
Research Article
Exploration of the Immune-Related Signatures and Immune
Infiltration Analysis in Melanoma

Ai-lan Li ,1 Yong-mei Zhu ,1 Lai-qiang Gao ,1 Shu-yue Wei ,1 Ming-tao Wang ,1

Qiang Ma ,1 You-you Zheng ,1 Jian-hua Li ,1 and Qing-feng Wang 2

1Department of Dermatology, Dongying People’s Hospital, Dongying 257091, China
2College of Integrated Chinese and Western Medicine, Liaoning University of traditional Chinese Medicine, Shenyang 110079, China

Correspondence should be addressed to Ming-tao Wang; 875032005@qq.com and Qiang Ma; maqiang1919@tom.com

Received 24 April 2020; Accepted 21 October 2020; Published 16 January 2021

Guest Editor: Giovanni Tuccari

Copyright © 2021 Ai-lan Li et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In the present study, we aimed to investigate immune-related signatures and immune infiltration in melanoma. The transcriptome
profiling and clinical data of melanoma were downloaded from The Cancer Genome Atlas database, and their matched normal
samples were obtained from the Genotype-Tissue Expression database. After merging the genome expression data using Perl,
the limma package was used for data normalization. We screened the differentially expressed genes (DEGs) and obtained
immune signatures associated with melanoma by an immune-related signature list from the InnateDB database. Univariate Cox
regression analysis was used to identify potential prognostic immune genes, and LASSO analysis was used to identify the hub
genes. Next, based on the results of multivariate Cox regression analysis, we constructed a risk model for melanoma. We
investigated the correlation between risk score and clinical characteristics and overall survival (OS) of patients. Based on the
TIMER database, the association between selected immune signatures and immune cell distribution was evaluated. Next, the
Wilcoxon rank-sum test was performed using CIBERSORT, which confirmed the differential distribution of immune-infiltrating
cells between different risk groups. We obtained a list of 91 differentially expressed immune-related signatures. Functional
enrichment analysis indicated that these immune-related DEGs participated in several areas of immune-related crosstalk,
including cytokine-cytokine receptor interactions, JAK–STAT signaling pathway, chemokine signaling pathway, and Th17 cell
differentiation pathway. A risk model was established based on multivariate Cox analysis results, and Kaplan-Meier analysis was
performed. The Kruskal-Wallis test suggested that a high risk score indicated a poorer OS and correlated with higher American
Joint Committee on Cancer-TNM (AJCC-TNM) stages and advanced pathological stages (P < 0:01). Furthermore, the
association between hub immune signatures and immune cell distribution was evaluated in specific tumor samples. The Wilcoxon
rank-sum test was used to estimate immune infiltration density in the two groups, and results showed that the high-risk group
exhibited a lower infiltration density, and the dominant immune cells included M0 macrophages (P = 0:023) and activated mast
cells (P = 0:005).

1. Introduction

As one of the most common cutaneous malignancies in the
clinic, the incidence of melanoma is dramatically increasing,
with an annual rate of 75,000 cases/year, representing 4.5% of
all US cancer cases [1]. In 2012, 232,000 cases of melanoma
were newly diagnosed and 55,000 deaths were reported
globally [2]. Malignant melanoma (MM) is highly metastatic.
Around 50–80% of patients with advanced melanoma
display liver metastases [3, 4], and more than one-third of

advanced melanoma cases have brain metastases [5, 6].
MM has the highest mortality rate among other cutaneous
malignant tumor types, and the median survival (MS) of
advanced melanoma patients with metastasis is 8–12 months
[7, 8]. Besides, the metastasis location strongly influences the
5-year overall survival (OS) of patients with MM: the 5-year
OS of M1a, including, skin, subcutaneous tissue, and extrare-
gional lymph node metastases, is around 23%, while that of
M1b (lung metastases) is 17% [9]. Patients with visceral
metastases (M1c), especially in the brain and liver, have been
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shown to exhibit a 5-year OS of less than 10%, with an MS of
below 1 year [10].

