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Phosphorylation reactions, driven by competing kinases and
phosphatases, are central elements of cellular signal transduction.
We reconstituted a native eukaryotic lipid kinase–phosphatase re-
action that drives the interconversion of phosphatidylinositol-4-
phosphate [PI(4)P] and phosphatidylinositol-4,5-phosphate [PI(4,5)P2]
on membrane surfaces. This system exhibited bistability and
formed spatial composition patterns on supported membranes. In
smaller confined regions of membrane, rapid diffusion ensures the
system remains spatially homogeneous, but the final outcome—a
predominantly PI(4)P or PI(4,5)P2 membrane composition—was gov-
erned by the size of the reaction environment. In larger confined
regions, interplay between the reactions, diffusion, and confine-
ment created a variety of differentially patterned states, including
polarization. Experiments and kinetic modeling reveal how these
geometric confinement effects arise from a mechanism based on
stochastic fluctuations in the copy number of membrane-bound ki-
nases and phosphatases. The underlying requirements for such be-
havior are unexpectedly simple and likely to occur in natural
biological signaling systems.
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Phosphatidylinositol phosphate (PIP) lipids are an important
class of membrane constituents that function in signal trans-

duction. Inositol head groups are chemically modified by lipid
kinases and phosphatases, generating various PIP lipid species
that have distinct and dynamic cellular localization patterns (1).
Specific PIP lipid compositions are thought to establish cellular
zip codes for organelle identity and signaling activity. Many cy-
tosolic proteins are selectively recruited to intracellular mem-
branes based on PIP composition, and the PIP lipids are also direct
modulators of protein function at the membrane (2, 3). Although
spatial patterning is well documented in biological systems (4), the
physical mechanisms by which these enzymatic reactions establish
spatial composition patterns in the membrane and how the
membrane shape may influence this remains poorly understood.
In the case of PIP lipid organization, much attention has

been directed toward how lipid kinase and phosphatase activi-
ties are spatially controlled during endocytosis (5), phagocyto-
sis (6, 7), and polarized cell migration (8, 9). Critical for all
of these cellular processes is the production of PI(4,5)P2 at
the plasma membrane, which is predominantly controlled by
phosphatidylinositol-4-phosphate 5-kinase (PIP5K) (10). Op-
posing PIP5K activity are 5′-phosphatases (5′-PPtases), such as
Lowe oculocerebrorenal syndrome protein (OCRL) and phos-
phatidylinositol polyphosphate 5′-phosphatase type IV (INPP5E),
which catalyze the dephosphorylation of PI(4,5)P2 into PI(4)P
(11). Membrane-associated adaptors and scaffolding proteins
potentially modulate lipid kinase and phosphatase activities by
regulating their membrane localization and binding kinetics (11–
14). The range of PIP5K and 5′-PPtases activity states, however,
is sparsely documented and warrants comprehensive analysis.
Here, we describe the reconstitution of a lipid kinase–phospha-

tase competitive reaction that drives the interconversion of

phosphatidylinositol-4-phosphate [PI(4)P] and phosphatidylinositol-
4,5-phosphate [PI(4,5)P2] lipids in supported membranes. We
discovered an intrinsic positive-feedback mechanism in PIP5K.
Binding of the kinase to PI(4,5)P2, at sites that do not interfere
with catalytic activity, modulated localization of the kinase at the
membrane surface, where it could efficiently access its substrate.
Using a panel of 5′-PPtases with varying degrees of positive
feedback, we added competitive lipid phosphorylation reactions
against PIP5K activity, which could be tuned over a wide range.
We observed a variety of responses, including formation of
bistable PIP lipid compositional patterns and spontaneous po-
larization on geometrically confined membranes.
An entirely different phenomenon emerged when competitive

reactions were adjusted outside the range of the intrinsically
bistable behavior. Under such conditions, 1 enzyme reaction was
more favorable and a spatially homogeneous membrane com-
position reflecting the dominant reaction resulted in unconstrained
supported membrane. However, when the reaction was geomet-
rically confined, the final composition of the membrane—begin-
ning from identical starting conditions—was governed by the size
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and shape of the reaction environment. This effect, which we
refer to as stochastic geometry sensing, arises from the system’s
asymmetric response to stochastic fluctuations in the copy number
of enzymes on the membrane surface. Although the geometry
sensing stems from an intrinsically stochastic process, experiments
revealed that the response to different membrane geometries can
be almost entirely deterministic. The minimal requirements for
stochastic geometry sensing are significantly less restrictive than
those for the formation of widely discussed Turing patterns in
reaction diffusion systems (4, 15, 16). We propose that stochastic
geometry sensing may be a general mechanism by which mem-
brane structures in living cells (e.g., vesicles, tubules, and blebs)
can establish spatially distinct compositions in a dynamic fluid
membrane environment.

Results
Kinetic Analysis PIP Lipid Reactions on Membrane Surfaces. We first
developed an experimental system to measure the kinetics of PIP
lipid phosphorylation and dephosphorylation on supported lipid
bilayers (SLBs). Fluorescently labeled protein constructs of de-
fects in Rab recruitment protein A (DrrA) (17–19) and a
pleckstrin homology (PH) domain derived from phospholipase C
δ (PLCδ) (20) were used to selectively visualize PI(4)P and
PI(4,5)P2 lipids in real time by total internal reflection fluores-
cence (TIRF) microscopy (Fig. 1A and SI Appendix, Fig. S1).
Single-molecule binding-desorption measurements confirmed
that both PIP lipid sensors exhibit single-exponential membrane
dwell time distributions (corresponding to first-order dissocia-
tion kinetics) with mean dwell times of 25 ms (Alexa488-PLCδ)
and 289 ms (Alexa647-DrrA) (Fig. 1A and SI Appendix, Fig. S2
A–F). Both PIP lipid sensors were highly mobile with diffusion
coefficients of 2.2 to 2.4 μm2/s and exhibited negligible amounts
of nonspecific binding on supported membranes (SI Appendix,
Fig. S2 G and H). Probe concentrations were adjusted so that
only a minor fraction (<0.1%) of membrane PIP lipid was bound
to the probe, ensuring that the probes had minimal interference
with the enzymatic reactions. Evaluating the fluorescence in-
tensity of membrane-bound sensors over a range of PIP lipid
concentrations (i.e., 0 to 4% molar) established a linear rela-
tionship between these parameters (SI Appendix, Fig. S2 I and J).
This system provides a readout of membrane PI(4)P and PI(4,5)P2
lipid composition with subsecond time resolution and submicron
spatial resolution.
Using this system, we first analyzed the kinetics of isolated PIP

lipid-modifying reactions. Visualizing PIP5K-dependent phos-
phorylation of PI(4)P to generation of PI(4,5)P2 revealed reaction
kinetics with a high degree of positive feedback (Fig. 1B). For
soluble enzymes acting on membrane substrates, product binding
independently of the catalytic site can promote positive feedback
by retaining more enzyme on the membrane surface (21–23).
Consistent with this notion, the amount of Alexa647-PIP5K lo-
calized to the membrane surface increased with increasing PI(4,5)P2
membrane density (SI Appendix, Fig. S3A). Additionally, the
mean dwell time of Alexa647-PIP5K, determined from single-
molecule imaging experiments, also increased with PI(4,5)P2
membrane density (Fig. 1C). This implicates multivalent PI(4,5)P2
interactions as a source of the observed PIP5K positive feed-
back. In contrast, we found that the 5′-PPtase domains derived
from OCRL and INPP5E exhibited no feedback and catalyzed
PI(4)P synthesis with simple bimolecular reaction kinetics (Fig.
1D and SI Appendix, Fig. S4). The activity of OCRL was ∼100-
fold greater than INPP5E. Single-molecule dwell times for both
5′-PPtases were faster than our instrumental resolution of 8 ms
per frame.
Several proteins have been reported to regulate membrane

recruitment of 5′-PPtases in living cells. These include small
GTPases and the AP1/AP2 adaptor protein complexes that reg-
ulate clathrin-mediated endocytosis (24, 25). To access the broad

range of 5′-PPtase activities that arise from interactions with
membrane-associated signaling proteins, we designed chimeric
phosphatases with engineered membrane targeting domains. The
simplicity of the 5′-PPtase domains facilitated linkage of a PI(4)P
lipid binding domain to the N terminus of either OCRL or
INPP5E. Compared with the bare 5′-PPtase domains, the engi-
neered DrrA-INPP5E and DrrA-OCRL were much more active
(Fig. 1E and SI Appendix, Fig. S5). The kinetic traces for both
chimeric phosphatases were fit by a kinetic model with first-order
positive feedback based on lipid product recognition (SI Ap-
pendix, Enzyme Kinetics). Overall, the chimeric 5′-PPtases ex-
panded our repertoire of enzymes to span the broad range of
activities that potentially exist in this ubiquitous signaling path-
way under physiological conditions.

