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Abstract: The accumulation of oxidative damage to DNA and other biomolecules plays an impor-
tant role in the etiology of aging and age-related diseases such as type 2 diabetes mellitus (T2D),
atherosclerosis, and neurodegenerative disorders. Mitochondrial DNA (mtDNA) is especially sen-
sitive to oxidative stress. Mitochondrial dysfunction resulting from the accumulation of mtDNA
damage impairs normal cellular function and leads to a bioenergetic crisis that accelerates aging and
associated diseases. Age-related mitochondrial dysfunction decreases ATP production, which directly
affects insulin secretion by pancreatic beta cells and triggers the gradual development of the chronic
metabolic dysfunction that characterizes T2D. At the same time, decreased glucose oxidation in skele-
tal muscle due to mitochondrial damage leads to prolonged postprandial blood glucose rise, which
further worsens glucose homeostasis. ROS are not only highly reactive by-products of mitochondrial
respiration capable of oxidizing DNA, proteins, and lipids but can also function as signaling and
effector molecules in cell membranes mediating signal transduction and inflammation. Mitochondrial
uncoupling proteins (UCPs) located in the inner mitochondrial membrane of various tissues can
be activated by ROS to protect cells from mitochondrial damage. Mitochondrial UCPs facilitate
the reflux of protons from the mitochondrial intermembrane space into the matrix, thereby dissi-
pating the proton gradient required for oxidative phosphorylation. There are five known isoforms
(UCP1-UCP5) of mitochondrial UCPs. UCP1 can indirectly reduce ROS formation by increasing glu-
tathione levels, thermogenesis, and energy expenditure. In contrast, UCP2 and UCP3 regulate fatty
acid metabolism and insulin secretion by beta cells and modulate insulin sensitivity. Understanding
the functions of UCPs may play a critical role in developing pharmacological strategies to combat
T2D. This review summarizes the current knowledge on the protective role of various UCP homologs
against age-related oxidative stress in T2D.
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1. Introduction

Mitochondria are the organelles of the cell that are responsible for energy production.
Mitochondria are essential for aerobic ATP synthesis by oxidative phosphorylation and
for the synthesis of heme, cholesterol, and phospholipids, as well as for apoptosis and
cell signaling [1]. They are unique cell organelles because they have their own genome.
Mitochondrial DNA (mtDNA) can self-replicate and transcribe. Because mtDNA is small
and circular, it only encodes proteins essential for normal oxidative phosphorylation,
namely, some subunits of the mitochondrial respiratory chain and some tRNA and rRNAs
for the assembly of the mitochondrial translational machinery. The nuclear genome encodes
all other proteins necessary for proper mitochondrial function, which are then imported
into the mitochondria [2].

Mitochondria are also the largest source of reactive oxygen species (ROS) in the
cell, which are generated when electrons leak during respiration [3]. At levels that are
non-damaging, ROS are involved in important signal transduction pathways related to
cell growth, apoptosis, kinase activation, immune responses, gene expression regulation,
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and calcium signaling [4–10]. However, excessive amounts of ROS not only directly
damage lipids, proteins, and DNA, resulting in mtDNA mutations [11] but also affect a
variety of stress-sensitive intracellular signaling pathways, such as the mitogen-activated
protein kinase (MAPK) pathway, Jun amino-terminal kinase/stress-activated protein kinase
(JNK/SAPK) pathway, and the nuclear factor kappa B (NF-kB) pathway [12–16]. Increased
expression of the gene products of these pathways causes additional cellular damage [17,18].
mtDNA damage can impair viability and various cellular functions, and maintaining its
integrity with age is crucial for survival [19]. Accordingly, mitochondrial dysfunction
has been associated with various age-related diseases, such as type 2 diabetes (T2D),
neurodegenerative diseases, cancer, and cardiovascular diseases [20–24].

T2D is a disease characterized by insufficient production of insulin, excessive secretion
of glucagon by pancreatic beta cells, and insulin resistance, resulting in impaired energy
metabolism in the pancreas, liver, skeletal muscle, and other organs [25]. Data for 2021 show
that the global prevalence of T2D in 20- to 79-year-olds is 10.5%. The prevalence is lowest in
young adults aged 20–24 years (2.2%) and steadily increases to 24% in elderly individuals
aged 75–79 years. Projections for 2045 are similar, except that the percentages will be
slightly higher in each age group. Most importantly, the aging of the world population will
result in a higher proportion of people with T2D over the age of 60 [26,27], along with a
higher incidence of cardiovascular complications and metabolic syndrome. The increased
incidence of various comorbidities and the simultaneous use of different medications,
which may lead to drug interactions in older diabetic patients, make the management of
T2D particularly complex and challenging. Therefore, new approaches for controlling T2D
are needed, including individualized treatment strategies [28].

Although the primary cause of T2D has not yet been determined, mitochondrial
dysfunction in the organs responsible for insulin secretion (pancreatic beta cells), in the
target organs of insulin action (skeletal and cardiac muscle cells and liver cells), and in the
target organs associated with the major complications of T2D (kidneys, retina, nerves, and
vascular cells) may play an important role in the pathophysiology of the disease [29]. Since
ATP is critical for the production and release of insulin, altered mitochondrial bioenergetics
associated with impaired glucose and fatty acid metabolism have been linked to defects in
insulin and glucagon secretion in T2D [30].

