we found that the nMD of most

BCI units was greater during BCI trials than during joy-
stick trials, as was the nMD of many non-BCI units. Did
this increase in nMD during BCI trials occur selectively in
Connect1 units as compared with Connect– units?
Figure 10 shows a scatterplot for each monkey in which
each point represents the nMD for a non-BCI unit during
joystick (abscissa) versus BCI (ordinate) trials, along with
the respective marginal probability distributions. Colors
distinguish Connect1 (blue) versus Connect– (orange)
units pooled from all assignments in each monkey. More
evident in Monkey Q than in Monkey P is that the major-
ity of Connect1 units lie above the dashed line of unity
slope, indicating that on average Connect1 units had a
larger nMD during BCI trials than during joystick trials,
which was the case in both monkeys (Monkey Q, p,5e-
6; Monkey P, p, 0.05, Wilcoxon signed-rank tests). In
contrast, the population of Connect– neurons showed
no systematic joystick versus BCI difference in nMD in
either monkey (Monkey Q, p. 0.05; Monkey P, p.0.9,
Wilcoxon signed-rank tests). The marginal probability dis-
tributions confirm this difference between Connect1 and
Connect– neurons. During BCI trials, the median nMD of
Connect1 units was greater than that of Connect– units in
both monkeys (right histograms, Monkey Q, p,5e-4;
Monkey P, p, 5e-7, Wilcoxon rank-sum tests) whereas
during Joystick trials the median nMD of Connect1 and
Connect– units was not different (top histograms, Monkey
Q, p. 0.8; Monkey P, p. 0.1, Wilcoxon rank-sum tests).
While the scatterplots of Figure 10 exclude outliers with
nMD.1.7 (six units from Monkey Q, nine from Monkey P)
for purposes of display, including all outliers did not
change any of these findings. The modulation depth of
Connect1 neurons thus increased during BCI trials while
that of Connect– neurons did not.

Table 3: Percentages of Connect1 non-BCI units

Monkey Task Non-BCI units M1 PMd PMv S1 dPPC AIP Overall
Monkey Q Joystick Connect1 27 12 14 57 17 8 21

Connect1trigger 20 4 4 14 0 8 13
Connect1target 13 8 10 43 17 8 13

BCI Connect1 36 42 38 43 0 25 36
Connect1trigger 23 27 21 14 0 17 21
Connect1target 32 35 21 43 0 8 28

Monkey P Joystick Connect1 30 20 30 27 22 17 27
Connect1trigger 18 11 20 13 0 17 15
Connect1target 19 11 20 20 22 0 17

BCI Connect1 38 36 20 40 0 33 35
Connect1trigger 23 20 10 7 0 33 20
Connect1target 25 20 10 33 0 0 22
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Discussion
The firing rates of neurons in multiple cortical areas are

modulated during voluntary upper extremity movements.
We found that while only four M1 units controlled a
closed-loop BCI, substantial numbers of non-BCI units
not only in frontal motor areas (M1, PMd, PMv) but also in
parietal areas (S1, dPPC, AIP) likewise were modulated in
relation to the task. In each of these cortical areas, gener-
ally comparable percentages of non-BCI units were
modulated during joystick and BCI control, although in
Monkey Q the percentage was significantly higher during
BCI trials in M1, PMd, and AIP. Many non-BCI units were
cosine-tuned during both joystick control and BCI control
of the cursor, and among these units we found changes in
PD, modulation depth, and effective connectivity during
BCI trials as compared with joystick trials, similar to the
changes that occurred concurrently in the BCI units. All
these cortical areas thus participate not only in natural
control of voluntary limb movement but in a more general
system for closed-loop control of an effector being
moved to a visual target. And many individual non-BCI
neurons in these areas change their activity between joy-
stick and BCI control.
Our findings have two important limitations. First, where-

as the joystick-controlled movements typically had a large
rapid and relatively ballistic initial component that often
brought the cursor promptly to the target, the BCI-con-
trolled movements were generally slower and less smooth,
often requiring multiple corrective sub-movements before
arriving in the target (Fig. 4). This difference was particularly
evident because we chose to use a more permissive cen-
ter-out task for BCI-controlled trials and chose not to train
the monkeys to the point of BCI performance equivalent to
that with joystick control. Some of our findings may have
resulted from these differences between the present

joystick-controlled versus BCI-controlled trials. The latter
might be viewed as a comparatively early stage in learning
to use a difficult, non-intuitive controller.
Second, rather than focusing our recording channel ca-

pacity on one or two cortical areas, for the present study
we distributed the available channels across six cortical
areas. Fewer units therefore were recorded from any one
area than in some other studies. Furthermore, across
BCI-assignments in a given monkey and across monkeys,
our microelectrode arrays consistently recorded fewer an-
alyzable units in parietal than in frontal cortical areas
(Table 1). The number of units recorded may have limited
the present statistical comparisons among areas. Had we
recorded more units, particularly in S1, dPPC, and AIP,
additional significant differences might have emerged.
Nevertheless, we have included these parietal areas along
with the frontal areas in the present analyses as providing
our best available sampling of their activity.

