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Abstract10

Polygenic scores (PGSs) are being rapidly adopted for trait prediction in the clinic and beyond. PGSs11

are often thought of as capturing the direct genetic effect of one’s genotype on their phenotype. However,12

because PGSs are constructed from population-level associations, they are influenced by factors other than13

direct genetic effects, including stratification, assortative mating, and dynastic effects (“SAD effects”). Our14

interpretation and application of PGSs may hinge on the relative impact of SAD effects, since they may15

often be environmentally or culturally mediated. We developed a method that estimates the proportion of16

variance in a PGS (in a given sample) that is driven by direct effects, SAD effects, and their covariance.17

We leverage a comparison of a PGS of interest based on a standard GWAS with a PGS based on a18

sibling GWAS—which is largely immune to SAD effects—to quantify the relative contribution of each19

type of effect to variance in the PGS of interest. Our method, Partitioning Genetic Scores Using Siblings20

(PGSUS, pron. “Pegasus”), breaks down variance components further by axes of genetic ancestry, allowing21

for a nuanced interpretation of SAD effects. In particular, PGSUS can detect stratification along major22

axes of ancestry as well as SAD variance that is “isotropic” with respect to axes of ancestry. Applying23

PGSUS, we found evidence of stratification in PGSs constructed using large meta-analyses of height24

and educational attainment as well as in a range of PGSs constructed using the UK Biobank. In some25

instances, a given PGS appears to be stratified along a major axis of ancestry in one prediction sample26

but not in another (for example, in comparisons of prediction in samples from different countries, or27

in ancient DNA vs. contemporary samples). Finally, we show that different approaches for adjustment28

for population structure in GWASs have distinct advantages with respect to mitigation of ancestry-29

axis-specific and isotropic SAD variance in PGS. Our study illustrates how family-based designs can be30

combined with standard population-based designs to guide the interpretation and application of genomic31

predictors.32
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Introduction33

Genome-wide association studies (GWASs) in humans have revealed that the genetic basis of variation34

for many health conditions and other traits is highly polygenic. That is, a substantial proportion of35

the variation derives from a large number of common genetic variants with marginal effects that are36

individually small. GWASs further revealed that the joint effect of these variants is often well-captured37

by a simple linear combination, consistent with longstanding theoretical predictions. Following from38

these observations, attention has turned toward the construction of genomic predictors of traits, so-called39

“polygenic scores” (PGSs). A PGS for a trait is typically a sum over a set of loci of an individual’s alleles,40

each weighted by its GWAS-estimated effect.41

PGSs have many potential uses, including in the clinic1,2, as instruments to account for genetic42

variation when studying environmental effects3, and for studying human evolution4,5. However, GWAS43

and polygenic scores in humans suffer from a general weakness: a lack of experimental control. Neither44

environments nor genetic backgrounds can be randomized among individuals within GWAS samples.45

When a specific locus’s alleles are correlated with other causal factors (genetic, societal, or environmental),46

they become spuriously associated with the phenotype. This can bias allelic effect estimates with respect47

to the causal genetic effect of the focal locus (and linked causal variants)6–8.48

What factors contribute to population-based GWAS allelic effect estimates? It has long been estab-49

lished that, in addition to the causal effects of one’s alleles on one’s own phenotype (“direct” genetic50

effects), allelic effect estimates can be affected by confounding due to population stratification6,9. More51

recently, other phenomena that affect GWAS allelic effect estimates have received increased attention10,11,52

such as assortative mating11–15 and “dynastic” (or indirect parental) genetic effects. Dynastic effects arise53

by virtue of the correlation between an individual’s genotype and that of their parent, when the parent’s54

genotype influences the focal individual’s phenotype16–19. For example, if maternal genotypes affect55

the focal individual’s uterine environment during early embryonic development, then there will be an56

association between the focal individual’s genotype and trait, even if the genotype only operates via the57

mother. We henceforth refer to these influences as “SAD” (Stratification, Assortment, and Dynastic)58

effects, although there may be additional systematic influences on GWAS allelic effect estimates beyond59

these three factors (e.g., indirect genetic effects from other related individuals). Although GWAS analysis60

pipelines include steps aimed at adjusting for environmental and genetic confounding, even residual SAD61

effects that are small on a per-SNP basis can combine to have large effects on the variance of a PGS62

across individuals8,20–23.63

When considering the application of a PGS to individual genomes, it is important to know the extent64

to which variation among individuals’ PGS is due to SAD effects. Yet, to our knowledge, there are no65

methods that address this question. To illustrate the importance of this task, consider an example in66

which variation among individuals in a PGS for cancer is largely due to correlates of SNPs included in67

the PGS (index SNPs) in the GWAS sample, such as exposure to pollutants. The PGS may nonetheless68

be predictive—this would depend on whether the genotype-exposure correlation in the GWAS sample69

exists in the prediction sample. Even if a PGS is predictive, but largely because of SAD effects, should70

we use the PGS as a predictor of genetic risk? The answer may vary across different applications of71

PGSs. Regardless, a diagnostic tool measuring the impact of SAD factors could provide grounds for an72
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informed decision.73

The fraction of PGS variation in a sample that is attributable to SAD effects may also depend on74

the sample’s dissimilarity to the GWAS sample—in terms of genetic ancestry, environment and social75

context22,24,25. Therefore, understanding how SAD effects in the GWAS sample affect PGS variation in76

distinct prediction samples may help us understand PGS portability.77

One promising way to evaluate the impact of SAD effects on a PGS is family-based designs, such as78

sibling GWAS, in which trait differences among pairs of full siblings are regressed on differences in their79

genotypes. Sibling GWAS are largely robust to SAD effects22,26–28, though they are not strictly immune1580

and complexities can arise in the presence of genetic interactions or other factors11. Family-based designs81

are typically underpowered compared with population-based GWAS, and are therefore rarely used to build82

PGS for anything but research purposes. Nevertheless, family studies can, in principle, help us distinguish83

direct genetic effects from SAD effects contributing to population-based GWAS estimates.84