UCPs are a group of five homologous proteins located in the inner mitochondrial
membrane of various tissues. They are involved in several tasks and cellular functions, from
thermoregulation to modulation of insulin secretion and neuroprotection [31–34]. The most
diverse spectrum of UCPs is found in the mitochondria of skeletal muscle, which express
all five UCPs. For this reason, skeletal muscle is one of the best-studied tissues in regard to
advancing our knowledge of UCP function and associated pathologies [35,36]. UCPs have
been intensively studied in the last three decades because of their involvement in glucose
and lipid metabolism [37–43]. In addition, many studies in mice, rats, and humans have
shown that mitochondrial uncoupling proteins (UCPs) have important protective effects
against oxidative stress and mitochondrial dysfunction [44–46]. However, their exact role
has not been fully elucidated.

In this review, we highlight some significant associations between different UCP
homologs and T2D and emphasize the importance of UCPs as potential pharmacological
targets in the treatment of T2D.

2. Mitochondria, ROS, and Oxidative Stress

The main source of ROS in the cell is the mitochondrial respiratory chain, which
consists of four protein complexes responsible for generating the proton motive force
across the inner mitochondrial membrane (Figure 1). Complex I (NADH-ubiquinone
oxidoreductase) accepts electrons from NADH and passes them to complex II (succinate
dehydrogenase), which oxidizes succinate to fumarate. As an enzyme of the Krebs cycle,
complex II provides a direct link between the Krebs cycle and the respiratory chain [47].
Electrons from complexes I and II are transferred to ubiquinone (Q), which is then oxidized
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by complex III (ubiquinol cytochrome C oxidoreductase). Finally, electrons are passed to
complex IV (cytochrome C oxidase) and used to reduce molecular O2 as the final electron
acceptor, producing water. As electrons are transferred through the respiratory chain
to complexes I, III, and IV, protons from NADH and FADH2 are translocated from the
mitochondrial matrix into the intermembrane space, generating a strong proton motive
force that subsequently drives the mitochondrial ATPase to produce ATP [3,47].
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Figure 1. A schematic overview of the ROS production pathways in the respiratory chain of the
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thenoyltrifluoroacetone). Red dotted lines represent the inhibition effect of specific compounds on
the respiratory chain complexes. Created with BioRender.com.

Under physiological conditions, 1–5% of the oxygen consumed by the mitochondria
is incompletely reduced to superoxide (O2

•−), the primary ROS species formed in mito-
chondria, mainly in complexes I and III [48,49]. Other sources of ROS in the cell include
NAD(P)H oxidase, various isoforms of nitric oxide synthase (NOS), xanthine oxidase,
and lipoxygenases [6,50].

Superoxide is a charged molecule and, as such, does not readily diffuse across mem-
branes. However, mitochondrial ROS can enter the cytosol after conversion to hydrogen
peroxide (H2O2) by superoxide dismutase (SOD) [19]. There are three known SOD isoforms.
SOD 1 (copper-zinc SOD; CuZn-SOD) is located in the mitochondrial intermembrane space,
cytosol, and nucleus. SOD 2 (manganese SOD; Mn-SOD) is found only in the mitochondrial
matrix, while SOD 3 (extracellular CuZn-SOD; EC-SOD) is present in the extracellular
space [51]. In the mitochondrial matrix, H2O2 is reduced to water by catalase and glu-
tathione peroxidase [52,53]. However, in the presence of transition metals such as copper
or iron, H2O2 can be converted to reactive and damaging hydroxyl radicals (•OH) via
the Fenton reaction or the Haber–Weiss reaction [6]. The resulting ROS can damage the
proteins, lipids, and DNA of the cell. ROS generation, oxidative damage, and antioxidant
defense mechanisms of the cell have been discussed in detail elsewhere [11,14,54].

Mitochondrial dysfunction, such as that associated with electron transport blockade,
causes the respiratory chain to enter a highly reduced state. This triggers increased electron
leakage and the production of superoxide anions and other ROS that further damage
the cell’s biomolecules in a destructive cycle that can lead to progressive cell function
degeneration and, eventually, cell death.
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Mitochondria are not only the main producers of ROS but also their main target. In
differentiated, nondividing cells, mtDNA is constantly replicating as intracellular ROS
generation progresses. Oxidative stress in the form of various oxygen radicals modifies
DNA. The damage leads to single- and double-strand breaks and base changes, resulting
in cellular dysfunction, mutagenesis, and even carcinogenesis [19]. In particular, hydroxyl
radicals are known to attack guanine bases [55]. One of the most common DNA lesions
caused by ROS-induced mutagenesis is the modified guanine base 8-oxoguanine, which
pairs equally efficiently with adenine and cytosine [19] and causes transversion mutations.