Kinetic Bistability in a Lipid Kinase–Phosphatase Competitive Reaction.
Using our panel of lipid-modifying enzymes, we reconstituted a
range of PIP lipid kinase–phosphatase competitive reaction
systems driving the interconversion of PI(4)P and PI(4,5)P2
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Fig. 1. Enzymology of phosphatidylinositol lipid kinase and phosphatases.
(A) Schematic of PIP lipid-modifying reactions reconstituted on a supported
lipid bilayer (SLB). Enzymes associate with membranes containing PI(4)P and
PI(4,5)P2 lipids, catalyze PIP lipid phosphorylation or dephosphorylation, and
then dissociate. Product formation was monitored using soluble Alexa647-
DrrA and Alexa488-PLCδ, which transiently associate with PIP lipid-
containing membranes. (B) Phosphorylation of PI(4)P to generate PI(4,5)P2
monitored in the presence of 20 nM Alexa488-PLCδ and varying concen-
trations of PIP5K. Initial membrane composition: 96% DOPC and 4% PI(4)P.
(C) Single-molecule dwell-time distribution of Alexa647-PIP5K measured on
SLBs containing 1% (τ1 = 88 ± 1 ms; n = 1,709 events), 2% (τ1 = 344 ± 4 ms;
n = 2,347), or 4% PI(4,5)P2 (τ1 = 625 ± 1 ms [42%]; τ2 = 2.25 ± 0.01 s [58%];
n = 1,544). CDF = cumulative distribution frequency. (D and E) De-
phosphorylation of PI(4,5)P2 was monitored in the presence of 20 nM
Alexa647-DrrA and varying concentrations of (D) OCRL or (E) DrrA-OCRL.
Initial membrane composition: 96% DOPC and 4% PI(4,5)P2.
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lipids in supported membranes. Based on the nonlinear positive
feedback we measured for PIP5K, we anticipated that it would
be possible to tune this system to exhibit kinetic bistability, in
which the overall reaction rate could go to zero at 2 different
PIP lipid compositions (26, 27). For these studies, reactions
were initiated on membranes containing 2% molar fraction of
PI(4)P and PI(4,5)P2 lipids by flowing in a mixture of lipid
sensors, ATP, and the opposing kinase and phosphatase en-
zymes. By varying the kinase–phosphatase ratio, the final reaction
outcome could be tuned to favor either PI(4)P- or PI(4,5)P2-
dominated states as a final outcome. When the overall kinase and
phosphatase reactions are relatively balanced, however, much
more interesting behavior ensued. Within a matter of minutes,
we observed the reaction environment to split into regions
that were enriched in either PI(4)P or PI(4,5)P2 (Fig. 2A, SI
Appendix, Fig. S6, and Movie S1). PIP lipid patterns emerged
on membranes lacking any preexisting patterns or positional
information and amplified and coarsened over time. The
surface area of steady-state patterns could also be changed by
varying the initial kinase–phosphatase concentration ratio
(Fig. 2B and SI Appendix, Fig. S6) or by flowing in new ratios
of kinase and phosphatase (SI Appendix, Fig. S7 A–C). We
note that this is a dissipative reaction system that continuously
consumes ATP; steady-state conditions require a constant
supply of ATP (SI Appendix, Fig. S8). The signature features of
this reaction system—bistability and formation of compositional
pattern—proved to be rather general properties that could be
reconstituted using a variety of kinase–phosphatase combina-

tions, including both native and engineered enzymes (SI Appen-
dix, Fig. S6). The only basic requirement was that the
competing reactions were roughly balanced on the membrane
surface and at least 1 enzyme has a positive-feedback loop based
on product recognition. From a practical perspective, the chi-
meric 5′-PPtases balanced the native PIP5K reaction kinet-
ics at similarly low concentrations in solution, facilitating
experiments.
Individual lipids and proteins remained highly dynamic

throughout the reaction process, irrespective of composition
patterns. Bulk imaging and single-molecule tracking of
rhodamine-labeled phosphatidylethanolamine lipids in the
membrane demonstrated that only the distribution of the PIP
lipid phosphorylation state was spatially modulated; the mem-
brane was otherwise homogeneous and fluid (Fig. 2C and SI
Appendix, Fig. S9). Additionally, fluorescence recovery after
photobleaching (FRAP) of a TopFluor tail-labeled PIP lipid
confirmed uniform distribution and mobility of PIP lipids (Fig.
2D and SI Appendix, Fig. S9D). Individual PIP lipid molecules
diffused rapidly into and out of the PI(4)P and PI(4,5)P2 re-
gions, with their phosphorylation state changing as a result of
the locally prevailing enzymatic reaction. Kinase and phos-
phatase membrane localization was governed by the local PIP
composition (SI Appendix, Fig. S10). All enzymes were laterally
mobile on the membrane surface during periods of association,
but diffused more slowly than did individual lipids, which is
consistent with multivalent binding of PIP lipids (SI Appendix,
Fig. S11 C and D). FRAP analysis of Alex647-PIP5K and Cy5-
DrrA-OCRL localized to compositional patterns indicated that
these enzymes rapidly exchanged between the membrane and
solution (SI Appendix, Fig. S11 A and B). Overall, both lipids
and proteins in the reaction diffused and exchanged much
faster than the timescale (minutes) at which the composition
patterns evolved.

Bistability and Stochastic Fluctuations in Spatially Homogeneous
Systems. Kinetic bistability fundamentally results from positive
feedback in the underlying enzymatic reactions. For this system,
kinetic observations revealed distinctively asymmetrical behavior
between the kinase and phosphatase reactions. PIP5K exhibited at
least second-order positive feedback with increasing reaction rate
as PI(4,5)P2 membrane concentration increased (SI Appendix,
Effective Mean Rate Equation). In contrast, the native and engi-
neered 5′-PPtases catalyzed the dephosphorylation of PI(4,5)P2
with simple bimolecular or linear positive-feedback kinetics, re-
spectively (SI Appendix, Figs. S4 and S5 and Enzyme Kinetics).
Comparing the association rate constants for Alexa647-PIP5K and
Cy5-DrrA-OCRL revealed that the phosphatase binds to mem-
branes approximately twice as fast as PIP5K (SI Appendix, Fig. S11
E–H). To further investigate the origins of kinetic bistability in this
reaction system, and to separate this from the secondary process
of spontaneous pattern formation, we ran the reactions on sup-
ported membrane microarrays (Fig. 3A). Metal structures fabri-
cated onto the underlying glass substrate impose barriers to lateral
diffusion within the membrane. Lipids and membrane-associated
proteins diffuse freely within each confined corral but cannot cross
the barriers (21, 28). However, at only ∼10 nm high, these barriers
pose no impediment to diffusion or exchange of proteins within
the adjoining 3D solution. Arrays of geometrically defined mem-
brane corrals, all in contact with an identical 3D solution, can be
studied in parallel.
We focus initially on the reaction system in confined mem-

brane corrals of 5 × 5 μm. At this size scale, lateral diffusion
within the membrane is sufficiently fast for all components that
no PIP lipid patterns form and each corral provides a spatially
homogeneous reaction system. All corrals initially had the same
lipid composition and were in contact with the same enzyme
solution. The copy number of enzymes on the membrane surface
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at any moment varied as a function of PIP composition and
could be less than 1 molecule per square micrometer in some
cases (Fig. 3B). As such, the behavior of PIP lipid phosphorylation
reactions in confined corrals exhibits significant effects from sto-
chastic fluctuations in enzyme copy number resulting from mem-
brane binding and unbinding events. As the reactions progressed,
compositions of individual corrals initially tracked similarly, until
variations caused them to diverge, and ultimately converge onto
1 of the 2 final composition states (Fig. 3C and SI Appendix, Fig.
S12 and Movie S2). Varying the kinase–phosphatase concentra-
tion ratio and enzyme type influenced the final reaction outcome,
but bistability is robust (Fig. 3D). Reaction trajectories from an
array of 5 × 5-μm membrane corrals illustrating this kinetic
bistability are plotted in Fig. 3E. After steady state was reached,
further changes in composition were not observed in corrals, even
though individual reactions remained active and all individual
components continued to turn over. No communication between
corrals was observed (SI Appendix, Fig. S12).
To quantitatively analyze bistability in this system, we defined

the reaction coordinate, x, as x≡ σPIP2=ðσPIP2 + σPIP1Þ, where σPIP1
and σPIP2 represent the membrane surface densities of PI(4)P

and PI(4,5)P2, respectively. The effective mean reaction rate can
be expressed as follows:

dx
dt

= k+ · ð1− xÞ− k− · x.