Here, we develop a method, Partitioning Genomic Scores Using Siblings (PGSUS, pron. “Pegasus”),85

that partitions the variance of a PGS derived from a population-based GWAS (“standard-GWAS” below)86

on the basis of a comparison with the corresponding allelic effect estimates from a sibling-based GWAS87

(“sib-GWAS” below). PGSUS goes beyond previous approaches by quantifying the contribution of direct88

genetic effects versus SAD effects (and their covariance) to a PGS as applied in a given prediction sample.89

PGSUS can be viewed as a litmus test for the presence of confounding and can therefore inform specific90

applications and interpretations of PGSs.91

Results and Discussion92

Model93

We consider a PGS applied to a “prediction sample”—a sample of genotypes for which the PGS is calcu-94

lated. Our main aim is to identify instances in which substantial PGS variance is due to SAD effects. In95

particular, components of SAD variance aligning with major axes of ancestry are suggestive of stratifica-96

tion along that ancestry axis (see A litmus test for confounding). We begin by outlining our model,97

which motivates the partitioning of PGS variance that PGSUS performs.98

PCA partitioning of polygenic score variance. The variance of a PGS can be partitioned into99

orthogonal components attributable to principal components of the genotype matrix of the prediction100

sample. In Text S1, we show that101

Var[Z] =
min(n,ℓ)

∑
i=1

λi(Ui ⋅ b)
2, (1)

where Z is a length-n vector of PGS values, λi is the eigenvalue for the i-th principal component of102

the prediction sample’s genotype matrix, Ui is a vector holding the loadings of index SNPs on principal103

component i, b is a vector of allelic effect estimates, and ⋅ represents the dot product. n is the number104

of individuals in the sample used to perform the PCA and ℓ is the number of index SNPs. This variance105

partitioning is equivalent to the partitioning that would be obtained by regressing individual PGS values106

on individual-level principal-component coordinates but calculated via a projection of the SNP allelic107
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Figure 1. Partitioning Genetic Scores Using Siblings (PGSUS). (A) PGSUS partitions the variance of
a PGS among individuals in a prediction sample at two levels. Namely, variance components are attributable
to both (i) effect type: direct effects, SAD effects, and their covariance, as well as estimation noise; and (ii) a
principal component of the genotype matrix of the prediction sample. The partitioning by effect types derives
from the generative model shown in (i) for standard GWAS effect estimates and the corresponding sib-based
estimates. (B) PGSUS does not require individual-level data. It only requires an input of GWAS summary
statistics, corresponding sib-based summary statistics, and a PCA of a genotype matrix representative of the
sample to which the PGS is to be applied. The output is the full set of variance components and corresponding
null acceptance regions. SAD variance components significantly larger than their corresponding eigenvalues would
predict are suggestive of stratification along the corresponding PC. In addition, “isotropic” SAD variance, i.e. large
SAD variance that is not specific to a PC, may suggest other modes of confounding such as assortative mating,
dynastic effects and population structure confounding that is not specific to a PC. However, other factors such as
ascertainment biases can substantially influence isotropic inflation as well.

effect estimates onto the PCs. Thanks to this equivalence, PGSUS does not require any individual-level108

data, but only GWAS summary statistics and a PCA of the prediction sample (or a representative sample109

from the population to which the researcher wishes to apply the PGS; Fig. 1A). In addition, expressing110

the variance partitioning in this way allows us to link it to a generative model for the allelic effects (see111

below). The quantity Ui ⋅b is the scalar projection of the allelic effect estimates b on vector Ui and can112

be thought of as the effect estimated for principal component i. It is also closely related to the covariance113

of the vector of allelic effect estimates with Ui.114

Generative model of allelic effect estimates. We model the allelic effect estimates from a115
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standard GWAS, βG, as the sum116

βG = βD + σ + ϵG, (2)

where βD is the true direct genetic effect, σ represents SAD effects, and ϵG is a measurement error. At117

each locus, we assume that ϵG has expectation zero and standard deviation equal to the standard error118

of βG as estimated in the GWAS. In a sib-GWAS, we model allelic effect estimates as119

β∗S = α
−1
(βD + ϵS). (3)

Here, ϵS is the measurement error, again with expectation zero and standard deviation given by the120

standard error of βS as estimated in the sib-GWAS. The parameter α, the isotropic inflation factor,121

captures systematic differences in the magnitude of allelic effect estimates between the standard-GWAS122

and sib-GWAS. In the Isotropic inflation section, we discuss both SAD factors and technical issues that123

may contribute to systematic inflation. We adopted a strategy of estimating α (see Section Estimation124

of the isotropic inflation factor), and then adjusting for isotropic inflation. Namely, we define125

βS = αβ
∗

S = βD + ϵS (4)

and do not consider isotropic inflation further in the two-level partitioning that follows.126

We highlight the assumption that the direct effect βD is the same in standard- and sib-GWAS based127

allelic effect estimates. This may not be true in general, especially in the presence of differences in ancestry,128

environment and social context between the standard and the sibling samples11,22. (Even without such129

differences, and no SAD effects, there are differences in the expectations of βD and βS
11—but they are130

likely small, see Text S2).131

Partitioning of PGS variance by both effect types and PCs. In combination, the expression132

for the variance of a PGS in Eq. 1 and the models for the allelic effect estimates contributing to a PGS133

in Eqs. 2,4 suggest a partitioning of variance in a PGS due to the projections of direct effects, SAD134

effects, and measurement error on each principal component. Specifically, suppose a vector of the allelic135

effect estimates from GWAS at index SNPs,
Ð→
βG, replaces b in Eq. 1, as in136

Var[Z] =
min(n,ℓ)

∑
i=1

λi (Ui ⋅
Ð→
βG)

2

=

min(n,ℓ)

∑
i=1

λi (Ui ⋅ [
Ð→
βD +

Ð→σ +Ð→ϵG])
2

. (5)

Distributing the Ui and expanding the expression on the right gives137

Var[Z] =
min(n,ℓ)

∑
i=1

λi( [Ui ⋅
Ð→
βD]

2

+ [Ui ⋅
Ð→σ ]

2
+ [Ui ⋅

Ð→ϵG]
2
+ 2 [Ui ⋅

Ð→
βD] [Ui ⋅

Ð→σ ]+ (6)

2 [Ui ⋅
Ð→
βD] [Ui ⋅

Ð→ϵG] + 2 [Ui ⋅
Ð→σ ] [Ui ⋅

Ð→ϵG] ).