After treatments, such as local-regional therapy, radio-
therapy, and chemotherapy which have been tested to
prolong OS and MS, immunization therapy has gradually
become the primary means of MM treatment. The Food
and Drug Administration-approved agents include interferon
α2b (IFN-α2b) [11] and high doses of interleukin (IL-2, 12),
while vemurafenib [12], mitogen-activated protein kinase/ex-
tracellular signal-regulated kinase kinase inhibitor [13],
encorafenib [14], and binimetinib [15] are commonly used
as targeted drugs against this malignancy. These data have
triggered an interest in the application of immunotherapy
for MM. However, further studies on the immune mechanism
of MM are needed to help provide a theoretical basis for the
clinical use of these agents and identify potential molecular
targets for MM diagnosis and treatment.

Although several factors contribute to the occurrence and
prognosis of MM, immune response signaling pathways are
considered key factors and have been correlated with the
development of an MM-immune microenvironment [16].
However, lack of new tumor antigens, the insufficient
number of tumor-infiltrating lymphocytes (TILs) [17], and
overexpression of immunosuppressive molecules, such as
programmed death 1/programmed death-ligand 1 [18],
wingless-type MMTV integration site family, member 5A
[19], and signal transducer and activator of transcription 3
(STAT3) inhibitor [20], inhibit tumor immunology, leading
to the deterioration of MM-immune microenvironment.
Hence, elucidating the immune microcharacteristics of MM
can effectively counteract immune evasion, thus prolonging
the OS of patients with MM. Immunotherapies, such as use
of sorafenib, a protooncogene serine/threonine-protein kinase
(RAF) inhibitor, which targets the RAF, platelet-derived
growth factor receptor, vascular endothelial growth factor
receptor, and Fms-like tyrosine kinase 3, have been shown to
induce caspase-independent apoptosis in melanoma cells
[21]. Another study reported that, in patients with melanoma,
treatment with tremelimumab, a monoclonal antibody against
cytotoxic T lymphocyte antigen-4, activated positive immune
responses and maintained T cell responses by excess genera-
tion of CD8+ T cells, thus blocking CTLA-4 [22].

In MM, the tumor immune environment, especially TILs,
has been correlated with patient therapy and prognosis [23].
Hence, it is essential to conduct research on immune infiltra-
tion in MM. Previous studies mainly focused on differential
gene expression in the tumor immune environment in MM,
while the effect of MM immune environment on patient
prognosis remains poorly understood. Moreover, informa-
tion on immune signature distribution in the MM micro-
environment is still lacking. In order to identify robust
immune signatures that can serve as potential therapeutic
targets, it is essential to further investigate the relationship
between specific biomarkers of tumor immune cells andMM.

In the present study, we obtained transcriptomic data
from The Cancer Genome Atlas (TCGA) and screened for
immune-related genes using an immune-related signature
list from the InnateDB database. To evaluate the clinical OS
of MM patients with these immune-related genes, we

performed correlation using a multivariate Cox regression
model and constructed a risk model of MM based on its
results. To further investigate the correlation between this
risk model and clinical characteristics, we performed correla-
tion analyses. Finally, we utilized CIBERSORT and TIMER
databases to evaluate the association between hub immune
signatures and immune cells in the MM immune microenvi-
ronment and determined the characteristics of immune-
infiltrating cells in MM.

2. Methods and Materials

2.1. Data Acquisition and Processing. From TCGA database
(https://portal.gdc.cancer.gov/), we downloaded the genome
expression data of 472 samples, including 471 tumor samples
and 1 matched normal sample. In order to match the tumor
samples, we downloaded the genome expression data of nor-
mal samples from the Genotype-Tissue Expression (GTEx)
database (https://www.gtexportal.org/). Considering ultravi-
olet radiation as a high-risk factor for melanomas [24], we
selected samples that were not exposed to the sun, which
included 273 suprapubic skin tissue samples. After merging
the genome expression data, limma package was used for
data normalization, and abnormally expressed genes were
screened for in tumor and normal samples. Meanwhile, the
immune-related signatures were obtained from the InnateDB
database (https://www.innatedb.ca/), and the pheatmap
package was used to identify intersections and the expression
immune signature in abnormally expressed genes obtained
above. After transferring the gene names into the Entrez
ID, we investigated their biological functions by performing
Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) analyses of differentially expressed
immune genes in melanoma with clusterProfiler, org.H-
s.eg.db, enrichplot, and ggplot2 packages. The significantly
enriched terms are indicated by dot plots and circle plots
(with the GOplot package). Clinical information, including
age, gender, TNM stages, tumor grades, and follow-up data,
was obtained with TCGAbiolinks package.