Since mitochondrial ROS production is much higher than that in the cytoplasm, ROS-
induced damage to mtDNA is much more significant than damage to nuclear DNA. The
mutation rate of mtDNA is up to twenty times higher than that of nuclear DNA, and its
point mutation rate is more than two orders of magnitude higher than that of nuclear
genes [56,57]. In addition, mitochondria tend to accumulate toxic xenobiotics. The matrix
side of the mitochondrial membrane has a negative potential. It attracts lipophilic cations,
including drugs and biotoxic chemicals, and causes their massive concentration, leading to
exogenously induced mitochondrial damage [58–60]. Mutations in mtDNA accumulate
with age and can lead to cellular dysfunction [19,61,62]. Large mtDNA deletions have
been detected in healthy elderly humans and other species, such as Caenorhabditis elegans,
mice, rats, and monkeys [63–67]. Moreover, an increased frequency of mitochondrial
genomic deletions in brain samples has been associated with Huntington’s disease and
Alzheimer’s disease [68,69].

Cells use various antioxidant systems to degrade ROS. One of the most important
antioxidant enzymes in mitochondria is glutathione peroxidase [6,70]. Its function is
to remove hydrogen peroxide, which is formed from superoxide anions (Figure 1). In
addition, vitamin E, present in the inner mitochondrial membrane, acts as an antioxidant by
accepting unpaired electrons and generating a stable product [71]. The oxidative damage
repair system in mitochondria plays an important role in normal cellular function. It
includes enzymes that repair oxidized mtDNA, eliminate mutant dNTPs, and degrade
damaged mtDNA [72–74]. In humans, the MTH1 gene encodes 8-oxo-dGTPase, a human
counterpart of the well-studied Escherichia coli protein MutT, which is essential for the
removal of adenine paired with 8-oxoguanine in DNA [75]. Studies on the accuracy of
mitochondrial DNA polymerase gamma in mtDNA replication and proofreading have
shown that it is comparable to nuclear DNA polymerase [76], suggesting that higher
mtDNA mutation rates result from more severe damage or/and weaker post-replication
repair activities. Since dNTPs for mtDNA synthesis are synthesized inside mitochondria,
all oxidized dNTPs must be removed in situ.

In addition to naturally occurring enzymatic and non-enzymatic antioxidants, mito-
chondria have endogenously regulated proteins called uncoupling proteins (UCPs) that
can limit oxidative damage to cells.

3. Mitochondrial Dysfunction in T2D

Blood glucose levels must be adequately regulated to meet the energy needs of tissues
while preventing excessive blood glucose levels from damaging blood vessel walls and
nervous system cells. Blood glucose levels are controlled by two types of pancreatic
islet cells: beta cells, which secrete insulin and amylin, and alpha cells, which secrete
glucagon [77]. Insulin primarily causes cells to take up glucose from the blood and store it
as glycogen or fat. Insulin also inhibits the mobilization of glucose from glycogen, protein,
and fat stores [78]. Amylin released by beta cells inhibits alpha cells from producing
glucagon [79]. Amylin and insulin are released by beta cells when blood glucose levels
are high and inhibit the production of glucagon. Conversely, a fall in blood glucose levels
causes the production of insulin and amylin by beta cells to be reduced, allowing alpha
cells to produce glucagon unimpeded. The hormone glucagon increases blood glucose
levels by causing the liver to break down glycogen stores and stimulating the formation of
glucose from other small molecules through gluconeogenesis [79].
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T2D is characterized by impaired pancreatic beta cell function and insulin resis-
tance [80]. To maintain normal plasma glucose levels, the pancreas secretes more insulin
in the early stages of the disease due to insulin insensitivity of peripheral tissues. As
the disease progresses and pancreatic function deteriorates, insulin can no longer main-
tain glucose at a homeostatic level. As a result of the decreased responsiveness of the
liver to insulin and abnormalities in the regulation of glucagon secretion, hepatic glucose
production increases [81]. Along with decreased glycogen uptake and impaired insulin
secretion, these events lead to hyperglycemia. As tissues become resistant to insulin, the
pancreas compensates by producing more insulin, resulting in hyperinsulinemia. Another
metabolic dysfunction that accompanies T2D is dyslipidemia, a condition characterized
by abnormal lipid levels in the blood and a major risk factor for cardiovascular disease
in T2D patients. Several processes are involved in T2D-associated dyslipidemia, includ-
ing hyperglycemia, impaired lipid metabolism, and increased triglyceride synthesis as a
result of insulin resistance [82]. Together, hyperglycemia, hyperinsulinemia, and dyslipi-
demia are important contributors to the increased oxidative stress associated with T2D and
related pathologies [83].

Superoxide production rate depends on the concentration of potential electron donors
and the local O2 concentration. In isolated mitochondria, significant O2

•− production was
observed under two conditions. First, when ATP production was low with consequently
high proton motive force and a reduced coenzyme Q (CoQ) content; second, when the
NADH/NAD+ ratio in the mitochondrial matrix was high [3]. The latter is particularly
prominent in intense lipid or glucose metabolism, resulting in subsequent ROS generation
and chronic diabetic complications [84].

