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An SPECT image can be approximated as the convolution of the ground truth spatial radioactivity with the system point spread
function (PSF). The PSF of an SPECT system is determined by the combined effect of several factors, including the gamma camera
PSF, scattering, attenuation, and collimator response. It is hard to determine the SPECT system PSF analytically, although it may
be measured experimentally. We formulated a blind deblurring reconstruction algorithm to estimate both the spatial radioactivity
distribution and the system PSF from the set of blurred projection images. The algorithm imposes certain spatial-frequency do-
main constraints on the reconstruction volume and the PSF and does not otherwise assume knowledge of the PSF. The algorithm
alternates between two iterative update sequences that correspond to the PSF and radioactivity estimations, respectively. In simula-
tions and a small-animal study, the algorithm reduced image blurring and preserved the edges without introducing extra artifacts.
The localized measurement shows that the reconstruction efficiency of SPECT images improved more than 50% compared to
conventional expectation maximization (EM) reconstruction. In experimental studies, the contrast and quality of reconstruction
was substantially improved with the blind deblurring reconstruction algorithm.
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1. INTRODUCTION

Iterative methods are commonly used in single photon emis-
sion computed tomography (SPECT) reconstruction be-
cause of their ability to handle incomplete data and to in-
corporate a priori information in the process. Because the
sensitivity and resolution of SPECT are complex functions of
many factors, such as scattering, medium attenuation, and
collimator response, it is difficult to incorporate these fac-
tors analytically into the reconstruction process. Some re-
searchers have shown that for a parallel-hole camera [1],
the point-spread function (PSF) of the gamma ray detec-
tor without scatter could be approximated by a Gaussian
function, whereas the PSF with scattered photons can be de-
scribed by convolving a zero-order Bessel function of the
second kind with the PSF without scatter. The overall PSF
of the gamma camera depends on the source location in-
side the object and the shape of the object; this PSF can
then be incorporated into the iterative reconstruction al-
gorithm [2]. However, because of the complexity and the
object-dependent nature of the PSF model, it is imprac-
tical to apply the exact form of the PSF directly for pin-
hole imaging. In cone-beam geometry, the scatter caused

by the imaged object is also hard to determine. However,
the combined effect of scatter and detector PSF is approxi-
mately the same as low-pass filtering of the projection im-
age. Therefore, image restoration and deconvolution tech-
niques can be performed on either the projection image
[3, 4] or the reconstruction image [5, 6]. Although the results
of these techniques are often improving image quality, the
PSF functions used in these techniques are either assumed
to be known or are estimated by neglecting the physics of
the SPECT system, and some extra artifacts might be intro-
duced.

Inspired by the idea of blind deconvolution introduced
by Holmes [7], we proposed a phenomenological model that
incorporates the effects of attenuation, scatter, and detector
response into the reconstruction process. The algorithm is
an iterative expectation-maximization (EM) algorithm. We
modified the photon transition probability matrix to account
for attenuation and included a convolutional kernel in the
forward projection operation to model scatter and detector
response. We also proposed to use two iterative updates in-
stead of one to reconstruct both the object and the PSF. The
next section describes the development of the reconstruction
algorithm.
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Figure 1: General process for image restoration.

2. BLIND DEBLURRING RECONSTRUCTION

2.1. Blind deblurring

Blind deblurring is a technique that permits recovery of an
object from a set of “blurred” images in the presence of a
poorly determined or unknown PSF, that is, deconvolving a
signal without knowing the impulse response [8–10].

Figure 1 shows the general process of image restoration
from a degraded image. The measured image g (x, y) can be
written as

g(x, y) = f (x, y)∗h(x, y) + n(x, y) (1)

with
∫∫
h(x, y)dx dy = 1 and ∗ denotes convolution. In dis-

crete form, (1) becomes

gi =
∑
j

hi− j f j + ni (2)

with
∑

jh j = 1. Conventional linear and nonlinear decon-
volution techniques require a known PSF. Assuming the PSF
h is known, one can use the Richardson-Lucy deconvolution
algorithm [11, 12] developed in the 1970s from Bayes’s theo-
rem [13] to perform the deconvolution. Assuming indepen-
dent Poisson distribution for each pixel, the deconvolution
process can be written as an iterative algorithm,

f n+1
j = f nj

∑
i

(
hi− j gi∑
khi−k f

n
k

)
, (3)

which intrinsically applies the positivity constraint and con-
serves energy.