2.2. Construction of a Melanoma Risk Scoring Model. To
investigate the role of these differentially expressed immune
genes in prognosis prediction, we constructed a risk model
to evaluate the importance of these hub genes. First, univar-
iate Cox regression analysis was performed to identify prog-
nostic signatures from the differentially expressed immune
genes screened. To reduce the variables, significant signa-
tures with P < 0:01 were selected by the least absolute shrink-
age and selection operator (LASSO). Next, multivariate Cox
analysis was performed, and the risk score was calculated as
follows: risk score =∑ðβi ∗ ExpiÞ, where βi, the coefficients,
represented the weight of the respective signature and Expi
represented the expression level. Based on the results, we
established a risk score for each patient, where the median
risk score was considered the cutoff value, and patients were
classified into high- and low-risk groups. Distribution of the
vital status in the two groups was illustrated by curve and
scatter plots using reshape2, ggplot2, scales, and cowplot
packages, and the levels of differentially expressed immune
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signatures among the two groups were represented by a
heatmap plot.

2.3. Evaluation of the Association between Risk Score and
Clinical Variables. First, for survival prediction with the sur-
vival package, we evaluated the hazard ratio of the immune
signatures and identified the hub immune signatures by P
Filter = 0:05. Next, we generated a receiver operating charac-
teristic (ROC) curve with the timeROC package for OS pre-
diction in the different groups. Additionally, Kaplan-Meier
analysis was performed and a log-rank test was used to assess
the correlation between risk score and survival probability.
Second, for assessing clinical features, because the melanoma
was not classified based on pathological grade, we obtained
the clinical data from TCGA database and performed univar-
iate single and multivariate multiple independent factor
analyses (by the Wilcoxon rank-sum test) to investigate the
underlying relationships between risk score and clinical
features, including age, gender, and TNM stage.

2.4. Evaluation of the Association between Risk Score and
Immune Infiltration. From the TIMER database, we down-
load the profiles that matched TCGA data to estimate the
abundance of six immune infiltrates (B cells, CD4+ T cells,
CD8+ T cells, neutrophils, macrophages, and dendritic cells)
by pathological estimations. Based on TIMER, the correla-
tion between risk score/immune signature expression and
tumor immunological features was determined by calculating
the Pearson correlation coefficient and the estimated P value,
which indicated the association between risk score and
immune infiltration.

2.5. Evaluation of the Association between Risk Score and
Immune Cell Abundance. To determine the tumor microenvi-
ronment characteristics, besides TIMER, we utilized CIBER-
SORT to estimate the fractions of 22 immune cell types in
each sample, which are represented as a box plot. Further-
more, the Wilcoxon rank-sum test was performed to evaluate
the correlation between immune cell abundance and risk
score. Finally, the density of immune cells in the two groups
was illustrated with a heatmap, which represented the levels
of immune-infiltrating cells in the groups.

2.6. Statistical Analysis. For comparison of categorical vari-
ables, the chi-square (χ2) test was performed. The Wilcoxon
rank-sum test, a nonparametric statistical test, was mainly
used for comparing two groups, and the Kruskal-Wallis test
was used for comparison of more than two groups. Differen-
tial gene expression data was analyzed by the “limma” package,
which was also used for data normalization. Cox regression
analysis or Kaplan-Meier analysis with log-rank test was per-
formed using the “survival” package. All statistical analyses
were performed using R software (version 3.6.1), and a P value
< 0.05 was considered to be statistically significant.

3. Results

3.1. Identification of Prognostic Immune-Related Signatures
in Melanoma. This study included 605 samples from TCGA
and GTEx databases, including 471 tumor samples and 234

corresponding normal samples (not exposed to the sun;
suprapubic). Excluding patients with insufficient clinical
data, the complete clinical information is presented in
Table 1. For subsequent experiments, we screened 345 tumor
samples, which matched clinical and transcriptome data
from the databases. After data normalization with the limma
package, 968 differentially expressed genes (DEGs) were
identified from transcriptome profiles with ∣log fold change
∣ >1 and false discovery rate ðFDRÞ < 0:05. The up- or down-
regulated DEGs are shown in Figure 1(a). From the Inna-
teDB database, we obtained a list of 2498 immune-related
genes and intersected 91 differential immune-related signa-
tures. The expression of these signatures is displayed as a
heatmap (Figure 1(b)). Functional enrichment analysis
indicated that these immune-relatedDEGs participated in sev-
eral areas of immune-related crosstalk, including cytokine-
cytokine receptor interactions, Janus kinase/signal transducers
and activators of transcription (JAK-STAT) signaling path-
way, chemokine signaling pathway, and Th17 cell differentia-
tion pathway (Figures 1(c) and 1(d)).