Increased oxidative stress plays an important role in the onset and progression of T2D,
as evidenced by increased levels of oxidative stress markers and reduced antioxidant levels
in diabetic subjects [85]. Several mechanisms contribute to oxidative stress under diabetic
conditions. These include disruption of the mitochondrial electron transport chain [86],
increased activity of the polyol pathway [87], glucose autooxidation [88], and formation
of advanced glycation end products (AGEs) [89]. Interestingly, in T2D patients and their
first-degree relatives, serum levels of copper and iron, two potent prooxidant trace ele-
ments, have been found to be elevated and correlate with increased glycated hemoglobin
levels [90]. Copper has the potential to increase the formation of ROS during the conversion
of Cu(I) to Cu(II) [91]. In addition, under hyperglycemic conditions, iron and copper par-
ticipate in glucose autooxidation that yields hydrogen peroxide, which undergoes further
metal-catalyzed conversion to form the highly reactive hydroxyl radical [92]. Increased
production of ROS and ROS-related cellular damage can also result from high-dose pharma-
ceutical iron supplementation, such as in anemic pregnant women, leading to gestational
diabetes [93]. To combat excess ROS generation, cells produce antioxidants, as evidenced
by their increased levels in blood and saliva samples from diabetic patients [94].

By promoting insulin resistance, impaired glucose tolerance, and mitochondrial dys-
function, oxidative stress further contributes to the progression of diabetes and associated
pathologies. The contribution of oxidative stress and mitochondrial dysfunction to T2D is
further examined in the following sections.

3.1. ROS-induced Metabolic and Biochemical Changes in T2D

During the development of T2D, metabolic and biochemical changes gradually accu-
mulate. In parallel with various polygenic causes, a cascade of successive events leads to
the accumulation of defects in the mitochondrial oxidative phosphorylation machinery
and mitochondrial fatty acid beta-oxidation. The resulting accumulation of triglycerides in
muscle and liver cells leads to insulin resistance [95–97]. In addition, diabetes-associated
ROS and oxidative stress stimulate various signaling cascades. The polyol pathway is
induced, AGE formation progresses, the hexosamine pathway is upregulated, and protein
kinase C isoform activation increases [12,98], which impairs insulin signaling and leads to
insulin resistance [12].
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Only small amounts of glucose are metabolized through the polyol pathway under
normal conditions. However, under hyperglycemic conditions, hexokinase is saturated,
leading to an increase in glucose concentration and its entry into the polyol pathway [99]. In
the case of diabetes, the polyol pathway is increased in tissues where insulin is not essential
for glucose uptake into cells, such as the kidneys, retina, and peripheral nerves [87]. These
changes in the polyol pathway lead to a reductive imbalance as the intracellular NAD(P)H
concentration decreases and the NADH concentration increases, which then serves as a
substrate for NADH oxidase to produce more ROS. The reduction in NAD(P)H significantly
impairs the antioxidant system by decreasing the level of the antioxidant glutathione in
cells because its activity is highly dependent on NAD(P)H [100]. NAD(P)H reduction also
impairs the synthesis of nitric oxide, which is known as a vasoprotective agent and an
excellent quencher of superoxide anions [101,102].

In addition, intracellular and extracellular AGEs are formed under hyperglycemic
conditions. The production of excess ROS is induced via AGE receptor binding, which
activates protein kinase C isoforms, the NF-kB pathway, and NADPH oxidase [103]. This
leads to alterations in MAPK cascades [12], which include important signaling pathways
regulating cell proliferation, differentiation, apoptosis, and stress responses. ROS-activated
NF-kB in pancreatic beta cells eventually leads to beta-cell apoptosis [104].

Normally, only a small amount of fructose-6-phosphate is channeled away from the
glycolytic pathway of glucose metabolism. However, in diabetes, the intracellular glucose
concentration is increased, and a larger amount of fructose-6-phosphate leaves glycolysis.
Under hyperglycemic conditions, elevated mitochondrial superoxide production inhibits
GAPDH activity, leading to an enhancement of the hexosamine pathway and an accumu-
lation of glycolytic intermediates [105]. Moreover, the enhanced hexosamine pathway is
an additional source of ROS. Accordingly, in patients with T2D who are insulin-resistant,
the levels of the rate-limiting enzyme of the hexosamine pathway glutamine-fructose-6-
phosphate aminotransferase (GFAT) were found to be elevated. This suggests a role for
increased activity of the hexosamine pathway in glucose toxicity and insulin resistance [106].
Together, increased formation and expression of AGE receptors, activation of the polyol
pathway and protein kinase C isoforms, and upregulation of the hexosamine pathway lead
to the progression and exacerbation of T2D.

3.2. Response of Pancreatic Beta Cells to Hyperglycemia and Elevated ROS Production

Normal insulin secretion from pancreatic beta cells follows a biphasic pattern driven
by underlying oscillatory changes in intracellular calcium concentration [107–109]. The first
calcium and insulin peak is followed by a brief decrease, which is then superseded by a sus-
tained plateau phase with superimposed fast calcium oscillations [110]. Insulin secreted in
the first phase rapidly lowers postprandial blood glucose levels as it first passes through the
liver. In contrast, second-phase insulin travels to more distant organs and remains elevated
as long as the stimulus persists [111]. With aging and T2D, biphasic kinetics and the total
amount of insulin secreted are impaired [112–114]. In mouse islets exposed to a glucotoxic
medium, insulin secretion was reduced in the first phase, whereas secretion started much
earlier in the second phase [115]. This pattern differs markedly from the normal biphasic
calcium activity of beta cells in healthy tissues [116], where even a supraphysiological
glucose concentration elicits a marked biphasic response [117]. Changes in biphasic activity
have also been confirmed in human islet cells under glucotoxic conditions [115].