In this representation, k+ and k− are functions that characterize
the mean reaction rate per molecule of the forward and reverse
reactions; their values depend on the concentrations of en-
zymes in solution and the PIP lipid composition (SI Appendix,
Effective Mean Rate Equation). Feedback exhibited by the en-
zymatic reactions is reflected in the x dependence of k+ and k−.
At least second-order feedback [e.g., k+2 ≠ 0 in a power series
representation of k+ = ðk+0 + k+1 x+ k+2 x

2 + . . .Þ] is necessary for
macroscopic kinetic bistability (intrinsic bistability), in which
2 different lipid compositions exhibit stable steady states (Fig.
3F) (29). However, apparently bistable behavior can result even
with only linear feedback due to stochastic fluctuations. This
phenomenon is sometimes referred to as stochastic bistability
(30–32). We examined the origin of the experimentally ob-
served bistability by analyzing the feedback profiles of the
enzymes.
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Fig. 3. Kinetic asymmetry and compositional fluctuations regulate kinase–phosphatase competitive reaction. (A) Chromium pattern SLBs incubated with
20 nM Alexa647-DrrA (blue, Top) and 20 nM Alexa488-PLCδ (yellow, Bottom). (B) Soluble enzymes bind stochastically to membrane corrals. Image of
Alexa647-PIP5K (magenta) bound to membrane corrals containing PI(4,5)P2. (C ) Kinase–phosphatase reaction exhibits bistability when reconstituted in
5 × 5-μm corrals in the presence of 50 nM PIP5K and 30 nM DrrA-OCRL (SI Appendix, Movie S2). (D) Final reaction outcome is regulated by the kinase–
phosphatase concentration ratio. Competitive reactions reconstituted in the presence of 30 nM PIP5K and 6, 10, 12, or 15 μM OCRL (Left to Right). (E )
Reaction trajectories for the bistable kinase–phosphatase reaction reconstituted in 5 × 5-μm corrals in the presence of 50 nM PIP5K and 30 nM DrrA-OCRL.
Trajectories color reflects final reaction outcome—PI(4)P (blue) or PI(4,5)P2 (yellow). (F ) Kinetic phase space for an intrinsically bistable kinase–phos-
phatase competitive reaction ðk+

0 = k−
0 , k

+
1 = k−

1 , k
+
2 = k−

2 Þ (SI Appendix, Enzyme Kinetics). (G) Experimental feedback profiles for the various enzymes
measured in the presence of OCRL, DrrA-OCRL, and PIP5K. The following equations were used for curve fitting: −ðk−

0 xÞ for OCRL, −ðk−
0 +k−

1 xÞðxÞ for DrrA-
OCRL, and ðk+

0 + k+
1 x + k+

2 x
2Þð1− xÞ for PIP5K. x = σPIP2=ðσPIP1 + σPIP2Þ. (H) Reaction trajectories independently measured in 5 × 5-μm corrals in the presence of

either 2.5 nM PIP5K or 10 pM DrrA-OCRL (n = 256 corrals; yellow or blue shading equals SD). Initial membrane compositions: 96% DOPC, plus 4% PI(4)P for
PIP5K or 4% PI(4,5)P2 for DrrA-OCRL reaction. (I) Images of the final configuration for a series of membrane microarray reactions beginning at different
starting PIP compositions (xinitial). Initial membrane composition: 96% DOPC, 2% PI(4)P, and 2% PI(4,5)P2 for reactions in C, D, and E. All competitive
reactions contained 20 nM Alexa488-PLCδ, and 20 nM Alexa647-DrrA to visualize PIP lipids.
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We measured individual enzymatic reaction rates over the full
range of PIP lipid compositions to experimentally map the
functional forms of k+ and k− for the various enzymes. The na-
tive phosphatases, OCRL and INPP5E, exhibited linear scaling
of reaction rate with x, indicating k−PPTASE is a constant; these
enzymes exhibit no feedback (Fig. 3G and SI Appendix, Fig. S4).
For phosphatases engineered with a single PI(4)P product-
binding domain, the reaction rate was nearly parabolic and was
fit by k−DrrA−PPTASE = k−0 + k−1 ð1− xÞ, where first-order positive
feedback in the PI(4)P product is represented by the k−1 ð1− xÞ
term (Fig. 3G and SI Appendix, Fig. S5). Fitting 5′-PPtase kinetic
traces using a model with higher order positive feedback did not
improve the overall fit (SI Appendix, Fig. S5H). In contrast, the
reaction rate for PIP5K was highly asymmetrical and required
terms up to second order, k+PIP5K = k+0 + k+1 x+ k+2 x

2, to fit kinetic
data (Fig. 3G). In the case of the PIP5K, binding at least 2 PI(4,5)P2
lipids in the membrane establishes strong second-order positive
feedback. The enzymes used in these experiments exhibit suffi-
cient nonlinear feedback to enable macroscopic bistability in the
mean reaction rate. However, for many of the experimental en-
zyme concentrations studied here, macroscopic bistability was not
achieved and the system exhibited only stochastic bistability, which
turns out to be an important distinction to which we return later.
In Fig. 3I, the final states of several membrane corral arrays are

depicted for reactions starting from a range of initial PIP membrane
compositions. Although the relative probability of reaching the
PI(4)P- or PI(4,5)P2-enriched steady states clearly depended on
starting composition, both states were still accessible from a wide
range of initial PIP lipid compositions. This rules out the possibility
that the final state of an individual reaction corral is dictated by
subtle variations in its starting lipid composition. Instead, the system
experiences large fluctuations in PIP composition, and these were
observed in the individual reaction trajectories (Fig. 3H). Such large
composition fluctuations could not arise from intrinsic noise in
PIP lipid copy number because there were ∼108 PIP lipids in

even the smallest (∼4 μm2) membrane corrals; intrinsic PIP lipid
copy number fluctuations would not exceed ∼0.01% (33, 34).
The observed large fluctuations in composition stem from sto-
chastic binding and desorption of enzymes on the membrane
surface and the resulting fluctuations in reaction velocity.

Geometric Constraints Regulate Reaction Outcome. A distinct fea-
ture of this kinase–phosphatase competitive reaction, which we
term geometry sensing, is that the final outcome is strongly de-
pendent on the geometric confinement of the membrane reaction
environment. The reaction system depicted in Fig. 4 A and B is
tuned such that it universally converges on the PI(4)P-dominated
state in large areas; this system is not macroscopically bistable.
However, the array of 5 × 5-μm corrals clearly exhibits bistability,
which we can now identify must be stochastic bistability. Perhaps
most surprisingly, in the smallest corrals (∼2 × 2 μm), the system
deterministically reached the PI(4,5)P2-dominated state (Fig. 4B,
SI Appendix, Fig. S13 A and B and Movie S3), rather than converge
on a 50–50 outcome. This dynamic configuration could be actively
maintained over a period of several minutes. The geometry-sensing
effect was also evident on membrane-coated microbeads of dif-
ferent sizes (Fig. 4 C and D and SI Appendix, Fig. S13C and Movie
S4) (35), affirming that it resulted from the size and shape of the
membrane regions, rather than boundary effects. This was further
supported by the uniform binding and diffusivity of kinase and
phosphatase enzymes on the membranes within corrals (SI Ap-
pendix, Fig. S14). This general phenomenon was observed for all
kinase–phosphatase combinations, both native and engineered.