3.2. Risk Score and Model Assessment. In order to identify
prognostic genes among the selected immune-related signa-
tures, Cox and LASSO regression analyses were performed
for the establishment of a risk scoring model. The hub signa-
tures were screened based on the OS results. First, the differen-
tial immune signature expression data were merged with the
survival data, and 30 prognostic signatures with P < 0:01 were
identified. These signatures were then evaluated by LASSO
regression analysis (Figures 1(e) and 1(f)), and 12 hub
immune genes were identified (Table 2). Finally, to define
the weight of each gene, multivariate Cox regression analysis
was performed to calculate the coefficient of these signatures.
Based on these results, the risk score was calculated as
follows: risk score = −HLA −DPB1 ∗ 0:219464 − IGHV3 −
21 ∗ 0:086658 + IGKV4 − 1 ∗ 0:080249 − IGLC2 ∗ 0:119770
+ IGLV2 − 11 ∗ 0:120023 − IL27RA ∗ 0:182126 + NFATC4
∗ 0:180356 −NTF4 ∗ 0:932083 + PGLYRP4 ∗ 0:325587 +
RAC2 ∗ 0:130861 + SLPI ∗ 0:101763 − STAT1 ∗ 0:103435.
The melanoma patients enrolled in this study were classified
into low- and high-risk groups (227 patients/group). As
shown in Figures 2(a) and 2(b), the low-risk group exhibited
a lower survival risk. The hub gene expression data of the
two groups are shown in Figure 2(c). The hazard ratio of each
hub gene is shown in Figure 3(a), and the ROC plot generated
is shown in Figure 3(b). The 5-year area under curve (AUC)
was 0.697, which confirmed the prediction accuracy of the risk
score for melanoma prognosis. The OS results are shown in
Figure 3(c). As demonstrated by the Kaplan-Meier analysis,
the high-risk group was associated with a poorer OS
(P < 0:001) compared with the low-risk group. The correla-
tion between risk score and AJCC-TNM stage is shown in
Figure 4. The results of univariate prognostic analysis
(Figure 4(a)) indicated that risk score is closely correlated to
the stages, T and N (P < 0:001), and the results of multivariate
prognostic analysis (Figure 4(b)) also indicated that risk score
is closely correlated to the T and N stages (P < 0:01),
suggesting the clinical significance of risk score.
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3.3. Association between Immune Signatures and Tumor-
Infiltrating Immune Cells. In order to evaluate the role of
infiltrating immune cells in the tumor microenvironment,
we explored the function of immune signatures in immune
infiltrates. First, we evaluated the relationship between 12
hub immune signatures/risk score and 6 immune cell types
according to the TIMER database. As shown in Figure 5, risk
score was closely associated with the immune cells. In addi-
tion, similar to risk score, all hub immune signatures were
also associated with the immune cells (see Figure S1). Next,
CIBERSORT algorithm was used to further estimate the
fractions of 22 immune cells in each sample, after excluding
samples with a calculated P value > 0.05. The sum of the
immune fractions in each sample was equal to one. The
various immune cells in each sample are illustrated as a box
plot. (Figure 6).

3.4. Association between Risk Score and Tumor-Infiltrating
Immune Cells. As shown in Figure 5, we analyzed the poten-
tial association between risk score and distribution of tumor-
infiltrating immune cells. First, the differences in infiltrating
immune cells among the two groups were shown as a heat-
map (Figure 7(a)). The low-risk group displayed a larger
number of M0 macrophages (red color represents the infil-
tration density) compared with the high-risk group. Hence,
M0 macrophages were regarded as the dominant immune
cells. Next, the Wilcoxon rank-sum test was performed to
evaluate the infiltration rate in the two groups. Results
showed that M0 macrophages (P = 0:032) and activated mast
cells (P = 0:005) in the high-risk group exhibited a signifi-
cantly lower infiltration density. Based on these results, we
inferred that risk factor was associated with lower immune
infiltrates, resulting in poor survival outcomes.