We are principally interested in estimating three of the terms that arise from the expansion in Eq. 6,138

which can be interpreted as variance components attributable to direct effects, to SAD effects, and to139
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the covariance of direct effects and SAD effects. In particular,140

cDi = λi (Ui ⋅
Ð→
βD)

2

(7)

is the component of variance in the PGS due to direct effects specific to principal component i of the141

genotype matrix, and142

cσi = λi (Ui ⋅
Ð→σ )

2
(8)

is the component of variance due to SAD effects specific to principal component i. We also consider143

c(D⋅σ)i = 2λi (Ui ⋅
Ð→
βD) (Ui ⋅

Ð→σ ) , (9)

which is a contribution to variance due to covariance of direct and SAD effects specific to principal144

component i. This last term can be negative, unlike the previous two, which are constrained to be145

non-negative. In the Estimation of variance components section, we derive estimators. Our basic146

strategy is to isolate (Ui ⋅
Ð→σ ) using the projection of the difference between allelic effect estimates from147

the standard GWAS and those from the sib-GWAS, and proceed with moment-based estimation.148

We developed PGSUS as freely available software that performs this partitioning. The software takes149

three inputs: (i) the set of index sites used in the polygenic score, their estimated effects and standard150

errors from the standard-GWAS used to construct the PGS; (ii) corresponding estimates from a sib-151

GWAS of full siblings assumed to be sampled from the same population as the standard-GWAS, such152

that the samples are subject to the same direct effects; and (iii) either a matrix of genotypes from the153

prediction sample for the corresponding loci or corresponding, precomputed eigenvalues and eigenvectors154

from the genotype matrix of the prediction sample (Fig. 1B). Using this set of inputs, PGSUS first155

estimates and adjusts for isotropic inflation. Then, PGSUS partitions the PGS variance into PC-specific,156

effect-type-specific subcomponents.157

A litmus test for confounding158

To illustrate how PGSUS can be used as a diagnostic tool, we begin by examining a case in which159

stratification is already known to contribute to PGS variance. If an axis of stratification largely overlaps160

with a PC of the prediction sample, we expect to see a large PC-specific SAD variance component.161

In 2019, researchers discovered that the GIANT consortium’s height GWAS29 was confounded along162

a north-south ancestry axis in Europe20,21. We constructed a PGS using this GWAS and partitioned its163

variance in the 1000 Genomes European superpopulation as the prediction sample30. As expected, the164

SAD variance component on PC2 (which best tags the north-south ancestry axis31; Fig. 2A inset) is165

large—37% of the size of the total variance of the PGS (Fig. 2A). This variance component is significantly166

larger than expected under a null model with no PC-specific SAD variance (95% null acceptance regions167

are shown in Fig. 2; see Text S3 for details on how the empirical null distribution was derived).168

This result confirms that PGSUS can detect a “positive control”, a known example of confounding169

along a major axis of genetic ancestry. An important point about the interpretation of results produced170

by PGSUS is that they tell us about variation in a specific PGS, not about a trait or even about a specific171
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A  GIANT height (Wood et al. 2014) B  GIANT height (Yengo et al. 2022)
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Figure 2. PGSUS partitioning uncovers stratification in polygenic scores. For seven examples, we show
variance components along the first six PCs divided by the total variance in PGS in the prediction sample. Shaded
regions show empirical permutation-based null acceptance regions. Components deviating from this expectation
are highlighted with dashed circles. Insets show the prediction-sample individual coordinates along some of the
PCs on which we observed significantly large variance components; labels are shorthand for subsamples in the
1000 Genomes (1KG) data or the Allen Ancient DNA Resource Eurasian subset. Note that insets will vary
slightly between the same prediction cohort as they are constructed using the set of SNPs selected through
clumping using trait-specific summary statistics. The 1KG subsample labels in panels (A)-(E) correspond to the
five European subpopulations: Finnish in Finland (FIN), Utah residents with northern and western European
ancestry (CEU), Iberian populations in Spain (IBS), British from England and Scotland (GBR), and Tuscan in
Italy (TSI). The 1KG subsample labels in panel (F) and correspond to the five 1KG superpopulations: European
(EUR), admixed Americans (AMR), East Asian (EAS), South Asian (SAS), and African (AFR). Finally, labels in
panel (I) correspond to six ancient population groupings as defined in Mallick and Reich 32 : Anatolian Neolithic
(AN), European Neolithic (EN), Historical Europe (H), Bronze Age (BA), Steppe pastoralists (S), and Mesolithic
(M). Percentages of variance explained by each PC are given in the parentheses of each axis label in the insets. All
PGSs shown are constructed using clumping and thresholding with a marginal association thresholds as follows:
p < 1 for panels (A,B,E,G); p < 10−3 for panels (C,D); p < 10−5 for panel (F). PGS partitioned in panels (D-G)
are based on GWASs with 20 GWAS sample PCs as covariates as the only adjustment for population structure.