Strategies and cognitive load elicited by the BCI
decoder
For the present study, we intentionally chose a non-in-

tuitive BCI decoder to require a relatively high cognitive
load, potentially eliciting more extensive activity in the var-
ious cortical areas from which we recorded. Because
using fewer units tends to make BCI control less accurate
(Law et al., 2014), we limited the number of BCI units to
four, and assigned each BCI unit arbitrarily to drive cursor
velocity in a particular cardinal direction without regard to
its PD during joystick trials. Under such conditions BCI
control can be achieved through a variety of strategies, in-
cluding remapping the PDs of individual BCI units, re-
weighting their modulation depths, and re-aiming with a

Figure 10. nMDs of Connect1 units and Connect– units compared during joystick versus BCI trials. A, Monkey Q. B, Monkey P.
Scatter plots show that the nMDs of Connect1 units (blue circles) were higher during BCI trials, as the majority of blue circles fall
above the dashed line of unity slope. The same was not true for Connect– units (orange circles). Marginal histograms show the
probability distributions of Connect1 nMDs (blue) and Connect– nMDs (orange) during BCI trials (right) which were significantly dif-
ferent, and during joystick trials (top) which were not. Blue and orange arrows represent the medians for Connect1 and Connect–
unit populations, respectively. In these scatterplots, outliers with nMD. 1.7 have been excluded for purposes of display; including
the outliers did not change the results.
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coherent rotation of the PDs of most units (Jarosiewicz et
al., 2008; Ganguly et al., 2011; Chase et al., 2012;
Sakellaridi et al., 2019). Across the eight assignments in
the two monkeys, PDs changed significantly in all but one
of the BCI units that were also modulated during the joy-
stick task. On average the PD of each BCI unit shifted to-
ward its own assigned direction, with some changing in
clockwise and others in counterclockwise directions in
five of the eight assignments. In addition, the average
modulation depth of the BCI units increased in every as-
signment. In only one of the eight assignments did the
population of non-BCI units show evidence of a coherent
rotation all in the same direction. Whereas remapping and
reweighting thus occurred in most assignments, re-aim-
ing was uncommon.
Our BCI decoder design was sufficiently difficult for the

monkeys to use that we relaxed our criteria for successful
trial performance compared with joystick trials. Even after
several days of BCI training when the monkeys had
achieved our criteria of.80% success over at least 400
trials, cursor trajectories remained considerably longer and
more convoluted during BCI trials than during joystick trials,
and non-BCI units remained as deeply modulated during BCI
trials as during joystick trials (Hwang et al., 2013; Law et al.,
2014). Had we used a BCI decoder optimized to incorporate
the natural tuning of larger numbers of M1 neurons
(Jarosiewicz et al., 2008; Ganguly and Carmena, 2009; Gilja
et al., 2012; Sadtler et al., 2014) and/or trained the monkeys
for substantially more sessions (Oby et al., 2019; Zhou et al.,
2019), the response time and path length of BCI trials might
have more closely approximated that of joystick trials, and
the modulation of non-BCI units might have diminished
(Ganguly et al., 2011; Clancy et al., 2014). The present results
most likely were obtained, therefore, while the monkeys still
employed some degree of cognitive exploration that had not
yet consolidated to automatic execution (Wander et al.,
2013).
In controlling natural movements of the upper extremity,

patterns of coactivation in M1 neurons are largely con-
fined to an “intrinsic manifold” in the neural state-space
(Sadtler et al., 2014; Gallego et al., 2018, 2020). Learning
to control a BCI with M1 neurons progresses more quickly
if the BCI decoder uses latent dimensions within this in-
trinsic manifold than if patterns outside the manifold are
required (Sadtler et al., 2014). When such out-of-manifold
patterns are required by the decoder, novel patterns of
neural coactivation must be learned over many sessions
(Oby et al., 2019). The time needed by the present mon-
keys to achieve our proficiency criteria for BCI perform-
ance, together with changes in the PDs and modulation
depths of the BCI units, suggests that our BCI decoder
most often constituted an out-of-manifold perturbation
that required learning new patterns of unit coactivation.
The newly learned patterns were not necessarily confined
to the BCI units, and may have involved many non-BCI
units in various cortical areas as well.