4. Discussion

Previously, due to its lower incidence and mortality rate
(compared with other cancer types), melanoma-related
researches were focused on clinical treatment strategies
rather than the underlying mechanisms. However, according
to data from the SEER database (https://seer.cancer.gov/
statfacts/html/melan.html), the incidence of melanoma has
over tripled between 1975 and 2019. Although the annual
mortality rate of melanoma was just 2.2% in 2019, MM has
an MS of 8~12 months after metastasis. A systematic study
of the immunemicroenvironment can provide a broader per-
spective on the MM immune infiltration signatures and thus
reveal novel targets for immunotherapy. In the present study,
using the TCGA-CTEe datasets, we established an immune-
related risk signature for MM and constructed a risk model
based on the results of univariate Cox regression and LASSO
analyses. These signatures could predict the patients’ OS,
which was closely correlated to the clinical symptoms.
According to the KEGG and GO analysis results, the selected
signatures participated in cytokine-cytokine receptor interac-
tion, Th1 and Th2 cell differentiation, and JAK-STAT signal-
ing pathway. Moreover, a significant correlation between risk
score and MM immune microenvironment was observed. A
higher risk score indicated a lower density of infiltrating

Table 1: Baseline characteristics of 470 melanoma patients included
in this study.

Variables Count Percentage (%)

Age (mean ± SD) 58:22 ± 15:73

Follow-up (y) 4:96 ± 5:28
Status

Alive 259 (55.11)

Dead 211 (44.89)

Gender

Male 290 (67.70)

Female 180 (38.30)

Pathological stage

I/II NOS 14 (2.98)

Stage 0 8 (1.70)

Stage I 76 (16.1)

Stage II 140 (29.79)

Stage III 171 (36.38)

Stage IV 23 (4.894)

Unknown 38 (8.09)

AJCC-T

T0 23 (4.89)

T1 42 (8.94)

T2 78 (16.60)

T3 90 (19.15)

T4 153 (32.55)

Tis 8 (1.70)

TX 47 (10.00)

Unknown 29 (6.17)

AJCC-N

N0 235 (50.00)

N1 74 (15.74)

N2 49 (10.43)

N3 55 (11.70)

NX 36 (7.66)

Unknown 21 (4.47)

AJCC-M

M0 418 (88.94)

M1 24 (5.11)

Unknown 28 (5.96)

Grade

G1 — —

G2 — —

G3 — —

G4 — —

Unknown 1053 (100)

Risk score

Low 227 (48.30)

High 227 (48.30)

Unknown 16 (3.40)

Abbreviations: TCGA: The Cancer Genome Atlas; AJCC: American Joint
Committee on Cancer; TAIG: tumor-associated immune genes.
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Figure 1: Continued.
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immune cells, a high immune risk microenvironment, deteri-
oration of MM, and a poorer OS. The present study linked the
immune-related signature ⟶ immune microenvironment
⟶ AJCC-TNM stages ⟶ patients’ OS and revealed the
effect of immune microenvironment on MM progression.
The risk model established in this study can also be regarded
as a predictor of the development, recurrence, and survival

outcome ofMM. Additionally, according to the results of mul-
tivariate Cox regression analysis, the 12 hub immune-related
signatures screenedmay not only serve as independent predic-
tors of MM in the clinic but also as potential immunotherapy
targets for MM patients in the future.

Here, we identified 12 hub immune-related signatures,
among which human leukocyte antigen (HLA), interleukin-
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Figure 1: Identification of prognostic immune-related signatures in melanoma: (a) DEGs in melanoma vs. normal samples; (b) the
intersection and differential expression of 91 immune-related signatures; (c, d) functional enrichment analysis revealed the potential
immune-related crosstalks associated with prognostic immune signatures; (e, f) LASSO regression analysis was used to identify 12 hub
tumor-associated immune signatures.

Table 2: Identification of 12 hub prognostic immune signatures based on a multivariate regression method.