GWAS for that trait. To demonstrate this, we considered partitionings of other height PGSs with respect172

to the same prediction sample. For a similarly constructed PGS using a GWAS conducted in the UK173

Biobank (UKB), the SAD variance component on PC2 is large but does not significantly deviate from the174

null expectation (Fig. S2A). Furthermore, using the GIANT GWAS again, but constructing the PGS175
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with a more stringent threshold for the significance of the index SNP, the SAD variance component on176

PC2 is only 2.9% of the total variance of the PGS (Fig. S1; marginal GWAS p-value < 10−3 instead of177

p-value < 1 used in Fig. 2A).178

We examined PGSs based on two other GWAS meta-analyses. A PGS based on the 2022 version179

of the GIANT height GWAS33 also shows significantly large SAD variance suggestive of stratification180

along the same north-south European ancestry axis (Fig. 2B). A partitioning of a PGS based on the181

years of schooling GWAS of 2022 (“EA4” 34), which has also been previously suggested to be affected by182

SAD factors19,34,35, shows evidence of stratification along PC1 of the same European prediction sample183

(Fig. 2A), which most prominently differentiates Finnish from non-Finnish individuals in this sample184

(Fig. 2C inset).185

Confounding in PGS built using modern biobanks186

The GIANT 2014 study29 was, until recently, the largest GWAS of height, the complex trait most studied187

via GWAS, and so evidence of confounding sparked concern for complex trait research as a whole8,36.188

Our partitionings of GIANT 2014, GIANT 2022 and EA4 suggest the concern could extend to other189

recent GWAS meta-analyses as well. Some modern biobanks were designed to recruit large cohorts that190

are relatively ancestrally homogeneous with the intention of minimizing stratification37–40. Nonetheless,191

the extent to which single biobank-based PGSs are affected by confounding remains an open question.192

PGSUS can address this question, as we illustrate next by partitioning the variance of a suite of193

PGSs constructed using GWASs we performed in the UKB for 11 highly heritable physiological traits194

and 6 social or behavioral traits (Table S1). We constructed PGSs by clumping and thresholding195

with different p-value thresholds, based on GWASs performed with various adjustments for population196

structure. All GWASs were performed using the self-identified White British subset of the UKB, which is197

relatively ancestrally homogeneous. Variances in the PGSs were then partitioned with respect to either198

the entire 1000 Genomes Phase 3 sample (1KG)30, its European subset (1KG Europeans) or to a Eurasian199

subsample of the the Allen Ancient DNA Resource (AADR)32 as the prediction sample.200

Results from partitionings of this suite of PGSs can be found in Files S1-S8, and general conclusions201

are discussed below. Although we have performed many tests, we do not consider corrections for multiple202

hypothesis testing. For computational reasons, we have also limited our permutation-based hypothesis203

testing to a significance level of 0.05 (Text S3). Our discussion of specific cases in this manuscript should204

only be considered as illustrations of the results PGSUS can provide and their implications when they are205

indeed statistically significant. They are not statements about omnibus hypotheses about SAD effects in206

the PGSs or datasets analyzed.207

For concreteness, we first focus on a set of GWASs performed with a standard adjustment for 20 prin-208

cipal components (PCs) of the GWAS-sample genotype matrix and PGSs constructed through clumping209

and thresholding41–43 with a marginal association threshold of p < 10−5 with respect to 1KG Europeans.210

In 9 of the 17 PGSs examined, we detected a significant SAD variance component in at least one of the top211

6 PCs (File S1). For example, the SAD variance component on PC1 is approximately one third (33.8%)212

of the total variance in the PGS for forced vital capacity (FVC; Fig. 2D). One possible contributor to213

PC-specific SAD variance is environmental and social confounding: lower FVC is associated with cigarette214
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smoking44, which in turn is associated with educational attainment45. Among our GWAS-sample indi-215

viduals, both pack-years of smoking and years of schooling are significantly associated with position on216

PC1 (Fig. S3). Another example is in a UKB-based PGS for years of schooling (Fig. 2E) that, like the217

EA4-based PGS, showed significant SAD variance components with respect to 1KG Europeans, but on218

PC2 in this case.219

PGSUS informs PGS portability220

PGSUS sometimes detected significant PC-specific SAD effects in a PGS with respect to one prediction221

sample and no such evidence with respect to another sample. For example, a PGS constructed for body222

mass index (BMI) showed no evidence for PC-specific SAD effects when applied to 1KG Europeans223

(File S1). Yet in the full 1KG sample, we detected significant SAD variance on PC1, which in part tags224

differentiation between 1KG European and non-European samples (Fig. 2F).225

Portability to ancient DNA samples is also of interest. Several studies have used polygenic summaries226

based on a similar UKB GWAS to predict past phenotypes46–49 or infer natural selection in recent227

European history50–52. We also examined partitionings of PGSs derived from UKB-based GWAS with228

respect to a sample of ancient West Eurasians who lived between 13,000 and 1,000 years ago (Allen229

Ancient DNA Resource32). In several PGSs for household income, overall health rating, skin color, and230

years of schooling, we found either significant SAD variance or total non-direct variance component (i.e.,231

the sum of the SAD variance component and the direct-SAD covariance component) among the top six232

PCs (Figs. S4-S5). For example, there is significantly large non-direct variance along PC2 in a PGS233

for overall health rating, a trait argued to be under directional selection in ancient Eurasia during this234

time50 (Fig. 2G). We note that these top PCs are also significantly correlated with a number of sample235

variables, such as date (as determined by conventional radiocarbon dating) and sequencing coverage236

(Fig. S6). This raises the concern that confounding between these variables and UKB-based effect237

estimates of index SNPs may spuriously contribute to polygenic signals of selection.238

The examples of BMI in 1KG data and traits argued to be under directional selection in ancient239

Eurasia help illustrate that PGSUS, as diagnostic of confounding, can inform us on the lack of portability240

of a PGS to an intended prediction sample. There are many factors that can influence PGS portability,241

including differences in linkage disequilibrium patterns, genetic variance, and environmental variance242

between the GWAS sample and the prediction sample, all of which may change over time22,24,25,53,54.243

The effects of confounding on PGS portability are not well understood. Still, our results should raise244

caution with respect to evidence for natural selection acting in the past—especially since SAD variance245

could reflect more recent environmental or social factors, such as contemporary stratification or dynastic246

effects.247

Isotropic inflation248

Often, standard-GWAS allelic effect estimates are larger than sib-GWAS effect estimates (after accounting249

for the degree of estimation error in each design) in a way that is not explained by any small set of principal250

components. Such “isotropic inflation” in standard GWAS could be due to assortative mating10–14,55 or251

indirect parental effects10,11,18,19,56 if they act isotropically with respect to principal component space;252
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Isotropic in�ation factor