However, the kernel h is often unknown in practice.
Holmes [7] derived an iterative algorithm for finding the
maximum likelihood solution for both the unblurred image
and the PSF in the presence of Poisson statistics in the photon
counting process [7]. The algorithm consists of two simulta-
neous Richardson-Lucy-like iterations:

hn+1
j = hnj

∑
i

(
f ni− j gi∑
kh

n
i−k f

n
k

)
,

f n+1
j = f nj

∑
i

(
hn+1
i− j gi∑

kh
n+1
i−k f

n
k

)
.

(4)

Equation (4) is iterated until convergence occurs. The al-
gorithm ensures strict positivity. However, this approach to
blind deconvolution is likely to fail unless one can place very
strong constraints on the properties of the PSF or the image.
For example, research shows that if one applies the Holmes
iteration to images from the Hubble space telescope with no
constraints on the PSF, the unblurred image looks exactly like
the data and the PSF is an impulse: a perfect fit to the data,
but far from the truth. This is because the measured data are
underdetermined and the number of unknown variables is
too large. Constraints on the PSF are often adopted to bet-
ter describe the problem [7], 0 : f and h are positive and
real and have finite support, and h is band limited. By apply-
ing these constraints, the number of variables is effectively
reduced and images with improved quality can be obtained.

2.2. Blind deblurring reconstruction

Assuming Θ to be the voxel set and Ψ to be the detector pixel
set, the EM algorithm [14] with attenuation correction for
SPECT can be written as

Fi(λ̂
n
) = λ̂

n+1

i = λ̂
n

i

Hi

∑
j

Nj pi je
−〈l,μ〉 j∑

i′ λ̂
n

i′ pi je
−〈l,μ〉 j

,

Hi =
∑
j

pi je
−〈l,μ〉 j =

∑
j

hi j ,

(5)

where i ∈ Θ is in the voxel domain and j ∈ Ψ is in the detec-
tor domain. Because the main effect of scatter and detector
PSF is the loss of resolution in the reconstructed image, or
the broadening of a point source, one could model this effect
as a convolution of the true radioactivity with a kernel gi:

fi = Poisson
{
λi
∗gi
}

, (6)

where fi is the reconstructed radioactivity without scatter
and PSF correction and ∗ denotes two-dimensional linear
convolution. Assuming gi can be estimated, one could first

compute fi using standard EM iterations (5) (with λ̂i being

replaced by f̂i) and then deconvolve f̂i with gi. However, the

λ̂i so obtained is not the maximum likelihood estimate of λi
given Nj ; also, the kernel gi, which is the combined effect
of scattering, the pinhole geometry, and the detector PSF,
is generally a complex unknown function. Our experiences
with such an approach indicate that the deconvolution step
creates unwanted artifacts and noise. The new approach in-
tegrates deconvolution into the iterative reconstruction pro-
cess.

Suppose the total number of emitted photons isΛ, the to-
tal number of detected photons is H, Λ ≥ H, Ik, k = 1 · · ·Λ,
Ik ∈ Θ denotes the location from which the kth photon was
emitted under the ideal conditions in which no blurring is
present, and Jq, q = 1 · · ·H, J ∈ Ψ denotes the location
where the qth photon is detected. We call these emission lo-
cations true emission points [7]. A finite number of these
points form an inhomogeneous Poisson random-point pro-
cess having the intensity function λi. Under ideal conditions,
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the number of detected photons at detector j is related to Ik
as

P
(
Jk = j | Ik = i

) = p0
i j ,

Nj =
Λ∑

k=1

Ik p
0
i j ,

(7)

Again, p0
i j denotes the probability that each photon emitted

from position i will reach detector j. Under ideal conditions,
Λ = H and

∑
j p

0
i j = 1, meaning that each emitted photon

will be detected by some detector unit. However, because of
the presence of attenuation, a portion of emitted photons is
lost. With that in mind, we use the following equation to de-
note the effective probability matrix:

pi j = p0
i j e
−〈l,μ〉 j . (8)