Gene symbol Description coef HR HR.95L HR.95H P

HLA-DPB1 HLA class II histocompatibility antigen, DP beta 1 chain -0.219 0.803 0.693 0.930 0.003

IGHV3-21 Immunoglobulin heavy variable 3-21 -0.087 0.917 0.819 1.026 0.131

IGKV4-1 Immunoglobulin kappa variable 4-1 0.080 1.084 0.977 1.202 0.129

IGLC2 Immunoglobulin lambda constant 2 -0.120 0.887 0.795 0.990 0.033

IGLV2-11 Immunoglobulin lambda variable 2-11 0.120 1.128 1.009 1.260 0.034

IL27RA Interleukin-27 receptor subunit alpha -0.182 0.833 0.739 0.940 0.003

NFATC4 Nuclear factor of activated T cells, cytoplasmic 4 0.180 1.198 1.036 1.384 0.015

NTF4 Neurotrophin-4 -0.932 0.394 0.118 1.309 0.128

PGLYRP4 Peptidoglycan recognition protein 4 0.326 1.385 0.996 1.925 0.053

RAC2 Ras-related protein Rac2 0.131 1.140 0.998 1.301 0.053

SLPI Antileukoproteinase 0.102 1.107 1.007 1.217 0.035

STAT1 Signal transducer and activator of transcription 1-alpha/beta -0.103 0.902 0.787 1.033 0.135
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27 (IL-27), nuclear factor of activated T cells, cytoplasmic 4
(NFATc4), and neurotrophin-4 (NTF4) were the most signif-
icant factors. HLA participates in the immune system, which
induces immune responses via the antigen, thus playing a
crucial role in immunological surveillance. As a member of
the HLA family, HLA-II, a heterodimer of α (DPA) and β
(DPB) chain, localizes in the cell membrane and is expressed
in antigen-presenting cells, such as B lymphocytes, dendritic
cells, and macrophages. HLA-DPB1 is derived from the β

chain of HLA-II. In a previous research, Dhall et al. [25]
showed that HLA-DPB1 functioned in presenting abnormal
antigens in MM, thus stimulating melanoma progression
and metastasis. In gene polymorphism research, HLA-
DPB1 mutations have been regarded as signatures associated
with gastric and lung cancers [26].

Compared with HLA-DPB1, IL-27 is another important
signature specific for cutaneous cancer. In a previous research
conducted by Dibra et al. [27], IL-27 was shown to play an
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Figure 2: Establishment of a risk model: (a, b) vital status of patients based on the risk score; (c) the expression of identified hub immune
signatures between low- and high-risk groups.
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unrecognizable role in promoting papilloma formation, which
disrupted epithelial stem cell homeostasis/maintenance. A
follow-up study demonstrated that [28], in a K15-KRASG12D
mousemodel, IL-27 accelerated the accumulation of endothelin
A receptor-positive CD11b cells, a novel category of protumor
inflammatory cells, thus establishing a premalignant niche
and expanding themutation of stem cells. In patients with squa-
mous cell carcinoma, the distribution of IL-27 receptor subunit
alpha-positive cells in the stroma was shown to be closely
correlated to tumor dedifferentiation.

Many transcription factor families participate in the regula-
tion of neurite growth, including the nuclear factor of activated

T cell (NFAT) family [29]. NFATc4 belongs to the NFAT fam-
ily and is mainly expressed in the nervous system, where it reg-
ulates neural functions, such as hippocampal plasticity, axon
growth, neuron survival, and apoptosis in the brain [30]. In
addition, NFAT family members could activate the immune
response of T cells, as reported by Hessmann et al. [31]. In aci-
nar cell plasticity and pancreatic cancer initiation, NFATc4 was
found to be overexpressed and localized in the nucleus, thus
activating the inflammation-induced epidermal growth factor
receptor signaling pathway and upregulating the expression
of Sox9. Therefore, we suggest that NFATc4 serves as a bridge
between neuroscience and immune-oncology.
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Figure 3: Validation of the risk score prediction model for melanoma prognosis. (a) Results of multivariate Cox analysis of 12 hub immune
signatures are illustrated as a forest plot. (b) The 5-year AUC of ROC curve was 0.697, indicating high prediction accuracy. (c) Results of
Kaplan-Meier analysis showed that patients in the high-risk group had poor survival outcomes (P < 0:001).
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Similar to NFATc4, NTF4 is also expressed in the
nervous system. However, there is limited research on its
role in cancer. As an optic nerve disease signature, NTF4
has been commonly used for the assessment and identifi-
cation of glaucoma [32]. A previous study by Shen et al.
[33] showed that, after induction with specific receptor
cleavages, NTF4 could suppress IL-6 family receptors and
the Notch signaling pathway, which modulate protein
kinase B (PKB/Akt) activity, thus decreasing the phosphory-
lation of STAT3. A previous study indicated that [34, 35]
PKB/Akt signaling has been implicated in MM metastasis to
distant organs, especially the brain. These findings suggest that
NTF4 canmodulateMMmetastasis via the PKB/Akt signaling
pathway.