PGSs using index SNPs
with GWAS p < 10-5

PGSs using index SNPs
with GWAS p < 10-8(A) (B)

Forced vital capacity
Pulse rate
Skin color

Waist circumference
Birth weight

Alcohol intake frequency
Pack years of smoking

Neuroticism score
Hand grip strength
Hip circumference

Household income
Hair color

Diastolic blood pressure
Overall health rating

Body mass index
Height

Years of schooling

Figure 3. The isotropic inflation factor. Isotropic inflation refers to SAD variance that is not PC-specific,
and manifests as uniformly larger magnitude effects in standard-GWAS compared with the magnitude of direct
effects estimated from sib-GWAS. A factor of 1 indicates no isotropic inflation. Error bars show +/- bootstrap
standard error, and are often too small to be visible. Isotropic inflation may be driven by population stratification,
assortative mating, indirect effects, or other issues, such as different measurement units in the standard-GWAS
and sib-GWAS or ascertainment bias. Shown are isotropic inflation factor estimates for PGSs constructed from a
GWAS in the White British subset of UKB using clumping and thresholding, with a marginal association p-value
threshold of (A) 10−5 or (B) 10−8 partitioned with respect to the 1KG prediction sample.

similarly, it could be due to some modes of population stratification11,15,34,57,58. For example, confounding253

between genetic similarity and similarity in environmental exposures or social context such as access to254

healthcare or education.255

There are also technical drivers of isotropic inflation, for example, differences in units of measurement256

among studies (e.g., centimeters as opposed to standard deviations of height). Another technical factor257

driving isotropic inflation may be in biases related to the ascertainment of index SNPs, such as the258

“winner’s curse” 59,60, as PGS index SNPs are typically ascertained in the same GWAS sample in which259

their effects are estimated. Empirically, across PGS marginal association thresholds, we observed that260

more stringent ascertainment tended to lead to more isotropic inflation (Figs. 3,S7,S9). Estimates261

of the isotopic inflation factor also depended on the prediction sample (e.g., when comparing Fig. 3262

and Fig. S8A,B). This is in part because of a trade-off between the two types of SAD variance: large263

PC-specific SAD variance components imply smaller isotropic inflation, all else being equal.264

Our analyses cannot identify the specific drivers of isotropic inflation. As discussed, a plausible driver265

of isotropic inflation is SAD effects. Despite this possibility, we do not consider variance due to isotropic266

inflation as a contributor to SAD variance when reporting PGS variance partitionings in this manuscript.267

Instead, the PGS partitionings we report are with respect to the isotropic-inflation-adjusted allelic effect268
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estimates of Eq. 4. Therefore, our estimates of variance components (e.g. components shown in Fig. 2)269

can be interpreted as either (i) assuming isotropic inflation to be due to technical factors or (ii) as270

estimated variance components after adjusting for the “global” effects of isotropic inflation, which may271

in part be caused by SAD factors. In the section Estimation of the isotropic inflation factor, we272

detail our estimation approach.273

Among a set of PGSs (UKB-based, with clumping and thresholding on a GWAS association p-274

value < 10−5) applied to the 1KG prediction sample, all PGSs show some isotropic inflation (Fig. 3A).275

The highest isotropic inflation factors are for years of schooling (8.88) and height (8.13). When we276

constructed PGSs differently, using a GWAS association p-value < 10−8 for index SNPs, the rankings of277

isotropic inflation factors across traits often varied widely, illustrating again that PGSUS characterizes278

the variance of a specific PGS in a given prediction sample, and not a trait or a GWAS (Text S6;279

Figs. 3B, S7-S9).280

Do population structure adjustments in GWASs mitigate SAD variance?281

The analyses of PGS variance discussed up to this point have been based on PGSs computed from GWASs282

in which we (or others) adjusted allelic effect estimates by including the top PCs of the GWAS sample’s283

genotype matrix as covariates in the GWAS. In our in-house GWAS, the top 20 PCs were included. This is284

a widely-used approach20,21,61,62. One question is whether other approaches to adjusting for confounding285

in GWAS produce PGSs with less SAD variance.286

We addressed this question by comparing the number of significantly large SAD variance components287

among the top six PCs and the isotropic inflation factor when using various methods to adjust for288

population structure. The GWASs were again performed in the UKB White British subsample, and289

PGSs based on these GWASs were partitioned with respect to the 1KG cohort as the prediction sample.290

We first compared the adjustment for 20 GWAS sample PCs with no adjustment at all. Our expectation291

was that no PC adjustment in the GWAS should lead to an equal or larger number of significant PC-292

specific SAD components. This was indeed the case for 16 of 17 PGSs (Figs. 4, S10A). This expectation293

was also met across the majority of PGSs (but not all) in sensitivity analyses, such as when we applied294

more lenient association p-value thresholding (resulting in PGSs including hundreds of thousands of SNPs;295

Table S2, Fig S11) or considered the top 20 instead of 6 top PCs (Fig. S12).296

Still, PC adjustments did not remove all PC-specific SAD variance and occasionally even had the297

counterintuitive effect of increasing PC-specific SAD variance (panels A in Figs. S10-S13). One rea-298

son may be that PGS index SNPs are distinct in several ways from the SNPs that influence PCA the299

most. They are variants strongly associated with traits and therefore plausibly subject to stronger se-300

lection63,64, rarer, and otherwise distinct from weakly associated variants in their distribution across301

individuals25,65–68. In contrast, GWAS sample PCs capture the structure of common, less constrained302

variation.303

Relatedly, the adjustment for GWAS sample PCs is aimed at capturing the main axes of population304

structure in the GWAS sample. However, when a PGS based on the GWAS is applied to a distinct305

prediction sample, other axes of population structure in the GWAS sample shared with the prediction306

sample may contribute to confounding5,69. Considering axes of population structure shared between307
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GWAS method to
adjust for confounding