When blurring due to the combined effect of scattering, pin-
hole geometry, and detector PSF occurs, the positional mea-
surement of each emission point is corrupted by a random
translation. LetYk denote this error vector, and then the mea-
sured data for detector pixel j is related to Ik and Yk by

P
(
Jq = j | Ik + Yk = i

) = pi j , (9)

Nj =
Λ∑

k=1

(
Ik + Yk

)
p(Ik+Yk) j , (10)

whereYk is statistically independent of all Ik’s, and they are all
statistically independent of each other for all photons emitted
and identically distributed with a probability density γi =
Λgi, indicating the presence of a blurring kernel. It should be
noted that Λ > H and

∑
j pi j < 1. It can also be shown [7]

that this set of error vectors constitutes an inhomogeneous
Poisson random-point process. Therefore, using the Laplace
transform of (10), the expectation of the detected number of
photons can be evaluated as

E
{
Nj
} =∑

i

(
λi
∗gi
)
pi j =

∑
i

∑
i′
λi′gi−i′ pi j . (11)

On the other hand,

E
{
Nj
} = E

{∑
i

NiP
(
Jq = j | Ik = i

)}
=
∑
i

E
{
Ni
}
P
(
Jq = j | Ik = i

)
=
∑
i

λiP
(
Jq = j | Ik = i

)
.

(12)

From (11) and (12), noticing the independence of Yk and Ik,
we have

P
(
Jq = j | Ik = i

) =∑
i′
gi−i′ pi′ j . (13)

Similarly,

P
(
Jq = j | Yk = i

) = 1
Λ

∑
i′
λi−i′ pi′ j . (14)

If Ni is the actual number of photons emitted from position i
and Bi is the number of photons having error vectors within
voxel i, then they follow the Poisson distribution with mean
λi and γi, respectively. In our application, Nj , H, and Jq are
known measured data and Ni and Bi or Ik and Yk are two sets
of substantially identical unknown data. We can now con-
struct the EM algorithm, which consists of two steps: the ex-
pectation (E) step and the maximization (M) step. In the E
step, complete data, that is, Ni and Bi or Ik and Yk, are formed
using expectations of the missing data. Here the set of true
emission vectors, I, and the set of error vectors, Y, are noted
as

I = {I1, I2, I3, . . .
}

,

Y = {Y1,Y2,Y3, . . .
}
.

(15)

Then the log likelihood of I can be expressed as

l(I | λ) = −
∑
i

λi +
∑
i

ln
(
λi
)
Ni, (16)

where λ is the vector notation for all λi. Similarly, the log like-
lihood of B can be written as

l(Y | g,Λ) = −
∑
i

γi +
∑
i

ln
(
γi
)
Bi, (17)

where g is the vector notation for all gi. The log likelihood of
the complete data then can be equivalently expressed in two
ways, assuming I or Y is known, that is,

l(I, Y | λ, g,Λ) = l(I | λ, g,Λ) + l(Y | λ, g,Λ)

= −
∑
i

λi +
∑
i

ln
(
λi
)
Ni +

Λ∑
k=1

ln
(
g
(
Yk
))

= −
∑
i

γi +
∑
i

ln
(
γi
)
Bi +

Λ∑
k=1

ln
(
λ
(
Ik
)
/Λ
)
.

(18)

Let Cn denote the condition, that is, the collected data Nj ,
and the estimation of λni , gni , and Λn, then we can write the
expectation step in the following form:

E
{
l
(

I, Y | Cn
)} = −∑

i

λi +
∑
i

ln
(
λi
)
E
{
Ni | Cn

}
+

Λ∑
k=1

E
{

ln
(
g
(
Bk
)) | Cn

}
,

E
{
l
(

I, Y | Cn
)} = −∑

i

γi +
∑
i

ln
(
γi
)
E
{
Bi | Cn

}
+

Λ∑
k=1

E
{

ln
(
λ
(
Ik
)
/Λ
) | Cn

}
,

(19)

where by definition,

E
{
Ni | Cn

} =∑
j

NjP
(
Ik = i | Jq = j

)
,

E
{
Bi | Cn

} =∑
j

NjP
(
Yk = i | Jq = j

)
,

(20)