Stochastic Geometry Sensing Based on Kinetic Asymmetry. One fea-
ture of any molecular reaction system that is intrinsically dependent
on system size is the spectrum of stochastic composition fluctuations
generated by the reaction (33, 34). Thus, rather than responding to
geometric size per se, we propose that this kinase–phosphatase re-
action is differentially governed by stochastic fluctuations within the
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reaction system itself. Under conditions of stochastic geometry
sensing, the average reaction is tuned such that the phosphatase has a
slight kinetic advantage. In large regions, where the individual reac-
tion trajectories track much closer to the ensemble average, the final
result of a PI(4)P-dominated membrane composition is observed
with high probability. In smaller membrane corrals, fluctuations in
composition are relatively larger and individual reaction trajecto-
ries explore a wider range of compositions. If a particular reaction
reaches high enough PI(4,5)P2 density, then the kinase reaction
begins to dominate and drives the system to the PI(4,5)P2-domi-
nated steady state. The observed system behavior is determined by
a first-passage probability rather than the mean kinetic rate. The
apparent final state is thus not necessarily formally stable, but it is
metastable for experimentally long periods of time.
We tested this hypothesis with stochastic kinetic modeling of a

simple kinase–phosphatase reaction system (Fig. 5A). In this
model, the kinase exists in 1 of 3 states, fE+

0 ,E
+
1 ,E

+
2 g, corre-

sponding to solution, singly, and doubly bound to PI(4,5)P2 lipids
in the membrane. The phosphatase is treated similarly, although
with only 2 states, fE−

0 ,E
−
1 g, mimicking the single PI(4)P lipid

binding of the engineered phosphatase construct. Conversion

among these states is governed by mass action with kinetic rate
constants fk−1, k+1, k−2, k+2g and is modeled stochastically using
a Gillespie algorithm (36) (SI Appendix, Stochastic Simulations).
Similar to the corral experiments, the system exhibited kinetic
bistability (Fig. 5B) and the reaction outcome was directly re-
lated to the ratio of kinase and phosphatase (Fig. 5 C and D).
When modeling parameters were based on measured membrane
binding kinetics and catalytic rates for the enzymes, this model
reproduced the basic features of stochastic geometry sensing
(Fig. 5 E and F). Under these conditions, the mean reaction rate
(Fig. 5E) did not exhibit bistability; the behavior of the model
system resulted from stochastic bistability only. When model
parameters are adjusted to strengthen positive feedback and
achieve macroscopic bistability in the mean reaction rate (Fig.
5G), the final reaction outcome was invariant with membrane
corral size and stochastic geometry sensing was lost (Fig. 5H).
Geometry sensing is thus not a simple by-product of bistability.
Geometry sensing with essentially deterministic outcome, such

as we experimentally observe, requires that the system exhibit
strongly asymmetrical response to fluctuations in composition.
Binding kinetics of enzymes to the membrane provides a source

X

N
o

rm
a

li
ze

d
d

x
/d

t

0%4%49%

11%41%78%

62%74%90%

F

E

SIZE

1%15%56%85%

H
44%47%49%49%

SIZE

80%

88%

92%

0.5 1

-1

0

1

X

N
o

rm
a

li
ze

d
d

x
/d

t

0.5 1

-1

0

1

X

N
o

rm
a

li
ze

d
d

x
/d

t

0.5 1

-1

0

1

Macroscopic bistability

Stochastic geometry sensing

S
to

c
h

a
st

ic
 

g
e

o
m

e
tr

y
 s

e
n

si
n

g

Experimental conditions
Stochastic bistability

G

SIZE

K
in

a
se

 >
 P

P
ta

se
 K

in
e

tics

J

I

Bistability

GlassGlass

KINASE PPTASE

PIP
2

PC

PIP

N
o

rm
a

li
ze

d
 P

I(
4

,5
)P

2
d

e
n

si
ty

-20 0 20 40 60 80 100 120 140

0.2

0.4

0.6

0.8

1.0

+ KINASE-PPTASE

0

Time (seconds)

P
ro

b
. 

K
in

a
se

 w
in

n
in

g

Ratio [Kinase]/[PPtase]

(       ) corrals in (D)

4 6 8 10 12
0

0.2

0.4

0.6

0.8

1.0

[Kinase]

97%61%21%9%3%

Stochastic bistability PI(4,5)P
2

PI(4)P

A

D

B

C

0%0%3%49%

PI(4,5)P
2

PI(4)P

B
in

d
in

g
 K

in
e

tics

K
in

a
se

 =
 P

P
ta

seS
to

c
h

a
st

ic
 

B
is

ta
b

il
it

y

PI(4,5)P
2

PI(4)P

0

x =

1

Fig. 5. Stochastic geometry sensing based on kinetic asymmetry between opposing enzymes. (A) Scheme of kinase (3-state) and phosphatase (2-state)
membrane binding mechanism was modeled stochastically using a Gillespie algorithm, while enzyme activity was modeled continuously following a
Michaelis–Menten reaction mechanism (SI Appendix, Effective Mean Rate Equation). (B) Kinetic traces from a stochastic simulation of the reaction mechanism
described in A. (C and D) Kinetic phase for stochastic simulations performed with different kinase–phosphatase concentrations. (E) Plot of kinetic phase space
for experimentally measured parameters. (F) Final reaction outcomes for stochastic simulations shown for system (E) performed on a variety of corral sizes.
System exhibits basic features of stochastic geometry sensing. (G) Kinetic phase space plot for a macroscopically bistable kinase–phosphatase competitive
reaction. (H) Final reaction outcomes for stochastic simulations of system (G). (I) Kinetic phase space plot for kinase–phosphatase competitive reaction with
only linear positive feedback, lacks macroscopic bistability and exhibits stochastic bistability. (J) Final reaction outcomes for stochastic simulations of system
shown in I using enzymes with different binding kinetics. In all cases, the overall affinity of the enzymes for the membrane is identical, and correspondingly,
they all have the same kinetic phase (G). (F, H, and J) Simulations were performed on membranes with dimensions 0.25, 0.5, 1, and 2 μm2. The initial
membrane composition x = 0.5 [i.e., 50% PI(4)P and 50% PI(4,5)P2]. Percentages represent PI(4,5)P2-dominated corrals for n = 2,000 simulation per corral size.
For parameters, see SI Appendix, Stochastic Simulations, Table S1, and Supporting Code S1.

15018 | www.pnas.org/cgi/doi/10.1073/pnas.1901744116 Hansen et al.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1901744116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1901744116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1901744116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1901744116/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1901744116


of temporal asymmetry in this system. This binding kinetics es-
tablishes a response time for the density of enzymes recruited to
the membrane based on the changing membrane PIP composi-
tion. We examined the effect of this temporal asymmetry by
simulating a series of reaction systems that have identical mean
reaction velocity functions (Fig. 5I and SI Appendix, Fig. S15),
but differ in the ratios of membrane binding kinetics between
kinase and phosphatase. For this calculation, we chose a minimal
model system in which both kinase and phosphatase exhibit only
linear feedback; both were modeled with the 2-state mechanism
as depicted for the phosphatase (Fig. 5A) with the kinase having
a membrane binding rate equal to or faster than the opposing
phosphatase (Fig. 5J). This system exhibits stochastic bistability
under conditions in which the enzymes exhibited similar mem-
brane binding kinetics (Fig. 5J, top row). Stochastic geometry
sensing with the kinase reaction favored in smaller corrals,
however, was only observed when the kinase exhibited faster
membrane binding kinetics than the phosphatase (Fig. 5J, middle
2 rows). In the case where the kinase bound overwhelmingly fast
(Fig. 5J, bottom row), the competitive reactions were no longer
kinetically balanced and the phosphorylation reaction dominated
in all sizes—geometry sensing was also lost.

Polarization under Spatial Confinement. The reactions remained
spatially homogeneous within corrals smaller than ∼10 μm, due to
rapid lateral diffusive mixing within the membrane. However,
under larger-scale geometric constraints, the system adopted
spatially defined patterns in response to the constraint geometry.
Increasing the size of the corrals to ≥10 × 10 μm allowed the
competitive membrane reaction to spontaneously polarize into
coexisting regions enriched in PI(4)P and PI(4,5)P2 (Fig. 6A). The
process of polarization is revealed in a time sequence of images
(Fig. 6A). The kinase reaction initially gained a foothold in the
partially confined corners of the corral (Movie S5). Eventually the
PI(4,5)P2 enrichment in 2 adjacent corners merged and the system
evolved to a relatively stable polarized state. Thus, polarization
appears to result from a combination of geometry sensing, to first
locate corners, followed by pattern evolution through a reaction
diffusion process consisting of enzymatic reactions and lipid dif-

fusion within the membrane. Many different reproducible pat-
terned states resulted from different types of spatial confinement
(Fig. 6B). These effects did not require that the membrane region
be entirely contained. The PI(4,5)P2 membrane composition
dominated within a semibounded feature that was in open,
diffusive contact with the surrounding phosphatase-dominated
PI(4)P membrane (Fig. 6C).