(A)  Signi�cant PC-speci�c SAD
components among top six PCs

(B)  Isotropic in�ation factor

Rank among methods
6 5 4 3 2 16 5 4 3 2 1

LMM + GWAS sample PCs

Linear Mixed Model (LMM)

Both sets of PCs

Prediction sample PCs

GWAS sample PCs

No adjustment

fewer

mean 
across traits

mean across 
traits

lower

Figure 4. The utility of GWAS population structure adjustments in mitigating SAD variance. We
constructed PGSs using clumping and thresholding in a UKB-based GWASs with an ascertainment threshold of
p-value < 10−5. We then partitioned the PGS variance in the 1KG prediction sample and examined SAD variance
signals. The PGSs were based on GWASs with various methods to adjust for population structure. “GWAS
sample PCs” refers to a GWAS adjustment for the first 20 principal components of the genotype matrix of the
UKB White British cohort in which the GWAS is performed. “Prediction sample PCs” refers to the inclusion of
20 1KG genotype matrix PCs. “LMM” refers to the the BOLT-LMM implementation of a linear mixed model.
For each trait-method pair (one grey point), (A) shows the rank of the adjustment method in terms of the
number of significantly large PC-specific SAD components (p-value< 0.05), and (B) shows its rank in terms of
isotropic inflation factor. Rank 1 is given to the GWAS adjustment method(s) that yielded the fewest significant
PC-specific SAD variance components in (A) and lowest isotropic inflation factor in (B); Rank 2 is given to the
second fewest / smallest, and so forth.

GWAS samples and prediction samples may be a fruitful direction in mitigating SAD variance69. We308

tested this idea by including the top 20 PCs of the prediction sample’s genotype matrix in GWAS.309

Adjustments for the GWAS-sample PCs, the prediction-sample PCs, or both did comparably well at310

mitigating PC-specific SAD variance (Fig. 4A; also see Fig. S14 for the correlations between GWAS311

and prediction sample PCs). In addition to the lack of noticeable improvement over the adjustment for312

GWAS-sample PCs, we note that, in practice, it is not always known a priori to what samples the PGS313

might be applied when it is constructed.314

Lastly, we considered the performance of GWAS adjustment methods in mitigating isotropic infla-315

tion. All four adjustments considered thus far resulted in isotropic inflation factors that were large and316

similar on average across traits (ranging between 3.9 and 4.5; Figs. 4B, S10). We considered an ad-317

ditional approach, a linear mixed model (LMM, specifically with BOLT-LMM 70), that aims to adjust318
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for confounding of genome-wide genetic similarity with phenotypic similarity6,70. LMM-based GWASs319

can be thought of as adjusting for relatedness along all PCs71,72 and have been shown to perform well320

in adjusting for assortment, admixture, and cryptic relatedness that are not well captured by individ-321

ual PCs73. Indeed, PGSs based on LMM GWASs resulted in the smallest isotropic inflation factors322

(Figs. 4B, S10B). However, the improved mitigation of isotropic SAD variance was accompanied by323

the worst performance in mitigating PC-specific SAD variance (in the majority of cases, and on average,324

across traits; Figs. 4A, S10A; also see a specific example for a household income PGS in Fig. 2C).325

This apparent trade-off between isotropic inflation and PC-specific SAD variance is somewhat intuitive,326

given that LMM down-weights allelic effect estimates evenly across PCs, ignoring PC-specific patterns of327

confounding71,72. When we used an LMM in addition to adjusting for GWAS sample PCs, we observed328

the best mitigation of both isotropic and PC-specific SAD variance signals across all adjustment methods329

considered (in the vast majority of cases, and on average, across traits; bottom row in Fig. 4; right330

column in Fig. S10A,B; see related discussion in Zhang and Pan 74).331

Conclusion332

Through their uses in the clinic, research, and beyond, PGSs are sometimes assumed to represent direct,333

causal effects of an individual’s genotype on their phenotype. Thus far, to our knowledge, most attempts334

to measure the extent to which this is true have been qualitative or heuristic in nature. The challenge335

of measuring the degree to which a PGS (and its variation in a prediction sample) instead reflects SAD336

factors—including environmentally and socially mediated factors—is critical to its interpretation and337

application. PGSUS is a proposed step toward addressing this challenge.338
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Methods350

Estimation of variance components351

We take a moment-based approach to estimating the variance components in Eqs. 7-9. We first describe352

an estimation procedure that applies if the isotropic inflation factor α is known. In practice, we multiply353

sib-GWAS effect estimates in Eq. 3 by an estimate of α to estimate βS , which we then use as input to354

the procedures described in this section. We return to the estimation of α later. In Text S3, we describe355

our empirical permutation strategy for testing hypotheses about the variance components.356

Estimating the variance components given the isotropic inflation factor α. Our approach357

assumes that the difference between standard-GWAS based and sib-GWAS-based allelic effect estimates,358

other than differences in estimation noise, is that the sib-based estimates are free of SAD effects (Eqs. 2-359

4). We note that, even in the absence of SAD effects, the estimated effects are expected to differ in the360

two study designs11—but the difference is often small (Text S2). Applying Eq. 1, we then reason that361

the projection of the differences between standard-GWAS and sib-GWAS allelic effect estimates on the362

principal components will provide information about the proportion of variance in a PGS attributable to363

SAD.364

Applying the model in Eqs. 2-3 to index SNPs j ∈ {1, ..., ℓ}, the variance component of the difference365

between standard-GWAS and sib-GWAS allelic effect estimates that is due to the ith principal component366

is367

λi

⎛

⎝

ℓ

∑
j=1

[βGj − βSj]Uij

⎞

⎠

2

= λi

⎛

⎝

ℓ

∑
j=1

[σj + ϵGj − ϵSj]Uij

⎞

⎠

2

. (10)