The RAC protein family, belonging to the Rho GTPase
superfamily, has three subtypes: Rac1, Rac2, and Rac3 [36].
The RAC protein family participates in the regulation of

monocyte chemotaxis, stimulation of nicotinamide adenine
dinucleotide phosphate (NADPH) oxidase activity, and gen-
eration of reactive oxygen species (ROS) [37, 38]. RAC1 was
identified as the third most common recurrent mutation in
melanomas and can be found in 4–7% of all patients [39].
It can be activated during deadhesion, contributing to super-
oxide production and RAS activation [40]. RAC2 targets
NADPH oxidase, thus promoting ROS generation. In a pre-
vious study, Diebold and Bokoch [41] showed that RAC2
regulated electron transfer from NADPH to flavin adenine
dinucleotide, thus controlling the inflammatory response of
phagocytes downstream. Moreover, studies have shown that,
during diallyl disulfide-induced apoptosis of human leuke-
mia HL-60 cells, RAC2 is overexpressed [42]. With regard
to its immunologic function, downregulation of RAC2 in
MM skin tissues suggested that, similar to RAC1, RAC2 is
widely involved in MM invasion and metastasis.
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Figure 4: The correlation between risk score and AJCC-TNM stages. (a) The results of univariate prognostic analysis indicated that risk score
was closely correlated to the stages, T and N. (b) The results of multivariate prognostic analysis indicated that risk score was closely associated
with the T and N stages.
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Secretory leukocyte protease inhibitor (SLPI), which
serves as an important protective component of the
mucosa and skin [43, 44], is an effective inhibitor of neu-
trophil elastase [45]. Because of the protease inhibitor site
in C-terminal domains, SLPI can inhibit the activation of
various serine proteinases, including chymotrypsin, tryp-
sin, trypsin elastase, histoproteinase G, and mast cell
chymotrypsin. Besides its anti-inflammatory [46] and pro-
wound healing [47] effects, SLPI also acts as a modulator
of innate immune responses of macrophages [48], which

induce degradation of inhibitor of nuclear factor kappa-B
(NF-κB), thus leading to NF-κB activation [49]. Overex-
pression of SLPI has been associated with the metastasis
of breast cancer [50], gastric cancer [51], and malignant
glioma [52], wherein it degrades the basement membrane
and promotes the aggressiveness of these tumor types. In
melanoma progression, SLPI is functionally related to
kallikreins [53], which is an important signature in
intercellular adhesion, keratinocyte differentiation, and cell
exfoliation.
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Localized in the cytoplasm, STATs can translocate into
the nucleus and induce specific DNA binding after activa-
tion. The STAT family has dual functions in signal transduc-
tion and transcription regulation. In IL-2 therapy for
melanoma, the absence of STAT1 was correlated with
increasing clinical stage [54]. Further, via the eIF4F-
STAT1-PD-L1 axis [55], STAT1 could inhibit proliferation
and induce apoptosis, thus blocking the growth of melanoma
cells [56]. However, some studies have indicated that STAT1
participates in late-stage melanoma progression [57].
Regarding its immunologic function, we suggest that STAT1
is widely involved in melanoma immune responses in a
complex way.

In the present study, various immune signatures were
found to be closely associated with melanoma prognosis as
well as immune cell distribution. Furthermore, we investi-
gated the correlation between immune cells and risk score.

Results showed that, in the high-risk group, M0macrophages
(P = 0:023) and activated mast cells (P = 0:005) had a
significantly lower infiltration density.

Although insignificant differences were found among
other immune cells and M0 macrophages were the dominant
immune cells (80:23 ± 0:22% in the high-risk group and
60:23 ± 2:61% in the low-risk group), it can be inferred that
the decrease of immune-infiltrating cells in the tumor micro-
environment of the high-risk group may be related to poor
MM prognosis. Nevertheless, further investigations are
needed to clarify the characteristics of other immune cells
in the tumor microenvironment.