Discussion
Symmetry breaking and the establishment of spatial patterns of
molecules in a dynamic, fluid membrane environment is a hall-
mark of cellular organization in living systems. The physical basis
of these phenomena has attracted scientific attention for de-
cades. Alan Turing’s landmark paper (16), which highlighted the
formation of stable patterns in reaction–diffusion systems, has
been influential on our understanding of how biological signaling
systems may self-organize (4, 15). Turing patterns are deterministic
solutions to continuum differential equations describing the dis-
tribution of molecular species in a reaction–diffusion system. The
requirements under which such stable solutions can be achieved
are restrictive, and only a handful of systems exhibiting Turing
patterns have been experimentally realized (37–39).
One prominent example of a biological pattern forming system

that operates on the membrane surface is the bacterial Min
protein oscillator. This system produces propagating waves
(39) and standing oscillatory patterns (40) that self-organize on
membrane surfaces in vitro and in vivo. The Min system also re-
sponds to geometric confinement (41), albeit in distinctively dif-
ferent ways than we observe in the kinase–phosphatase reactions.
For example, when the Min oscillator is geometrically constrained
on membranes that are smaller than its characteristic wavelength,
Min waves can cross 2D geometric boundaries on the membrane,
allowing patterns to remain spatially coupled with neighboring
membrane corrals (41). This feature stems from the fact that the
Min waves are a reaction diffusion process that includes a spatially
inhomogeneous diffusive component both on the membrane sur-
face and in the adjoining solution. In contrast, no such correla-
tion is observed in the kinase–phosphatase experimental system
(SI Appendix, Fig. S12). Additionally, kinetic modeling of the
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Fig. 6. Polarization and geometry sensing of spatially confined kinase–phosphatase competitive reactions. (A) Time sequence showing polarization of 20 ×
20-μm corrals in the presence of 50 nM PIP5K, 200 nM DrrA-INPP5E, 20 nM Alexa488-PLCδ, and 20 nM Alexa647-DrrA. (B) Examples of stochastic geometry
sensing and polarization in corrals. (C) Semibound corral supports stochastic geometry sensing that favors kinase reaction. Competitive reactions (B and C)
reconstituted in the presence of 50 nM PIP5K, 40 nM DrrA-OCRL, 20 nM Alexa488-PLCδ, and 20 nM Alexa647-DrrA. Initial membrane composition: 96% DOPC,
2% PI(4)P, and 2% PI(4,5)P2.
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kinase–phosphatase system reproduced geometry sensing under
strictly homogeneous solution conditions. The formation of Min
protein patterns also requires a molecular timing mechanism that
is regulated by the local accumulation of the MinE ATPase,
followed by a MinD-induced conformational change in MinE that
drives dynamic instability of their membrane interaction (42).
The kinase–phosphatase system is far simpler, with only a local
dynamic equilibrium between solution and membrane-associated
enzymes determining the prevailing reaction. We speculate that
the phosphatidylinositol 3-kinase (PI3K) and phosphatase and
tensin homolog (PTEN) may function in a similar manner to
regulate cell polarity in eukaryotic cells.
In Dictyostelium and hematopoietic cells, PTEN and PI(3,4,5)P3

lipids exhibit mutually exclusive localization at the plasma
membrane (8, 9, 43, 44). This consists of PIP3-enriched/PTEN-
excluded and PTEN-enriched/PIP3-excluded states that are
strikingly similar to the reciprocal localization of PIP5K and 5′-
PPtases observed in the PIP compositional patterns reported in
this study. This reciprocal localization pattern arises from at least
2 opposing positive-feedback loops: (i) Ras(GTP)-PI3K-PIP3
and (ii) PTEN-PIP2 (45, 46). Similar to the enzymes described in
our system, PTEN localization and activity are thought to be
directly regulated by compositional sensing of PI(4,5)P2 lipids, as
well as PI(4,5)P2 independent mechanisms that remain unknown
(47). Concerning the PI3K branch of this polarity pathway,
compositional sensing is generally thought to be indirect in the
form of interactions between PIP3 and guanine nucleotide ex-
change factors (GEFs) that regulate small GTPase activity and
consequently PI3K activation (48).
For the system described here, both PIP5K and the 5′-PPtases

display a continuum of membrane binding affinities that depend on
the local PIP lipid composition [e.g., 0 to 4% PI(4,5)P2]. The kinase
transiently associates with the lipid bilayer containing low densities
of PI(4,5)P2, while higher PIP2 densities support long-lived mem-
brane interactions. Although compositional sensing of PIP lipids
may underlie the complex network of positive- and negative-
feedback loops the control the PI3K-PTEN polarity pathway,
further biochemical characterization of those enzymes is required.
Early studies of stochastic effects on bistable reaction systems

have identified system size effects (49) in the time-averaged
probability distribution. Thus, although geometry sensing is in
principle possible for systems with macroscopic bistability, we
note that our experimental system behavior does not reflect the
infinite time-averaged distribution. It is evident from the experi-
mental data that the timescale to first reach a steady state is much
faster than the time to switch between states. As such, the exper-
imental system behavior is dominated by first-passage probabilities
and we observe that such geometry sensing is effectively achieved
primarily for systems that are macroscopically monostable.
The stochastic geometry sensing effect we describe here is not

the result of a Turing instability in a reaction–diffusion system
(16). We make this distinction to emphasize the fact that sto-
chastic geometry sensing is simpler to achieve than a true Turing
instability (4) and may therefore be more widespread in biology.
The distinction between stochastic geometry sensing and Turing
instability is most easily seen by noting that the geometry-sensing
effect exists in spatially homogeneous reaction systems. As
highlighted in Fig. 4 A and B, the reaction tends uniformly to the
PI(4)P dominated state in larger regions and tends uniformly
to the PI(4,5)P2 state in the smallest corrals. The underlying
mechanism for this differential response, confirmed by kinetic
modeling, is intrinsically stochastic; it has no analog in a mean or
continuum model for such a system.
The experiments and modeling presented in this work estab-

lish a distinct mechanism for stochastic geometry sensing under
spatially homogenous conditions. Our experimental results fur-
ther illustrate how partial confinement can produce similar ef-
fects to complete confinement (e.g., Fig. 6C). One of the more

striking, and perhaps biologically significant, effects we observed
is the tendency for the system to polarize in slightly larger con-
fined regions (e.g., 20 × 20 μm). In Fig. 6A of the main text, a
series of images tracking the development of a polarized pattern
reveals that the PI(4,5)P2 initially becomes enriched in corral
corners. This process resembles the stabilized PI(4,5)P2 domain
observed under partial confinement (Fig. 6C) mentioned above.
In both cases, partial confinement hinders escape of PI(4,5)P2 as
it is produced by membrane-bound kinase, thus triggering the
kinase positive-feedback loop. This allows PI(4,5)P2 concentra-
tions to grow higher than average, which in turn favors re-
cruitment of more kinase to that location. This is the stochastic
geometry-sensing mechanism. In the case of polarization, how-
ever, the confinement is too large to be entirely homogenized by
diffusion. Instead, the evolution of the system involves an addi-
tional reaction–diffusion process. Stochastic geometry-sensing
effects appear to be able to nucleate a pattern [e.g., PI(4,5)P2
enrichment in the corners], which then seeds a reaction–diffu-
sion process that further evolves the pattern into the polarized
state. With respect to a Turing instability, for polarization and
other more complex patterns, in which stochastic geometry
sensing seeds a reaction–diffusion process, it is possible that a
Turing instability is achieved at some point. However, we do not
currently have sufficient information about these processes to
make definitive distinctions. What is certain is that stochastic
geometry sensing can be achieved within isolated regions of
membranes as well as partially confined regions based only on
the fluctuation mechanism, without need for a Turing instability.
The basic requirements for stochastic geometry sensing are

reaction feedback, at least stochastic bistability, and temporal
asymmetry in membrane binding kinetics of the competing en-
zymes. These basic properties are shared by other kinase–phos-
phatase reaction systems and are also found in other biological
signaling processes, such as Ras activation by GEFs and de-
activation by GTPase-activating proteins (GAPs) (21, 50–52).
The environment inside a living cell is subject to a diverse range
of geometrical confinements (53), including membrane sheets,
blebs, tubules, vesicles, and organelles (54–56). Additionally, the
actin cytoskeleton can impose barriers that confine the diffusive
movement of proteins and lipids laterally in the plasma mem-
brane (57, 58). Basic membrane structures, such as a filopodium,
produce a geometrical constraint on the cell membrane reaction
environment that resemble some experimental conditions stud-
ied here (e.g., Fig. 6C). We suggest that stochastic geometry
sensing is likely to contribute to the spatial patterning of mole-
cules, such as PIP lipids, in cellular membranes.