To derive the expectation of the expression in Eq. 10, we assume that the λ (eigenvalue), σ (SAD368

effect), and U (locus loadings on eigenvector) terms are fixed and that all the measurement error terms369

all have expectation 0 (i.e. E[ϵGj ] = E[ϵSj ] = 0 for all j). We also assume that the error terms from370

standard-GWAS and the sib-GWAS are uncorrelated with each other (i.e. E[ϵGj ϵSk
] = 0 for all j and k,371

including j = k). The assumption that the measurement errors from the standard-GWAS and sib-GWAS372

studies are uncorrelated might be problematic if, e.g., the sib-GWAS is performed in a subset of the373

standard-GWAS sample. Nonetheless, we adopt it here. Under these assumptions,374

E
⎡
⎢
⎢
⎢
⎢
⎣

λi

⎛

⎝

ℓ

∑
j=1

[βGj − βSj]Uij

⎞

⎠

2⎤
⎥
⎥
⎥
⎥
⎦

= λi

⎛

⎝

ℓ

∑
j=1

σjUij

⎞

⎠

2

+E
⎡
⎢
⎢
⎢
⎢
⎣

⎛

⎝
λi

ℓ

∑
j=1

ϵGjUij

⎞

⎠

2⎤
⎥
⎥
⎥
⎥
⎦

+E
⎡
⎢
⎢
⎢
⎢
⎣

⎛

⎝
λi

ℓ

∑
j=1

ϵSjUij

⎞

⎠

2⎤
⎥
⎥
⎥
⎥
⎦

. (11)

The first term on the right is cσi , the variance component of the PGS attributable to SAD effects along375

principal component i, and one of our main estimands of interest. The latter two terms are variance376

components attributable to measurement errors in the standard-GWAS allelic effect estimates and the377

sib-GWAS allelic effect estimates, respectively. If we can assume that measurement errors at distinct loci378

are uncorrelated, or, slightly less restrictively, that379
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ℓ

∑
j=1

∑
k≠j

UijUikE[ϵGjϵGk] = 0, (12)

then the expected variance component due to GWAS errors is380

E
⎡
⎢
⎢
⎢
⎢
⎣

λi

⎛

⎝

ℓ

∑
j=1

ϵGjUij

⎞

⎠

2⎤
⎥
⎥
⎥
⎥
⎦

= λi

ℓ

∑
j=1

U2
ijv

2
Gj , (13)

where v2Gj is the variance of the measurement error of the standard-GWAS allelic effect estimate at locus381

j. Making an analogous assumption for the measurement errors in the sib-GWAS allelic effect estimates,382

we arrive at an estimator for the variance component of the PGS due to SAD effects along principal383

component i, cσi = λi(∑
ℓ
j=1 σjUij)

2,384

ĉσi = λi

⎛

⎝

ℓ

∑
j=1

[βGj − βSj]Uij

⎞

⎠

2

− λi

ℓ

∑
j=1

U2
ij v̂

2
Gj − λi

ℓ

∑
j=1

U2
ij v̂

2
Sj , (14)

where v̂Gj is an estimated standard error of the standard-GWAS allelic effect estimate and v̂Sj is an385

estimated standard error of the sib-GWAS allelic effect estimate at locus j.386

Similarly, we can estimate the variance component of the PGS attributable to direct effects along387

the ith principal component of the genotype matrix of the prediction sample, cDi = λi(∑
ℓ
j=1 βDjUij)

2, by388

starting with the projection of the sib-GWAS allelic effect estimates on principal component i. Under389

the same assumptions about the measurement errors in the sib-GWAS allelic effect estimates used imme-390

diately above (i.e. that the measurement errors have expectation 0 and ∑ℓ
j=1∑k≠j UijUikE[ϵSj ϵSk

] = 0),391

we have392

E
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⎢
⎢
⎢
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⎞

⎠

2
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ℓ
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U2
ijv

2
Sj . (15)

Thus, to estimate cDi, we use393

ĉDi = λi

⎛

⎝

ℓ

∑
j=1

βSjUij

⎞

⎠

2

− λi

ℓ

∑
j=1

U2
ij v̂

2
Sj . (16)

Finally, adapting Eq. 6, the variance along the ith principal component of the GWAS-based PGS394

can be written as395

λi

⎛
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βGjUij
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2
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. (17)
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The final two terms have expectation zero because of the assumption in Eq. 12 and because all the other396

variables in the final two terms are treated as fixed. We thus estimate c(D⋅σ)i by plugging in estimators397

for the other variance components and rearranging, giving398

ĉ(D⋅σ)i = λi
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ij v̂

2
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As mentioned previously, the estimands cDi and cσi are constrained to be non-negative, whereas399

c(D⋅σ)i may take positive or negative values. However, the estimators ĉDi, ĉσi, and ĉ(D⋅σ)i presented here400

can all take positive or negative values.401

Large direct variance components as evidence of natural selection402

Direct-effect variance components that deviate from the null acceptance regions (green shaded regions in403

Fig. 2) are potentially suggestive of selection: these regions include the center of the distribution of the404

component under a model in which trait-associated alleles (namely, PGS index SNPs) evolve neutrally.405

We observed several such cases among top PCs in the PGSs we partitioned (Files S1-S8). For example,406

PC1 of 1KG in a PGS for waist circumference (Fig. S16D), consistent with previous reports on selection407

for pelvic morphology to minimize obstetric obstruction75 and its impact on ilium morphological devel-408

opment76, and hip-width proportions77. In many instances this signal was accompanied by significantly409

large SAD variance along the same PC. Such an observation might be expected if both selection and410

stratification are at play, or if selection acts on both direct and dynastic effects. However, a simulation411

study we performed suggested that such co-occurrence of large SAD and direct components on a PC may412

arise in the presence of stratification along that PC, even if there is no selection. (See further discussion413

in Text S6 and Zaidi and Mathieson 67 for a similar observation.) We therefore cannot interpret a large414

direct variance component as necessarily pointing to evidence of natural selection in these cases.415