4 International Journal of Biomedical Imaging

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2: Reconstruction results for the ring of spheres phantom. (a) The ring of spheres phantom; (b) EM reconstruction of ideal projection
data; (c) the same ring of spheres phantom with Poisson distribution with total counts of 106; (d) EM reconstruction with no PSF correction
from blurry projection data of (a); (e) blind deblurring reconstruction; (f) reconstruction with known PSF correction; (g) EM reconstruction
with no PSF correction from blurry projection data, with total photon count in projection data 106; (h) blind deblurring reconstruction; (i)
reconstruction with known PSF correction.

and using Bayes’s theorem,

P(A | B) = P(A)P(B | A)∑
AP(A)P(B | A)

. (21)

We have

P
(
Ik = i | Jq = j

) = P
(
Ik = i

)
P
(
Jq = j | Ik = i

)
∑ Λ̂

n

k′=1P
(
Jq = j | Ik′ = i

)
P
(
Ik′ = i

) .
(22)

Noticing P(Ik = i) = λ̂
n

i /Λ̂
n

and using (13), we now have

P
(
Ik = i | Jq = j

) = λ̂
n

i

∑
i′′′gi′−i′′′ pi′′′ j∑

i′ λ̂
n

i′
∑

i′′′gi′−i′′ pi′′ j
. (23)

Thus,

E
{
Ni | Cn

} =∑
j

Nj
λni
∑

i′′′gi−i′′′ pi′′′ j∑
i′λ

n
i′
∑

i′′gi′−i′′ pi′′ j

= λ̂
n

i

∑
j

Nj
∑

i′′gi−i′′ pi′′ j∑
i′ λ̂

n

i′
∑

i′′gi′−i′′ pi′′ j

= λ̂
n

i

∑
j

Nj
∑

i′′gi−i′′ pi′′ j∑
i′
(
λ̂
n

i′
∗gi′

)
pi′ j

.

(24)

Similarly, we have

E
{
Bi | Cn

} = ĝni
∑
j

Nj
∑

i′′λi−i′′ pi′′ j∑
i′(λi′∗ĝ

n
i′ )pi′ j

. (25)

For the M step, (19) is maximized simultaneously. The fol-
lowing update equation maximize the two log likelihoods:

λ̂
n+1 = E

{
Ni | Cn

}
,

ĝn+1 = E
{
Bi | Cn

}
Λ̂
n ,

Λ̂
n+1 =

∑
i

λ̂
n+1

i .

(26)

In summary, the following iteration converges to the
maximum likelihood estimate of λi:

λ̂
n+1

i = λ̂
n

i

∑
j

Nj

∑
i′′
gi−i′′ pi′′ j∑

i′

(
λ̂
n

i′∗gi′
)
pi′ j

, (27)

ĝn+1
i = ĝni

Λ̂
n

∑
j

Nj
∑

i′′λi−i′′ pi′′ j∑
i′
(
λi′∗ĝ

n
i′
)
pi′ j

, (28)

Λ̂
n+1 =

∑
i

λ̂
n+1

i . (29)
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(a) Measured PSF (b) Estimated PSF from noise-free
data

(c) PSF from Poisson-distributed
data

Figure 3: Estimated point spread function (PSF) for blind deblurring reconstruction.

The initial λ0
i is an image of all 1’s, g0

i is the same image nor-
malized to 1, and Λ0 is the total number of detected photons.
Equations (27) and (28) are then evaluated to acquire a new
pair of estimates of λ and g. The PSF of the SPECT system
is assumed to be real, nonnegative, and band limited. Letting
Fz be the frequency components of the PSF that are known
to be zero, the band-limited constraints are incorporated by
executing the following steps in each iteration:

(1) the Fourier transform of ĝn+1 is taken, and any fre-
quency components that lie within Fz are set to zeros;

(2) the inverse Fourier transform of (1) is taken, and any
negative or complex values in the spatial domain are
set to zeros.