Materials and Methods
Molecular Biology. Genes coding for Legionella pneomophila DrrA/SidM
(accession number Q5ZSQ3.1), human phosphatidylinositol 4,5-bisphosphate
phosphodiesterase delta-1 PH domain (PLCδ; accession number P51178.2),
human inositol polyphosphate-5-phosphatase E (INPP5E; accession number
Q9NRR6), human oculocerebrorenal syndrome of Lowe inositol poly-
phosphate 5-phosphatase (OCRL; accession number Q01968), and human
phosphatidylinositol 4-phosphate 5-kinase type-1β (PIP5Kβ; accession num-
ber O14986) were synthesized by GeneArt (Invitrogen) as codon-optimized
open reading frames (ORFs). Gene encoding enzymes and lipid binding
domains were subcloned into bacterial or baculovirus protein expression
vectors containing coding sequences with different solubility and affinity
tags. PIP5Kβ was cloned into a modified FAST Bac1 vector using ligation-
independent cloning (59, 60). The complete ORFs of all vectors used in this
study were sequenced by the University of California, Berkeley, DNA se-
quence facility to make sure no deleterious mutations were acquired during
cloning. We screened protein expression conditions to maximize yield and
solubility in both bacteria (BL21 DE3 Star, pRARE, Rosetta, etc.) and Spo-
doptera frugiperda (Sf9) insect cells.

Protein Expression and Purification. See SI Appendix.
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Preparation of Small Unilamellar Vesicles. The following lipids were used to
generated small unilamellar vesicles (SUVs): 1,2-dioleoyl-sn-glycero-3-phosphocholine
(18:1 DOPC; Avanti; 850375C), L-α-phosphatidylinositol-4-phosphate [brain
PI(4)P; Avanti; catalog number 840045X], L-α-phosphatidylinositol-4,5-
bisphosphate [brain PI(4,5)P2; Avanti; 840046X], 1,2-dipalmitoyl-sn-glycero-3-
phosphoethanolamine-N-(lissamine rhodamine B sulfonyl) (16:0 Liss Rhod PE;
Avanti; 810158C), 1,2-dioleoyl-sn-glycero-3-phospho-L-serine (18:1 DOPS;
Avanti; 840035C). In the main text, 16:0 Liss Rhod PE is referred to as Rhod PE.
Brain PI(4)P and PI(4,5)P2 were purchased as 0.25 mg/mL stocks dissolved in
chloroform:methanol:water (20:9:1).

To make liposomes, we combined 2 μmol of total lipids in a 35-mL glass
round-bottom flask containing 2 mL of chloroform. Lipids were dried to a
thin film using rotary evaporation with the glass round-bottom flask
submerged in a 42 °C water bath. After evaporating all of the chloroform,
the round-bottom flask was flushed with nitrogen gas for at least 30 min.
The lipid film was hydrated and resuspended in 2 mL of PBS (pH 7.2),
making a final concentration of 1 mM total lipids. All lipid mixtures
mentioned in the manuscript are expressed as molar percentages [e.g.,
98% DOPC, 2% PI(4)P]. For example, a 1 mM lipid mixture containing 98%
DOPC and 2% PI(4)P is equivalent to 0.98 mM DOPC and 0.02 mM PI(4)P. To
generate 30- to 50-nm SUVs, we extruded 1 mM total lipid mixtures
through a 0.03-μm pore size 19-mm polycarbonate membrane (Avanti;
610002) with filter supports (Avanti; 610014) on both sides of the PC
membrane.

Preparation of Supported Lipid Bilayers. We created SLBs on 25 × 75-mm
cover glass (IBIDI; 10812). Cover glass was first cleaned with 2% Hellmanex
III (Fisher; catalog number 14-385-864) heated to 60 to 70 °C in a glass
Coplin jar for 30 min. We then extensively washed the cover glass with
MilliQ water, before etching the cover glass with Pirahna solution (1:3,
hydrogen peroxide:sulfuric acid) for 10 to 15 min the same day SLBs were
formed. Etched cover glass, in water, was rapidly dried with nitrogen gas
before adhering to a six-well sticky-side chamber (IBIDI; catalog number
80608). To form a SLB, we flowed 100 to 150 μL of 0.25 mM SUVs diluted in
PBS (pH 7.2) into the dry chamber. After 30 min, IBIDI chambers are
washed with 5 mL of PBS (pH 7.2) to remove nonabsorbed SUVs. Mem-
brane defects are blocked for 5 min with a 1 mg/mL β-casein (Thermo
Fisher Science; catalog number 37528) diluted in 1× PBS (pH 7.4). Before
using β-casein, frozen aliquots of 10 mg/mL β-casein were thawed,
centrifuged for 30 min at 21,370 × g, and 0.22-μm syringe filtered. After
blocking SLBs with β-casein, membranes were washed with 2 mL of PBS.
Right before our experiments, SLBs were washed with 1 mL of kinase
buffer.

Kinetics Measurements. The kinetics of PI(4)P phosphorylation and PI(4,5)P2
dephosphorylation was measured on SLBs using TIRF microscopy. The fol-
lowing reaction buffer was used for all of our experiments: 20 mM Hepes
(pH 7.0), 150 mM NaCl, 1 mM ATP, 5 mM MgCl2, 0.5 mM EGTA, 200 μg/mL
β-casein, 20 mM BME, and 20 mM glucose. For all experiments, we moni-
tored the change in PI(4)P or PI(4,5)P2 membrane density using a solution
concentrations of 20 nM Alexa647-DrrA(544-647) or 20 nM Alexa488-PLCδ,
respectively. The concentration of lipid sensor used for the kinetic assays
does not interfere with the kinase or phosphatase activity. By comparing the
intensity of fluorescence lipid sensors measured by TIRF microscopy in the
presence of both 20 nM and near-saturating micromolar concentrations (SI
Appendix, Fig. S1), we estimate that <0.1% of the PIP lipids are bound to a
lipid sensor at any point during the kinetic experiments. Assuming a foot-
print of 0.72 nm2 for DOPC lipids (61, 62), we calculated a density of 2.8 × 104

lipids/μm2 for 2% PI(4)P or 2% PI(4,5)P2.

Reconstitution of PIP Lipid Compositional Pattern. Liposomes containing an
initial lipid composition of 96% DOPC, 2% PI(4)P, and 2% PI(4,5)P2 were
used to make SLBs on Piranha etched glass coverslips. Visual inspection of
both PIP lipid sensors showed highly dynamic membrane-bound proteins
that rapidly diffused on the 2D membrane surface before dissociating.
Before initiating reaction with lipid-modifying enzymes, 20 nM Alexa488-
PLCδ and 20 nM Alexa647-DrrA(544-647) were added to the flow cells and
imaged using TIRF microscopy. To initiate PIP kinase–phosphatase com-
petitive reactions, PIP5K and a 5′-PPtase were flowed into the reaction
chamber. PIP lipid sensors at concentrations of 20 nM Alexa488-PLCδ and
20 nM Alexa647-DrrA(544-647) were included with the catalytic domains
to maintain the initial PIP lipid sensor concentrations. By systematically
testing different combinations and concentrations of lipid-modifying en-
zymes, we established conditions that allow the balanced activities of
PIP5K and a 5′-PPtase (native and engineered) to drive bistability and

spatial patterning of PI(4)P and PI(4,5)P2 lipids of supported membranes.
Compositional patterns were typically visualized using a 60× TIRF objective
at a rate of four frames per minutes. Experiments were performed at
21 to 23 °C.

Bistable Competition Reactions Reconstituted on Chromium Pattern Membranes.
Kinase–phosphatase competitive reactions were reconstituted on chromium-
patterned membrane surfaces using balanced in PIP5K and OCRL (or DrrA-
OCRL) activity such that the resulting final reaction outcome was ∼50% PI(4)
P and 50% PI(4,5)P2 on 5 × 5-μm corrals. These conditions served as a ref-
erence to reactions reconstituted on smaller (2 × 2 μm) or larger patterns
(>10 × 10 μm). The experiment presented in Fig. 3C, for example, was
designed to achieve a ∼50–50 reaction outcome beginning with the fol-
lowing membrane composition: 96% DOPC, 2% PI(4)P, and 2% PI(4,5)P2. The
initial membrane composition [i.e., PI(4)P:PI(4,5)P2 ratio] was also varied to
determine how the final reaction outcome was altered (Fig. 3I). Following
injection of the enzymes into the reaction chambers, we typically observed a
subtle change in the PIP lipid sensor intensities. This was due to a variety of
factors, including (i) reequilibration of the lipid sensors, (ii) competition
between the enzymes and sensors, and (iii) 1 enzyme functioning faster
than the opposing enzyme.