Altered insulin secretion as a result of T2D and in old age has been attributed to
impaired mitochondrial metabolism leading to a decrease in ATP production in beta
cells [30]. The result is altered function of ATP-dependent potassium channels, decreased
depolarization of beta cells, and decreased glucose-dependent insulin secretion [118]. Since
mitochondrial function is critical for coupling insulin secretion to glucose metabolism in
beta cells by controlling the ATP:ADP ratio, decreased mitochondrial ATP generation also
contributes to insulin resistance [96].
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Hyperglycemia promotes oxidative stress in several ways, including increasing the
activity of enzymes involved in the production of ROS, such as xanthine oxidase [119], and
the accumulation of AGEs, which impair the activity of antioxidant enzymes [120]. Chronic
hyperglycemia increases glucose metabolism, which depletes NAD+ with enzymes such as
glyceraldehyde-3-phosphate dehydrogenase, aldose reductase, and sorbitol dehydroge-
nase, reducing their availability to the antioxidant enzymes SOD 2 and reduced glutathione
(GSH), which also require NAD+ [121,122]. The combined effects of increased ROS gen-
eration in mitochondrial oxidative metabolism and decreased antioxidant capacity lead
to the accumulation of ROS, which is exacerbated by ceramide synthesis due to excessive
insulin signaling [123].

Along with the decreased activity of antioxidant enzymes, increased levels of DNA
damage markers and protein and lipid peroxidation products can be observed in hyper-
glycemic conditions [12]. As in other organs, the increased extracellular glucose concentra-
tion resulting from diminished glucose uptake into cells negatively affects insulin-secreting
beta cells in pancreatic islets of Langerhans, which have a reduced ability to adapt to
glucotoxicity. Indeed, pancreatic beta cells are more sensitive to ROS and reactive nitrogen
species (RNS) because their antioxidant levels are lower than in other tissues [124–126].

In addition, ROS have been shown to induce stress signaling pathways in beta cells,
including the NF-kB signaling pathway and the JNK signaling pathway [18]. This increased
stress signaling has been associated with the suppression of insulin production, possibly
by decreasing the DNA-binding activity of pancreatic duodenal homeobox 1 (PDX-1),
which is critical for proper pancreatic beta cell function [127,128]. In addition, hexosamine
pathway activation in beta cells suppresses PDX-1 binding to genes involved in insulin
secretion [129]. Together, these processes contribute to beta cell dysfunction and subsequent
impairment of insulin production in T2D.

3.3. T2D-Related Mitochondrial Dysfunction Contributes to Various Diabetes-Related Pathologies

In chronic hyperglycemia, the overproduction of ROS suppresses cellular enzymatic and
non-enzymatic antioxidant mechanisms in various tissues, increasing oxidative stress [12,130].
Increased ROS production causes substantial damage, especially in tissues with rich vas-
culature and high energetic demands [131]. Indeed, excessive ROS production triggered
by hyperglycemia and ensuing hyperinsulinemia is a common denominator of many T2D-
associated complications, including those affecting the vascular system, retina, kidneys,
and brain [21].

The risk for T2D and various comorbidities, including microangiopathies and macroan-
giopathies, increases with age, sedentary lifestyle, and unhealthy diet. Oxidative stress
resulting from excessive ROS production and decreased antioxidant capacity affects vascu-
lar endothelial function, extracellular matrix formation, and smooth muscle cell growth and
migration [132]. It is, therefore, not surprising that high ROS levels lead to dysfunction of or-
gans with sensitive capillary networks, which is the main cause of diabetic retinopathy [133]
and diabetic nephropathy [134]. Excess superoxide generation associated with T2D can di-
rectly inhibit endothelial enzymes such as endothelial nitrogen oxide synthase (eNOS) [135],
which has potent antiatherogenic effects, protecting against diabetic vasculopathy. In dia-
betic eNOS knockout mice, hypertension with arteriolar hyalinosis and microaneurysms
developed early in life, leading to high mortality. These pathologies were accompanied by
albuminuria and renal insufficiency due to increased glomerular and peritubular capillaries.
These histological changes could be improved by insulin therapy [136,137].

Moreover, hyperglycemia increases ROS production in vascular endothelial cells [138].
It induces damage via at least three independent biochemical pathways, namely, glucose-
induced activation of protein kinase C (PKC pathway) [139], increased formation of ad-
vanced glycation end products (AGEs pathway) [140], and enhanced glucose metabolism
via the aldose reductase pathway (polyol pathway) [12,141].

There is evidence that inhibition of eNOS activity or signaling leading to diabetic
macrovascular dysfunction may underlie chronic coronary heart disease in T2D patients [142].
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In diabetic cardiomyopathy, adverse structural and functional tissue remodeling is as-
sociated with enhancement or impairment of multiple biochemical pathways caused by
hyperglycemia-induced ROS overproduction [143]. The role of ROS in the pathogene-
sis of diabetic cardiomyopathy is well documented [144,145]. For instance, transgenic
overexpression of catalase or manganese superoxide dismutase in diabetic mice was as-
sociated with partial restoration of mitochondrial function and cardiomyocyte contrac-
tility [146,147]. Other studies have also demonstrated increased myocardial production
of NADPH oxidase-derived ROS in diabetic rats [100,148]. These results suggest that
oxidative stress associated with diabetic cardiomyopathy originates from mitochondrial
and extramitochondrial sources.