Variability of changes observed
Although the present BCI units consistently showed

changes in PD and modulation depth in all assignments,

the concurrent changes observed in non-BCI units were
comparatively variable across assignments, both within
and between monkeys. Such variability might suggest
that the activity of non-BCI units in some or all cortical
areas was an epiphenomenon, irrelevant or even counter-
productive to closed loop BCI performance. We consider
this possibility to be unlikely, however. Although we can-
not determine the exact causes of this variability, we sug-
gest two potential factors that may have contributed.
First, as indicated by their success rates, response

times, and cursor path lengths, the two monkeys ap-
proached the joystick and BCI tasks differently, with
Monkey P performing better at the joystick task while
Monkey Q achieved better performance at the BCI task.
Our two subjects thus may have been at different posi-
tions on the spectrum from BCI learners to non-learners
(Bridges et al., 2020). The behavioral differences between
the two monkeys were accompanied by differences in
neural activity. Non-BCI units in Monkey Q showed more
consistent increases in the percent of units modulated,
their modulation depths, and their effective connectivity
with other units during BCI as compared with joystick tri-
als than did non-BCI units in Monkey P. We speculate
that the differences between the two monkeys in behav-
ioral performance and in neural activity were interrelated,
and were related as well to a difference in what appeared
to be the monkey’s engagement in performing the BCI
task.
Second, within a given animal, each different BCI-unit

assignment likely required a different pattern of coactiva-
tion among the BCI units (Athalye et al., 2017; Oby et al.,
2019). These different coactivation patterns among the
BCI units may have been achieved with different patterns
of activity in non-BCI units in the various cortical areas ex-
amined here, producing varying results from assignment
to assignment within each subject. Although the BCI units
were solely responsible for directly controlling the BCI
output, a closed-loop BCI cannot be operated success-
fully without engaging the activity of at least some non-
BCI units. The BCI units in our task must at least have re-
ceived processed visual information about the location of
the peripheral target and likely received visual feedback
about the current location of the cursor. This information
could only have come through non-BCI units, although
not necessarily those that we recorded. In addition, inter-
nal decisions about when to initiate another trial probably
influenced the BCI units, and their firing may also have
provided efference copy to circuits comparing a forward
model of the expected cursor trajectory with the actual in-
coming feedback. We speculate that, released from the
need to control the motion of the cursor with movement
of the native upper extremity, and with an expansive neu-
ral space available, the CNS found ways to provide these
functions that varied to some extent from assignment to
assignment.

Effective connectivity of non-BCI units and BCI
control
A previous study has shown that effective connectivity

among the M1 BCI units controlling a reach-to-grasp
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robot changes progressively as non-human primates ac-
quired proficient control, although the time course of
these changes differed depending on whether the M1 BCI
population was contralateral or ipsilateral to an upper ex-
tremity amputation (Balasubramanian et al., 2017). Here,
we found that effective connectivity increased during BCI
as compared with joystick control in one monkey but not
the other. But in both monkeys, non-BCI units with effec-
tive connectivity to or from a BCI unit (Connect1 units) on
average had higher nMDs during BCI trials than those
without such connectivity (Connect– units). Our simula-
tion (see Materials and Methods) indicates that this differ-
ence cannot be attributed simply to a higher likelihood of
finding false positive connections for units with larger
modulation depth. We therefore speculate that Connect1
non-BCI units are more likely than Connect– units to have
played a relatively direct role in one or more of the ancillary
functions required for closed-loop control—processing target
location, inverse model, visual feedback, efference copy, for-
ward model, etc. Although current concepts of corticocortical
information flow during voluntary movement emphasize
transmission of information from posterior parietal cortex to
premotor cortex and then to M1 (Rizzolatti et al., 1998;
Grafton, 2010), we found that effective connectivity between
BCI and non-BCI units in most of the cortical areas we exam-
ined was largely bidirectional, both during joystick and during
BCI trials. Our estimates of effective connectivity of course
are based on statistical models and do not represent actual
synaptic connectivity. But with the exception of dPPC, where
we found no effective connectivity with BCI units during BCI
trials, we found that similar fractions of non-BCI units in all
cortical areas had effective connectivity to and effective con-
nectivity from the BCI units inM1.

Conclusions
The present study shows for the first time that changes

in PD, modulation depth, and effective connectivity occur
in units beyond the cortical area(s) that directly control a
BCI and extend to many, although not all, cortical areas
involved in the distributed cortical network for the sensori-
motor control of voluntary movements. In theory, given
that the performance of modern neuroprostheses falls
short of natural control of a native limb (Hochberg et al.,
2012; Rouse and Schieber, 2015; Wodlinger et al., 2015),
harnessing the activity of units from multiple cortical
areas in next generation BCIs might provide a more
dexterous neuroprosthetic extremity. Further studies,
ideally recording more units in each area, will be needed
to extend the present findings to the more proficient
performance achieved with BCI decoders optimized to
incorporate the natural tuning of large numbers of neu-
rons, and to determine if non-BCI units play similar or
different functional roles in closed-loop control of the
native limb versus a BCI.
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