Microscope Hardware and Imaging Acquisition. Single-molecule imaging ex-
periments were performed on an inverted Nikon Eclipse Ti microscope using a
100× Nikon objective (1.49 N.A.) oil-immersion TIRF objective. Macroscopic
spatial patterning of PIPx lipid domains and the chromium-patterned SLB
were visualized using a 60× Apo TIRF oil-immersion objective (1.45 N.A.). We
manually controlled the x-axis and y-axis positions using an ASI stage and
joystick. All images were acquired on an iXon Ultra EMCCD camera (Andor
Technology). Fluorescently labeled proteins were excited with either a 488-,
561-, or 637-nm diode laser (OBIS laser diode; Coherent) controlled with a
Solemere laser driver using analog and digital modulation (0 to 5 V). The
power output measured through the objective for single-particle imaging
was 1 to 3 mW. For dual-color imaging of spatial PIP lipid patterns on SLBs,
samples were excited with 0.2- to 0.5-mW 488-nm and 0.2- to 0.5-mW 637-
nm light, as measured through the objective. Excitation light was passed
through the following dichroic filter cubes before illuminating the sample:
(i) ZT488/647rpc and (ii) ZT561rdc (ET575LP) (Semrock). Fluorescence emis-
sion was detected on an ANDOR iXon Ultra EMCCD camera position after a
Sutter emission filter wheel housing the following emission filters: ET525/
50M, ET600/50M, and ET700/75M (Semrock). All experiments were per-
formed at 21 to 23 °C. All microscope hardware was controlled using
Micro-Manager, version 4.0 (63). Note that the nonuniform field of illu-
mination observed in low-magnification images acquired using a 60×
objective results from the high-power density of focused light created by
the optics used for TIRF microscopy. This does not represent nonuniform
binding the PIP lipid sensors (see Fig. 1C for example). For quantitative
analyses, the nonuniform field of illumination is always corrected (using
the ImageJ/Fiji plugin called shading corrector). However, we considered
the raw images preferable since they convey the point without any need
for illumination scaling.

Stochastic Simulations. We used Gillespie-based stochastic simulations to
evaluate the stochastic effect of enzyme binding kinetics on the bistable
kinase–phosphatase reaction outcomes. The membrane composition, x,
within a small corral (approximately square micrometer) was approximated
to be homogeneous (the diffusion coefficient of lipids in supported mem-
branes is ∼3 μm2/s). Since the stochastic fluctuations in this system are pri-
marily due to low number of membrane-bound enzymes (∼1 to 10 molecules
per μm2 in the initial reaction), the protein copy number on membranes was
simulated stochastically using the Gillespie algorithm (36). Each molecular
species was expressed as the number of molecules. Both unimolecular
ðkiσidtÞ and bimolecular reactions ðkiσiσjdtÞ were expressed as the proba-
bilities of the reaction occurring in the next time interval, dt, such that the
rate parameters listed in SI Appendix, Table, have units of seconds−1. The
processive catalysis by membrane-bound enzymes (as analyzed in Fig. 5A
and SI Appendix, Effective Mean Rate Equation) was approximated with
a deterministic chemical flux described by a mean rate equation:
dx=dt = J+ + J−, where J+ = ðkcat,E1σE1 + kcat,E2σE2ÞσPIP1 and J− is defined simi-
larly (solution enzyme activities are considered to be negligible for enzymes
that are processive only on membranes). In these simulations, all stochastic
effects are therefore coming from enzyme recruitments, dissociations, and
transitions into higher-order feedback complexes. All simulations began
with x = 0.5 and all enzymes in the solution unless stated otherwise. Simu-
lations ended when the reaction time reached 30 unit time (which was
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usually sufficient for a trajectory to reach either x = 0 or 1). Statistics were
collected from at least 2,000 simulations. All simulations were performed in
Matlab R2016a.

Data and Materials Availability. All of the information needed for in-
terpretation of the data is presented in the manuscript or SI Appendix.
Plasmids are available through Addgene.

ACKNOWLEDGMENTS. We thank Scott Gradia (University of California, Berkeley,
MacroLab) for plasmids and protocols for ligation-independent cloning. We thank
Michael Vahey and Matt Bakalar (University of California, Berkeley) for critical
reading of our manuscript. Funding was provided by National Institutes of Health
U01 (CA202241) (to J.T.G.) and P01 (AI091580) (to J.T.G.), and National Research
Service Award Postdoctoral Fellowship (F32 GM111010-02) (to S.D.H.). Additional
support was provided by the Novo Nordisk Foundation Challenge Program under
the Center for Geometrically Engineered Cellular Systems.

1. G. Di Paolo, P. De Camilli, Phosphoinositides in cell regulation and membrane dy-
namics. Nature 443, 651–657 (2006).

2. I. Lassing, U. Lindberg, Specific interaction between phosphatidylinositol 4,5-bisphosphate
and profilactin. Nature 314, 472–474 (1985).

3. L. Ma, L. C. Cantley, P. A. Janmey, M. W. Kirschner, Corequirement of specific phos-
phoinositides and small GTP-binding protein Cdc42 in inducing actin assembly in
Xenopus egg extracts. J. Cell Biol. 140, 1125–1136 (1998).

4. S. Kondo, T. Miura, Reaction-diffusion model as a framework for understanding bi-
ological pattern formation. Science 329, 1616–1620 (2010).

5. M. R. Wenk, P. De Camilli, Protein-lipid interactions and phosphoinositide metabolism
in membrane traffic: Insights from vesicle recycling in nerve terminals. Proc. Natl.
Acad. Sci. U.S.A. 101, 8262–8269 (2004).

6. R. J. Botelho et al., Localized biphasic changes in phosphatidylinositol-4,5-
bisphosphate at sites of phagocytosis. J. Cell Biol. 151, 1353–1368 (2000).

7. C. C. Scott et al., Phosphatidylinositol-4,5-bisphosphate hydrolysis directs actin re-
modeling during phagocytosis. J. Cell Biol. 169, 139–149 (2005).

8. G. Servant et al., Polarization of chemoattractant receptor signaling during neutro-
phil chemotaxis. Science 287, 1037–1040 (2000).

9. Y. Arai et al., Self-organization of the phosphatidylinositol lipids signaling system for
random cell migration. Proc. Natl. Acad. Sci. U.S.A. 107, 12399–12404 (2010).

10. L. E. Rameh, K. F. Tolias, B. C. Duckworth, L. C. Cantley, A new pathway for synthesis
of phosphatidylinositol-4,5-bisphosphate. Nature 390, 192–196 (1997).

11. M. Pirruccello, P. De Camilli, Inositol 5-phosphatases: Insights from the Lowe syn-
drome protein OCRL. Trends Biochem. Sci. 37, 134–143 (2012).

12. Y. Mao et al., A PH domain within OCRL bridges clathrin-mediated membrane traf-
ficking to phosphoinositide metabolism. EMBO J. 28, 1831–1842 (2009).

13. W. T. Chao, A. C. Daquinag, F. Ashcroft, J. Kunz, Type I PIPK-alpha regulates directed
cell migration by modulating Rac1 plasma membrane targeting and activation. J. Cell
Biol. 190, 247–262 (2010).

14. R. A. Lacalle et al., Type I phosphatidylinositol 4-phosphate 5-kinase controls neu-
trophil polarity and directional movement. J. Cell Biol. 179, 1539–1553 (2007).

15. A. Gierer, H. Meinhardt, A theory of biological pattern formation. Kybernetik 12, 30–
39 (1972).

16. A. M. Turing, The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B Biol.
Sci. 237, 37–72 (1952).

17. E. Brombacher et al., Rab1 guanine nucleotide exchange factor SidM is a major
phosphatidylinositol 4-phosphate-binding effector protein of Legionella pneumo-
phila. J. Biol. Chem. 284, 4846–4856 (2009).

18. S. Schoebel, W. Blankenfeldt, R. S. Goody, A. Itzen, High-affinity binding of phos-
phatidylinositol 4-phosphate by Legionella pneumophila DrrA. EMBO Rep. 11, 598–
604 (2010).

19. G. R. Hammond, M. P. Machner, T. Balla, A novel probe for phosphatidylinositol 4-
phosphate reveals multiple pools beyond the Golgi. J. Cell Biol. 205, 113–126 (2014).

20. M. A. Lemmon, K. M. Ferguson, R. O’Brien, P. B. Sigler, J. Schlessinger, Specific and
high-affinity binding of inositol phosphates to an isolated pleckstrin homology do-
main. Proc. Natl. Acad. Sci. U.S.A. 92, 10472–10476 (1995).