Diabetic retinopathy is a complication of diabetes that impacts retinal blood vessels. It
is thought to be caused by changes in the structure and function of retinal blood vessels
in response to chronic hyperglycemia and the ensuing increased formation of AGEs and
increased oxidative stress [133]. AGEs have been shown to promote the formation of new
blood vessels (neovascularization) in the retina and increase the permeability of existing
blood vessels, both of which are hallmarks of diabetic retinopathy [149].

ROS are also important sources of damage to the retina and, if not removed by antioxi-
dant systems, can cause irreparable damage [150], leading to blindness. The contribution
of oxidative stress to diabetic retinopathy is supported by the observation that levels of
oxidative stress markers are increased in the retina of patients with diabetes [151] and in
diabetic animals [152]. Accordingly, at least in animal models, antioxidant supplementation
was reported to improve retinal structure and function [153–155].

In the brain, high ROS levels resulting from hyperglycemia are strongly associated
with the development of diabetic neuropathy by causing direct damage to the nerves
or by affecting the blood vessels that supply the nerves [143,156]. The accumulation of
ROS and the decreased ability of neurons to eliminate excessive ROS leads to progressive
dysfunction of cellular organelles [157–160]. In the diabetic db/db mouse model, increased
glial activation and apoptosis were observed in the ganglion cell layer [161].

4. Protective Role of Mitochondrial Uncoupling Proteins in T2D

UCPs are a family of mitochondrial anion carrier proteins located in the inner mito-
chondrial membrane that are encoded by SLC25 genes [162]. They are known to regulate
glucose and lipid metabolism [35]. UCPs transport protons (H+) to the mitochondrial
matrix, thereby dissipating the proton motive force and uncoupling ATP synthesis from
substrate oxidation [34].

Five different UCPs have been identified thus far in different tissues (Figure 2). UCP4
and UCP5 are primarily expressed in the central nervous system and play an important
role in brain metabolism and the development of central nervous system diseases [163–165].
During early life, UCP expression is similar in mice of both sexes. However, after puberty
and throughout adulthood, there is a sexual dimorphism in the expression of UCP1 and
UCP3 that correlates with weight gain. In males, the expression of UCP1 and UCP3
decreases with age. In females, however, the pattern of their expression is more variable,
decreasing in young adulthood and increasing later [166]. This differential UCP1 and
UCP3 expression pattern in male and female mice may explain the age-related weight gain
between the sexes. During aging, males gain weight faster and to a greater extent than
females. Overexpression of UCP1 and UCP3 in brown adipose tissue and skeletal muscle
appears to mimic endurance training and prevent the development of obesity in female
mice by reducing triglyceride accumulation [166–168].
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Mitochondrial superoxide production strongly depends on the electrochemical proton
gradient. Decreasing the electrochemical proton gradient and local oxygen availability
limit the formation of ROS [169]. Accordingly, in oxidative stress conditions such as T2D,
ischemia-reperfusion injury, and aging, uncoupling of mitochondrial metabolism can have
a cytoprotective effect [170].

Mitochondrial UCPs can control mitochondrial ROS production by reducing the ef-
ficiency of oxidative phosphorylation [171,172]. Thus, inducible proton leakage through
UCPs is an essential mechanism for controlling mitochondrial ROS generation by adjust-
ing the electrochemical proton gradient [46,173,174]. In diabetic and obese individuals,
alterations in glucose metabolism and the development of some pathologies of insulin
signaling have been associated with specific gene polymorphisms of UCPs [37]. Accord-
ingly, the hyperglycemia-induced increase in ROS production in aortic endothelial cells
was completely abolished when the inhibitor of the respiratory chain complex II thenoyl-
trifluoroacetone (TTFA) or the uncoupler of oxidative phosphorylation carbonyl cyanide
m-chlorophenylhydrazone (CCCP), which abolishes the proton gradient, was applied. The
same effect was obtained by overexpressing UCP1 or manganese superoxide dismutase
(MnSOD), suggesting that the damage caused by hyperglycemia-associated biochemi-
cal pathways (PKC, AGEs, and the polyol pathway) can be prevented by normalizing
mitochondrial ROS levels [86].

In this review, we specifically focus on the protective role of UCPs in T2D, particularly
UCP1, UCP2, and UCP3.