Taken together, we identified and validated 12 immune-
related genes in melanoma based on immune infiltration
and constructed a robust risk scoring model using these
immune signatures. This risk model could accurately predict
the prognosis of MM patients and the immune infiltration

Macrophages M0
T cells CD8
Macrophages M2
T cells CD4 memory resting
Macrophages M1
Plasma cells
T cells gamma delta
NK cells resting
Mast cells activated
Neutrophils
Dendritic cells activated
T cells CD4 naive
Eosinophils
Monocytes
Dendritic cells resting
T cells CD4 memory activated
T cells follicular helper 
NK cells activated
Mast cells resting
T cells regulatory (Tregs)
B cells naive
B cells memory

High riskLow risk 
0

0.2

0.4

0.6

0.8

(a)

0.0

0.2

0.4

0.6

0.8

Fr
ac

tio
n

P = 0.38

P = 0.103

P = 0.94

P = 0.366

P = 0.462

P = 0.889 P = 0.345

P = 0.951

P = 0.319 P = 0.959

P = 0.134
P = 0.494

P = 0.978

P = 0.262
P = 0.253

P = 0.63

P = 0.287

P = 0.536P = 0.005
P = 0.883

P = 0.444

P = 0.032

B ce
lls 

naiv
e

B ce
lls 

mem
ory

Plas
ma c

ells

T ce
lls 

CD8

T ce
lls 

CD4 n
aiv

e

T ce
lls 

CD4 m
em

ory 
res

tin
g

T ce
lls 

CD4 m
em

ory 
act

iva
ted

T ce
lls 

follic
ular

 help
er 

T ce
lls 

reg
ulat

ory 
(T

reg
s)

T ce
lls 

gam
ma d

elt
a

NK ce
lls 

res
tin

g

NK ce
lls 

act
iva

ted

Monocyt
es

Macr
ophage

s M
0

Macr
ophage

s M
1

Macr
ophage

s M
2

Den
dr

itic
 ce

lls 
res

tin
g

Den
driti

c c
ells

 ac
tiv

ate
d

Mast
 ce

lls 
res

tin
g

Mast
 ce

lls 
act

iva
ted

Eosin
ophils

Neu
tro

phils

(b)

Figure 7: Differential distribution of immune cells among the two groups. (a) Heatmap illustrating the differences in infiltrating immune cells
among the two groups. The colors ranging from green to red represent the infiltration density from low to high. (b) Wilcoxon rank-sum test
was used to accurately compare the differences, and results showed that M0 macrophages (P = 0:032) and activated mast cells (P = 0:005) in
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intensity in the MM microenvironment. The selected
immune signatures may also serve as novel immune targets
for MM immune-related treatments in the future.

Considering the low incidence and poor prognosis of
melanoma, collection of clinical samples is difficult. In this
study, we used a large number of cohort samples from TCGA
and GTEx databases to investigate the expression of
immune-related genes. Through analysis of immune infiltra-
tion, the regulation of immune-related genes in melanoma
and their relationship with prognosis were studied in detail.
Simultaneously, CIBERSORT and TIMER were used to ana-
lyze immune cells in the samples, which greatly improved
research efficiency. Considering that this study was mainly
carried out by bioinformatics, its clinical accuracy needs
further validation. Moreover, the function of the identified
biomarkers needs to be verified by PCR and western blotting
experiments to determine its clinical value, which may
provide a theoretical and therapeutic basis for the treatment
of melanoma.

Due to the low incidence and poor prognosis of mela-
noma, collection of clinical samples is difficult. In our study,
we analyzed clinical samples from TCGA and GTEx databases
and evaluated the expression of immune-related genes in
immune cells. Through analysis of immune cell infiltration,
we identified a correlation between these immune-related
genes and MM morbidity and prognosis. Furthermore, the
use of CIBERSORT and TIMER improved the research effi-
ciency of immune cell distribution in the samples.

Using the approach of this study, we can use existing
research to systematically study immune inflammation with-
out investigating underlying pathways or understanding the
cell composition of the samples. This enables us to compre-
hensively analyze the immune and inflammatory patterns
of melanoma reported in previous studies, evaluate the
specific distribution of immune cells and the changes in
corresponding biomarkers, and identify the biological relation-
ship between them. Hence, our findings reveal a series of novel
targets for the clinical treatment of MM. In addition, the
feasibility of this study is high, thus providing a feasible method
for future research on melanoma and other cancer types.
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