The first step of the process ensures the band-limited con-
straint, and the second step ensures the reality and nonneg-
ativity of the PSF. Realness and nonnegativity are implicitly
applied to λ. Equations (27), (28), and (29) and steps (1) and
(2) are then iterated until convergence occurs.

The blind deblurring reconstruction algorithm estimates
both the spatial radioactivity distribution and the system PSF
from the set of blurred projection images. The iteration for
reconstruction can be understood as replacing the forward
projector in the original EM (denominator of (5)) with the
new projector using the convolved radioactivity map, and the
iteration for solving the PSF can be understood as blind de-
blurring. This iteration differs from the general image blind
deconvolution in the sense that the kennel is partly known;
pi j , the known transfer matrix, is in fact part of the blurring
kennel. In addition, instead of deconvolving an image where
both the input and output are two-dimensional images, the
input of blind deblurring reconstruction is a series of pro-
jection images, and the output is a three-dimensional image
array.

3. METHODS

We used both simulation and experimental data to validate
and evaluate the performance of the blind deblurring re-
construction. For computer simulations, we used the ring of
spheres phantom shown in Figure 2(a). The phantom con-
sisted of 16 spheres on the same x-z plane with diameters
from 1 mm to 6 mm (1, 1.5, 2, 2.3, 2.6, 2.7, 3.1, 3.3, 3.4,

3.8, 4.2, 4.3, 4.8, 5.4, and 6 mm), and all of the spheres had
the same magnitude, 1.1. The background was a big sphere
with a 28 mm radius and a magnitude of 0.1. Pinhole geom-
etry simulating a physical small-animal imaging system [15],
which will be described in more detail below, was adopted in
the study. The simulated pinhole had an effective diameter
of 1 mm and an acceptance angle of 100 degrees. The simu-
lated detector had 60 × 60 pixels with a pixel size of 2 mm
and was placed 71 mm from the pinhole. The radius of rota-
tion (ROR) of the simulation was 4 cm, and the magnifica-
tion factor was 1.7. The radius of the reconstructed field of
view was 3 cm. The blurring kernel, gi, was simulated using a
point source reconstruction from the physical system.

We then conducted phantom studies on the pinhole
SPECT imaging system with a gamma detector assembled at
the Thomas Jefferson national accelerator facility. The detec-
tor consists of a 2 × 2 array of Hamamatsu H8500 position-
sensitive photon-multiplier tubes coupled to a 1.3 × 1.3 ×
6 mm pixilated NaI(Tl) crystal array with 1.6 mm center-to-
center spacing, providing about 80% absorption efficiency
at 140 keV. The intrinsic detector full width half maximum
(FWHM) of the detector is 1.8 mm. The pinhole, fabricated
by Mikro Systems, Inc., Charlottesville, VA, USA, was com-
posed of a tungsten-polymer composite (with a linear at-
tenuation coefficient of 2.1 mm−1). The pinhole’s diameter
was 1 mm, and the acceptance angle was 100 degrees. Spec-
ified details of the phantoms being imaged are presented in
Section 4.

We also performed the reconstruction technique in an
animal study, in which we imaged cardiac inflammation in
a mouse resulting from ischemia caused by the injection of
Tc 99m-labeled antibody.

4. RESULTS

We analyzed the reconstruction results from the same pro-
jection data, either computer generated or experimentally
collected, using different iterative reconstruction techniques.
Attenuation and attenuation corrections were included in all
of the simulations and experiments unless specified other-
wise. Also, all reconstruction images displayed and analyzed
are the results after sufficient numbers of iterations and con-
vergence were achieved.
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Figure 4: Reconstruction efficiency for spheres with different diam-
eters.

4.1. Ring of spheres phantom study

The blind deblurring reconstruction approach described in
Section 3 was first validated using a simulated phantom, the
ring of spheres phantom shown in Figure 2(a), with and
without the Poisson distribution model. Figure 2(b) is the
EM reconstruction of the projections from ideal projection
data of Figures 2(a), and 2(c) is the EM reconstruction
from nonblurry projection data following Poisson distribu-
tion with a total count of 106. Projections were generated
from Figure 2(a) with the PSF kernel of a physically mea-
sured point source (Figure 3(a)) and was then reconstructed
using different techniques, as demonstrated in Figures 2(d)–
2(f). Projections with the same PSF and following Poisson
distribution with total count of 106 were also generated and
the reconstructions are shown in Figures 2(g)–2(i).