21. L. Iversen et al., Molecular kinetics. Ras activation by SOS: Allosteric regulation by
altered fluctuation dynamics. Science 345, 50–54 (2014).

22. J. Gureasko et al., Membrane-dependent signal integration by the Ras activator Son
of Sevenless. Nat. Struct. Mol. Biol. 15, 452–461 (2008).

23. P. Bandaru, Y. Kondo, J. Kuriyan, The interdependent activation of Son-of-Sevenless
and Ras. Cold Spring Harb. Perspect. Med. 9, a031534 (2019).

24. K. S. Erdmann et al., A role of the Lowe syndrome protein OCRL in early steps of the
endocytic pathway. Dev. Cell 13, 377–390 (2007).

25. A. Ungewickell, M. E. Ward, E. Ungewickell, P. W. Majerus, The inositol poly-
phosphate 5-phosphatase Ocrl associates with endosomes that are partially coated
with clathrin. Proc. Natl. Acad. Sci. U.S.A. 101, 13501–13506 (2004).

26. H. Qian, Cooperativity in cellular biochemical processes: Noise-enhanced sensitivity,
fluctuating enzyme, bistability with nonlinear feedback, and other mechanisms for
sigmoidal responses. Annu. Rev. Biophys. 41, 179–204 (2012).

27. J. D. Murray, Mathematical Biology (Springer, New York, ed. 3, 2002).
28. J. T. Groves, N. Ulman, S. G. Boxer, Micropatterning fluid lipid bilayers on solid sup-

ports. Science 275, 651–653 (1997).
29. H. Qian, L. M. Bishop, The chemical master equation approach to nonequilibrium

steady-state of open biochemical systems: Linear single-molecule enzyme kinetics and
nonlinear biochemical reaction networks. Int. J. Mol. Sci. 11, 3472–3500 (2010).

30. M. N. Artyomov, J. Das, M. Kardar, A. K. Chakraborty, Purely stochastic binary deci-
sions in cell signaling models without underlying deterministic bistabilities. Proc. Natl.
Acad. Sci. U.S.A. 104, 18958–18963 (2007).

31. L. M. Bishop, H. Qian, Stochastic bistability and bifurcation in a mesoscopic signaling
system with autocatalytic kinase. Biophys. J. 98, 1–11 (2010).

32. T. L. To, N. Maheshri, Noise can induce bimodality in positive transcriptional feedback
loops without bistability. Science 327, 1142–1145 (2010).

33. E. Schrödinger, What Is Life? The Physical Aspect of the Living Cell (The University
Press; The Macmillan Company, Cambridge, UK, New York, 1944) p. viii, 91 p.

34. F. Reif, Fundamentals of Statistical and Thermal Physics (McGraw-Hill, New York,
1965).

35. M. M. Baksh, M. Jaros, J. T. Groves, Detection of molecular interactions at membrane
surfaces through colloid phase transitions. Nature 427, 139–141 (2004).

36. D. T. Gillespie, General method for numerically simulating the stochastic time evo-
lution of coupled chemical reactions. J. Comput. Phys. 22, 403–434 (1976).

37. A. N. Zaikin, A. M. Zhabotinsky, Concentration wave propagation in two-dimensional
liquid-phase self-oscillating system. Nature 225, 535–537 (1970).

38. Q. Ouyang, H. L. Swinney, Transition from a uniform state to hexagonal and striped
Turing patterns. Nature 352, 610–612 (1991).

39. M. Loose, E. Fischer-Friedrich, J. Ries, K. Kruse, P. Schwille, Spatial regulators for
bacterial cell division self-organize into surface waves in vitro. Science 320, 789–792
(2008).

40. A. G. Vecchiarelli et al., Membrane-bound MinDE complex acts as a toggle switch that
drives Min oscillation coupled to cytoplasmic depletion of MinD. Proc. Natl. Acad. Sci.
U.S.A. 113, E1479–E1488 (2016).

41. J. Schweizer et al., Geometry sensing by self-organized protein patterns. Proc. Natl.
Acad. Sci. U.S.A. 109, 15283–15288 (2012).

42. M. Loose, E. Fischer-Friedrich, C. Herold, K. Kruse, P. Schwille, Min protein patterns
emerge from rapid rebinding and membrane interaction of MinE. Nat. Struct. Mol.
Biol. 18, 577–583 (2011).

43. Z. Li et al., Regulation of PTEN by Rho small GTPases. Nat. Cell Biol. 7, 399–404 (2005).
Erratum in: Nat. Cell Biol. 8, 1038 (2006).

44. P. Devreotes, C. Janetopoulos, Eukaryotic chemotaxis: Distinctions between di-
rectional sensing and polarization. J. Biol. Chem. 278, 20445–20448 (2003).

45. L. Chen et al., PLA2 and PI3K/PTEN pathways act in parallel to mediate chemotaxis.
Dev. Cell 12, 603–614 (2007).

46. D. M. Veltman, I. Keizer-Gunnik, P. J. Van Haastert, Four key signaling pathways
mediating chemotaxis in Dictyostelium discoideum. J. Cell Biol. 180, 747–753 (2008).

47. S. Matsuoka, M. Ueda, Mutual inhibition between PTEN and PIP3 generates bistability
for polarity in motile cells. Nat. Commun. 9, 4481 (2018).

48. H. C. Welch et al., P-Rex1, a PtdIns(3,4,5)P3- and Gbetagamma-regulated guanine-
nucleotide exchange factor for Rac. Cell 108, 809–821 (2002).

49. W. Ebeling, L. Schimansky-Geier, Stochastic dynamics of a bistable reaction system.
Physica A 98, 587–600 (1979).

50. I. R. Vetter, A. Wittinghofer, The guanine nucleotide-binding switch in three di-
mensions. Science 294, 1299–1304 (2001).

51. K. Scheffzek et al., The Ras-RasGAP complex: Structural basis for GTPase activation
and its loss in oncogenic Ras mutants. Science 277, 333–338 (1997).

52. S. M. Margarit et al., Structural evidence for feedback activation by Ras.GTP of the
Ras-specific nucleotide exchange factor SOS. Cell 112, 685–695 (2003).

53. M. D. Vahey, D. A. Fletcher, The biology of boundary conditions: Cellular re-
constitution in one, two, and three dimensions. Curr. Opin. Cell Biol. 26, 60–68 (2014).

54. H. T. McMahon, J. L. Gallop, Membrane curvature and mechanisms of dynamic cell
membrane remodelling. Nature 438, 590–596 (2005).

55. M. Schmick, P. I. H. Bastiaens, The interdependence of membrane shape and cellular
signal processing. Cell 156, 1132–1138 (2014).

56. L. K. Fritz-Laylin et al., Actin-based protrusions of migrating neutrophils are in-
trinsically lamellar and facilitate direction changes. eLife 6, e26990 (2017).

57. U. Golebiewska et al., Evidence for a fence that impedes the diffusion of phospha-
tidylinositol 4,5-bisphosphate out of the forming phagosomes of macrophages. Mol.
Biol. Cell 22, 3498–3507 (2011).

58. T. Fujiwara, K. Ritchie, H. Murakoshi, K. Jacobson, A. Kusumi, Phospholipids undergo
hop diffusion in compartmentalized cell membrane. J. Cell Biol. 157, 1071–1081
(2002).

59. C. Aslanidis, P. J. de Jong, Ligation-independent cloning of PCR products (LIC-PCR).
Nucleic Acids Res. 18, 6069–6074 (1990).

60. L. Stols et al., A new vector for high-throughput, ligation-independent cloning en-
coding a tobacco etch virus protease cleavage site. Protein Expr. Purif. 25, 8–15 (2002).

61. W. J. Galush, J. A. Nye, J. T. Groves, Quantitative fluorescence microscopy using
supported lipid bilayer standards. Biophys. J. 95, 2512–2519 (2008).

62. H. P. Vacklin, F. Tiberg, R. K. Thomas, Formation of supported phospholipid bilayers
via co-adsorption with beta-D-dodecyl maltoside. Biochim. Biophys. Acta 1668, 17–24
(2005).

63. A. Edelstein, N. Amodaj, K. Hoover, R. Vale, N. Stuurman, Computer control of mi-
croscopes using μManager. Curr. Protoc. Mol. Biol. Chapter 14, Unit 14.20 (2010).

15022 | www.pnas.org/cgi/doi/10.1073/pnas.1901744116 Hansen et al.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1901744116/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1901744116