4.1. UCP1

Uncoupling protein 1 (UCP1) is mainly found in the mitochondria of adipose tissue
but also in muscle, retinal cells, and the pancreas [175–178]. In general, the activity of
UCP1 lowers membrane potential, reduces the generation of ROS, and increases energy
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expenditure and nonshivering thermogenesis [179], making it a candidate gene involved in
the pathogenesis of T2D. The role of UCP1 is tissue-specific [180], as its ability to increase
glutathione levels and reduce the production of ROS is far greater in skeletal muscle [179]
than in brown adipose tissue, where its primary role is heat production [181]. Experiments
in transgenic mice with skeletal muscle-specific UCP1 expression have shown a reduced
incidence of age-related diseases and prolonged survival compared to wild-type mice [182].
Proteins involved in the coordination of metabolism, stress responses, and disease suscepti-
bility were differentially affected in skeletal muscle-specific UCP1-expressing mice. Muscle
levels of phosphorylated AMPK, a sensor of energy status in cells that helps maintain
energy stores by regulating anabolic and catabolic pathways [183], were higher than in
wild-type mice. On the other hand, the levels of phosphorylated mTOR, a serine/threonine
kinase that plays an important role in anabolic and catabolic signaling, protein synthesis,
and skeletal muscle remodeling [184], were lower than those in wild-type mice. Both
changes in protein activity mimic caloric restriction, which has been associated with slower
aging and age-related diseases [185]. In addition, uncoupled mice displayed a decrease in
adipose tissue mass and serum IGF-1 and an increase in serum adiponectin [182], which
was accompanied by a decrease in inflammation. Age-related diseases such as T2D are
characterized by chronic inflammation, and adipose tissue is known to recruit inflammatory
cells during obesity [186]. Increased adiposity is also associated with sympathetic nervous
system activation and increased renal sodium reabsorption, leading to hypertension [187].
In transgenic mice with increased skeletal muscle-specific UCP1 expression, UCP1 activity
showed great potential to reduce obesity and inflammation by accelerating skeletal muscle
metabolism and energy expenditure. By reducing sympathetic nervous system activa-
tion and decreasing the secretion of norepinephrine, UCP1 induction in skeletal muscle
increased urinary sodium excretion and lowered blood pressure [182].

4.2. UCP2

Mitochondrial uncoupling protein 2 (UCP2) is found in the muscle, spleen, pancreas,
kidneys, central nervous system, and immune system. Its expression is stimulated by
ROS and increases significantly with oxidative stress, playing an important antioxidant
role [188–190]. The activity of UCP2, like that of UCP3, is controlled by glutathionylation
and ROS-induced deglutathionylation [191]. This process involves the formation of mixed
disulfides between glutathione and cysteine thiols of UCPs in response to oxidative or
nitrosative stress, which regulates mitochondrial metabolism [191–193].

One of the first indications that UCPs play a role in reducing mitochondrial ROS
production emerged from work by Negre-Salvayre et al. [172]. The authors determined that
inhibition of UCP2 resulted in an increased electrochemical proton gradient and peroxide
levels in mitochondria from the liver, spleen, and thymus. Subsequent studies using UCP2
knockout mice of different background strains [194] confirmed the observations of Negre-
Salvayre, as the mice exhibited chronic oxidative stress. UCP2 overexpression studies
confirmed its essential role in reducing oxidative stress, as the production of ROS was
successfully reduced [195,196].

Several lines of evidence support a role for UCP2 in T2D. For instance, polymorphisms
in the promoter regions of the UCP2 gene have been associated with an enhanced risk
for T2D in obese subjects [197] and variations in insulin secretion in glucose-tolerant
subjects [198]. UCP2 is also abundantly expressed in pancreatic beta cells, particularly
those of diabetic mice [199,200]. Increased UCP2 activity leads to proton leakage in the
mitochondrial membrane, resulting in decreased ATP synthesis and ROS formation [172]
and, at the same time, downregulation of glucose-stimulated insulin secretion [201–203].
In contrast, UCP2-deficient mice displayed increased insulin secretion [199].

Diabetes-associated hyperglycemia seems to play a critical role in regulating the
expression of UCP2. In vitro studies of cells grown under chronically elevated glucose
conditions (30 mmol/L) have shown that glucose-induced oxidative stress upregulates
UCP2 [204]. Similarly, increased UCP2 activity has been observed in isolated mitochon-
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dria under non-phosphorylating and phosphorylating conditions of high glucose (25
mmol/L) [205]. This increased UCP2 activity affected the mitochondrial respiratory rate,
mitochondrial membrane potential, and ROS generation. UCP2 activity attenuated ROS
production by lessening the reduction level of mitochondrial respiratory chain complexes,
resulting in increased antioxidant efficiency [205]. The importance of UCP2 uncoupling
in endothelial stress resistance was established by He et al. (2014). Lentivirus-induced
UCP2 overexpression was able to successfully inhibit apoptosis elicited by high glucose
levels [206]. Thus, UCP2 acts as an essential sensor and negative regulator of mitochondrial
ROS overproduction in response to hyperglycemia [205].

Moreover, high glucose exposure has been found to shift aerobic cell metabolism from
carbohydrate oxidation to lipid and amino acid oxidation [207]. The resulting increase in
mitochondrial oxidation of fatty acids decreases free fatty acid (FFA) concentrations, which
protects the mitochondrial respiratory chain from the inhibitory effects of excessive amounts
of fatty acids. The upregulation of UCP2 caused by the same hyperglycemic conditions
makes the mitochondrial respiratory chain less sensitive to inhibition by FFAs [208].