Figures 2(d) and 2(g) are reconstructions with no PSF
correction, and the images are blurry, as expected. Figures
2(e) and 2(h) demonstrate the result of blind deblurring re-
construction, whereas Figures 2(f) and 2(i) are the recon-
structions with known PSF. By comparing the reconstruc-
tions with and without correction, one can observe that with
the blind deblurring method, both the resolution and con-
trast of the reconstruction image are considerably improved,
and the blind deblurring technique can achieve a quality sim-
ilar to that as achieved with known PSF correction.

Figure 3(a) shows the measured PSF of the small animal
pinhole SPECT imaging system [15] using a single shot of
point source placed precisely at the isocenter. The FWHM
of the measured PSF on detector was 1.6 mm. This PSF,
which is geometry dependent, was assumed space invariant

(a) Conventional EM reconstruc-
tion

(b) Blind delurring reconstruction

Figure 5: Slice from Jaszczak phantom reconstruction.

for all voxels and used to generate simulated projection data.
The estimated PSF from blind deblurring EM reconstruc-
tion (projected onto detector) is shown in Figures 3(b) and
3(c). The correlation between the estimated PSF and the real
PSF was 96% and 94% for noise-free and Poisson-distributed
blind deblurring reconstructions, respectively.

Figure 4 shows the reconstruction efficiency for differ-
ent reconstruction methods, which indicates the effective-
ness of the reconstruction. The voxel values of each sphere
were summed and averaged. The diameters of the spheres
varied from 1 mm to 6 mm, or about 2 to 10 pixels on the
detector grid. The object-to-background ratio was 11 : 1
for all spheres. The plot shows that the EM algorithm was
biased even for the ideal case, mainly because of the pix-
elization or partial volume effect. Using the blind deblur-
ring technique, the reconstruction mass can be recovered
close to the ideal reconstruction. For small objects (diame-
ter < 2 mm in this study), the reconstructed object intensi-
ties were only less than 60%, even with PSF correction. For
objects with greater diameters, the efficiency could be re-
covered to more than 80%. The efficiency of the blind de-
blurring reconstructions was about the same for noise-free
and Poisson-distributed cases, and is improved by more than
50% over EM reconstruction. Our results also indicated that
the reconstruction efficiency using the blind deblurring re-
construction was comparable to the efficiency using a known
PSF correction.

4.2. Jaszczak phantom study

A hot-rod and a cold-rod Jaszczak phantom were imaged us-
ing the small-animal imaging system [15], and the recon-
structions are shown in Figures 5 and 6. Figure 5 shows re-
constructions of a slice from the first Jaszczak phantom with
1 million photon counts. The phantom was a hollow acrylic
cylinder with an outer diameter of 30 mm. The phantom has
six sections of rods with diameter ranged from 1.2 to 1.7 mm,
each section has 6–10 rods drilled along the longitudinal axis,
with center-to-center spacing of twice the rod diameter. In
this study, the rods were filled with 0.8 mCi of technetium Tc
99m-solution, and 120 evenly spaced projections were taken
over 360 degrees at 15 seconds per projection, and the total
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Table 1: Mean FWHM measurements for different groups of cylinders.

Real diameter (mm) 1.20 1.30 1.40 1.50 1.60 1.70

Mean FWHM in conven-
tional EM reconstruc-
tion (mm)

1.42 1.53 1.61 1.70 1.84 1.93

Mean FWHM in blind
deblurring EM recon-
struction (mm)

1.14 1.33 1.38 1.47 1.61 1.69

(c)

(d)

(e)

(f)

(a) Conventional EM reconstruction

(c)

(d)

(e)

(f)

(b) Blind deblurring reconstruction
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(c) Profile of the reconstruction over y = −3.31 mm

0

0.05

0.1

0.15

0.2

0.25

R
el

at
iv

e
ac

ti
vi

ty

−20 −10 0 10 20

x-axis (mm)