Given its role in regulating insulin secretion and beta cell dysfunction, UCP2 may be a
promising therapeutic target for the treatment of T2D. Accordingly, animal models of T2D
treated with an antisense oligonucleotide against UCP2 showed improved insulin secretion
and peripheral insulin action [209]. Similarly, Zhang et al. described a small molecule,
genipin, that inhibited proton leakage mediated by UCP2 and stimulated insulin secretion
from pancreatic islet cells [210].

Oxidative stress plays a key role in the development of diabetic retinopathy. Under
hyperglycemic conditions, retinal cells respond to increased production of ROS with
increased expression of the UCP2 gene [211]. Significantly increased UCP2 expression
was reported in the retinal cells of young adults of the diabetic db/db mouse model [212].
However, UCP2 expression decreases with age, making the UCP2 gene a potential target
for retinal cell protection against age-related ROS [213].

While the adverse effects of elevated glucose concentrations on retinal pathophys-
iology are well known, antioxidant therapy for diabetic retinopathy has shown limited
benefit [153]. Since UCP2 plays a role in reducing the production of ROS, selective activation
of UCP2 may have therapeutic potential in patients with diabetic retinopathy [214].

4.3. UCP3

Uncoupling protein 3 (UCP3) is expressed in the pancreas, skeletal muscle, heart,
adipose tissue, and spleen. Its abundance in brown adipose tissue correlates with the
abundance of UCP1 and is much greater than in skeletal muscle [215,216]. Indeed, UCP3
is the predominant UCP homolog in skeletal muscle [173], where it is critically involved
in the metabolism of FFAs [217,218]. Lipids induce oxidative stress in mitochondria when
their supply exceeds the oxidative capacity of mitochondria. Under such circumstances,
UCP3 levels are upregulated by deglutathionylation [191]. Increased UCP3 levels have
a protective effect by increasing the oxidative capacity of mitochondria, reducing the
concentration of FFAs in the matrix [219], and decreasing the formation of ROS, which
together have a positive effect on muscle insulin sensitivity [220]. Once the oxidative
capacity of mitochondria is improved, the levels of UCP3 are downregulated [221].

Similar to UCP2, the degradation of UCP3 is rapid [222], allowing efficient adjustment
of its level to rapidly changing metabolic needs and varying rates of ROS production during
mitochondrial oxidative processes. The half-life of the UCP3 protein is approximately 60
times shorter than the half-life of the UCP1 protein [222].

Pancreatic beta cells express UCP3, which affects insulin secretion differently than
UCP2 (Figure 3). When UCP3 is activated, it reduces ROS production and increases fatty
acid oxidation and insulin secretion [223]. The role of the UCP3 gene in the development
of T2D and obesity has been intensively studied, and several UCP3 gene polymorphisms
have been reported to be associated with T2D [224–226]. Decreased expression of UCP3 in
skeletal muscle and pancreas has been found in diabetic patients [227].
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production in a process known as nonshivering thermogenesis. Increased metabolism in pancreatic
cells expressing UCP1 increases energy dissipation and reduces mitochondrial ROS production,
thereby reducing oxidative stress and the progression of T2D. UCP2 acts as an antioxidant whose
expression is stimulated by ROS. Increased UCP2 activity leads to increased proton leakage, which
in turn decreases ATP synthesis and the formation of ROS. At the same time, it reduces glucose-
stimulated insulin secretion, which may exacerbate T2D. UCP3 affects insulin secretion differently
than UCP2. When UCP3 is activated, it reduces ROS production and increases fatty acid oxidation
and insulin secretion. Created with BioRender.com.

5. Conclusions

UCPs are important regulators of energy homeostasis. They are closely related to aging
and T2D, which are caused in part by the accumulation of oxidative damage. Moreover,
some UCP polymorphisms correlate with human longevity and increased susceptibility
to metabolic changes leading to T2D. By uncoupling mitochondrial energy production,
UCP1 increases energy expenditure in adipose tissue, thereby decreasing adiposity and
inflammation. Its role in increasing antioxidant glutathione levels in skeletal muscle appears
to be even more important, making it a good candidate for developing interventions to
treat T2D.

Under conditions of high oxidative stress and thus high ROS concentrations, the ex-
pression and activation of UCP2 increase, reducing ATP generation and insulin secretion in
pancreatic beta cells. Since ATP is essential for closing ATP-dependent potassium channels
and increasing insulin secretion from beta cells [108], pancreas-specific downregulation of
UCP2 could be a potential pharmacological approach to keep insulin secretion sufficiently
high to cope with elevated blood glucose concentrations in diabetic patients. At the same
time, upregulation of UCP2 appears to be beneficial in tissues other than the pancreas
by reducing the production of ROS via increased proton leakage in the mitochondrial
membrane. Therefore, selective upregulation of UCP2 in these tissues could also be a
potentially suitable therapeutic approach.

Finally, UCP3 reduces mitochondrial FFA concentration and thus decreases ROS
generation. In diabetic patients, UCP3 expression is reduced, which negatively affects
insulin sensitivity. Conversely, UCP3 activation increases insulin secretion. However, UCP3
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is rapidly degraded in the liver, which may pose problems in using its upregulation as a
potential strategy for T2D management.

Due to their antioxidant functions and ability to modulate insulin secretion and
sensitivity, UCPs have great potential as targets for the development of new therapies
against T2D and associated complications.
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