Conventional EM reconstruction
Blind deblurring reconstruction

(d) Profile of the reconstruction over y = 2.89 mm
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(e) Profile of the reconstruction over y = 11.01 mm
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(f) Profile of the reconstruction over y = 16.50 mm

Figure 6: Slice from cold-rod phantom reconstruction. Four sets of line profiles were drawn in the same slice.
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(a) Slice from conventional EM re-
construction

(b) Slice from blind deblurring re-
construction

(c) Merged slice of CT/SPECT re-
construction with the blind deblur-
ring SPECT reconstruction

Figure 7: One slice of a mouse-heart reconstruction.

acquisition time was 37 minutes. The ROR was 3.1 cm, and
the magnification factor was about 3.

Figure 5(a) shows the reconstruction using conventional
EM with no correction for blurring, and Figure 5(b) shows
the reconstruction using the blind-deblurring technique.
Both reconstruction images have pixel sizes of 0.37 mm and
slice thicknesses of 1.6 mm. The smallest set of rods with di-
ameter of 1.2 mm is not resolved well in conventional EM,
while shows up sharp and clearly in blind deblurring EM re-
construction. The mean FWHM measurements for different
sets of rods are listed in Table 1.

The error for FWHM measurements in conventional EM
reconstruction is up to 15% and reduced to within 5% for
blind deblurring reconstruction.

Figure 6 shows the reconstruction of the cold-rod phan-
tom. The phantom had an inner diameter of 4.5 cm and con-
sisted of six sets of rods with diameters ranging from 1.2 to
4.8 mm. In this study, 10 mCi Tc 99m-labeled radionuclide
was distributed in the phantom, 120 evenly spaced projec-
tions were taken over 360 degrees at 2 minutes per projection,
the total acquisition time was 4 hours, and the total photon
count was 11 million. The ROR was 70 mm, and the magnifi-
cation factor was 1.57. Again, the image quality and contrast
were greatly improved, as shown in the images. The line pro-
files indicate contrast improvement for rods with diameters
of 1.6 mm (second smallest) and larger. The uniformity of
radionuclide distribution in the phantom was well preserved
using the blind deblurring reconstruction technique.

4.3. Small-animal study

We also used the blind deblurring reconstruction technique
in a study of cardiac inflammation (i.e., a heart attack) in
a mouse resulting from ischemia caused by injection of Tc
99m-labeled antibody. How the antibody accumulated in the
heart was of great interest. Approximately 900 μCi of Tc 99m-
labeled antibody was injected into a mouse. The mouse was
euthanized 6 hours after the injection, and the heart, which
had a diameter of less than 1 cm, was removed and scanned
on a CT/SPECT dual-modality scanner. CT projection data
were acquired at 1 second per frame for a total scan time of 6
minutes, and SPECT projection data were acquired at 60 sec-
onds per frame for a total scan time of approximately 1 hour.
Figure 7 shows a reconstruction slice from the SPECT recon-
struction and a fused slice of CT and SPECT reconstruction.
No attenuation correction was made in the reconstruction
process for this study.

As apparent in a comparison of Figures 7(a) and 7(b),
the blind deblurring reconstruction resulted in better local-
ization of radioactivity and higher contrast than the conven-
tional EM reconstruction did, and the merged CT/SPECT
registration Figure 7(c) shows a promising image.

5. DISCUSSIONS AND CONCLUSION

As demonstrated in both computer simulation and physical
experiments, our new blind deblurring reconstruction tech-
nique substantially improved the quality and contrast of the
reconstruction. This algorithm not only reconstructed the
radiotracer map but also determined the complex PSF of the
system. The masses and edges were well preserved in the re-
construction image, a feature that can be extremely useful
when physicians need to localize or tally the activities in a
possible tumor. However, some issues needed to be addressed
in the reconstruction image; as seen in Figure 6(b), there was
some degree of overshoot on the edge of the phantom in the
reconstruction, which might be due to the nature of maxi-
mum likelihood estimation, as discussed by Snyder et al. in
[16], and worth investigating. Further studies will also in-
clude how the level of distortion affects the performance of
the algorithm and the performance of the algorithm applied
to different organs.
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