Estimation of the isotropic inflation factor416

The presence of isotropic inflation, namely α ≠ 1, renders the approach in the previous subsection prob-417

lematic. With α as a free parameter, there are four estimands per principal component (α and the three418

variance components) and only three pieces of information per principal component (the projections of419

the sib-GWAS allelic effect estimates, standard-GWAS allelic effect estimates, and their difference on the420

principal component). However, α should be shared across all principal components, which gives other421

possibilities for estimation.422

Because we are mostly interested in principal-component-specific variance components for the "top"423
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principal components—i.e. the principal components associated with the largest eigenvalues—and given424

evidence that other PCs often do not capture meaningful axes of population structure7—we adopt a425

strategy in which we use the principal components with smaller eigenvalues to estimate α, meaning that426

the σ terms in the top principal components can be interpreted as departures from the relationship427

between sib-GWAS and standard-GWAS allelic effect estimates on the other components.428

In particular, we assume that on the (k + 1)th to final principal components (where PCs are ranked429

by eigenvalue), the PC-specific SAD effects σ are 0, yielding430

Var[
min(n,ℓ)

∑
i=k+1

λi(Ui ⋅ b)
2
] =

min(n,ℓ)

∑
i=k+1

λi( [Ui ⋅
Ð→
βD]

2

+ [Ui ⋅
Ð→ϵG]

2
+ 2 [Ui ⋅

Ð→
βD] [Ui ⋅

Ð→ϵG] ). (19)

As before, the third term in parentheses is assumed to have expectation 0; the second one has an431

expectation that we can estimate using the standard error of the standard-GWAS allelic effect estimates;432

and by a similar estimation as in the estimator of cDi in Eq. 16, we can get an alternative estimate of433

the variance due to direct effects along PC i > k,434

ĉ′Di = λi
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Setting the right hand side equal to the other estimator of cDi (Eq. 16) gives435
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Since, instead of observing βSi, we observe β∗Si = αβSi, and obtain estimated squared standard errors436

for the observed sib-GWAS allelic effect estimates v̂2∗Sj = α
2v̂2Sj , then we can write437
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. (22)

or438

ĉDi = α
2ĉ′Di ∀i ≥ k. (23)

This expression suggests that we might estimate α as the square root of the coefficient relating ĉDi to439

ĉ′Di in a no-intercept regression across PCs i >= k. Note that both the terms in Eq. 23 have measurement440

error— given in Eq. 42 for ĉDi and Eq. 43 for ĉ′Di. We estimate α2 setting k = 101 and using Deming441

Regression, an errors-in-variables method which accounts for uncertainty in each of the two axes that are442

considered78.443

What drives isotropic inflation? A major factor may be in forms of population structure confounding444

that act isotropically or at least along many PCs. For instance, confounding due to stratification can445

act isotropically when the environmental resemblance among individuals is proportional to their genetic446

relatedness, i.e. the genetic relatedness matrix. Such covariance between environmental and genetic447
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features is unlikely to act along the axis of stratification captured by a single PC, instead leading to448

inflation of standard-GWAS summary statistics with respect to many PCs.449

A second source of confounding that may act isotropically is assortative mating, or the tendency450

toward the formation of mating pairs with similar phenotypes, which plays a role in complex trait vari-451

ation in human populations55,79–84. Similar to stratification, the effects of assortative mating on genetic452

variance may not localize to an individual principal component. In fact, some forms of assortative mating453

produce patterns that conform to the isotropic inflation factor assumed here, in which the allelic effect454

estimate is inflated by a scalar with size dependent on the strength of assortative mating35,85455

Third, indirect parental, or dynastic, effects are also often thought of as acting isotropically, at least in456

part10,16,18,45. However, the extent to which parental genetic effects impact GWAS allelic effect estimates457

is still unclear. Recent research indicates that signals presumed to reflect dynastic effects may in fact458

reflect stratification as well19.459

Fourth, a technical driver of isotropic inflation, discussed above, is index-SNP ascertainment biases.460

Winner’s curse59 may lead allelic effect estimates to be systematically larger in the sample in which461

the effects were ascertained as significant. Throughout our analyses here, ascertainment is based on462

significance of marginal SNP association in the standard GWAS, and so intuition dictates that allelic463

effect estimates would be larger in the standard GWAS and the isotropic inflation factor would be driven464

to be larger than 1. However, there are likely additional ascertainment biasing effects at play15,58.465

Empirically, our estimates of α were highly sensitive to the choice of a marginal GWAS association466

p-value (Figs. 3, S8-S9, S15-S18).467

One example is clumping, a strategy of accounting for LD in the ascertainment of index SNPs42,86.468

Clumps are sets of contiguous SNPs (in terms of chormosomal position) from which at most one SNP is469

used as an index SNP, with the rationale being that SNPs of the same clump are in high LD. Typically,470

in the clumping and thresholding technique, the clumps are chosen, through a greedy algorithm, to be471

centered around the most signficiant SNPs that are not yet included in other clumps. We hypothesized472

that because SNPs in the same clump are in LD, using even random SNPs as index SNPs would induce473

ascertainment bias and increase isotropic inflation, as long as these SNPs were chosen from the “best”474

clumps, i.e. clumps centered around a highly significant SNP. Indeed, choosing index SNPs in this manner475

(second column in Fig. S15) resulted in comparable isotropic inflation factors to traditional clumping476

and thresholding (i.e., choosing the most significant SNPs from the clumps containing the most significant477

SNPs; first column in Fig. S15) in two traits we examined.478

Our results suggest that ascertainment-related issues are plausibly a major driver of variation in479

isotropic inflation factor across methods of PGS construction. We discuss the effects of SNP ascertainment480

in more depth in Text S6 and Fig. S17.481

As for variation in isotropic inflation factors across traits, we were not able to identify a strong482

predictor for it. Isotropic inflation estimates in 1KG Europeans were not significantly correlated with483

LD Score regression87-based SNP heritability estimates across traits (Fig. S19). Further, we found that484

the correlation coefficient between individual trait values and Townsend deprivation index, a composite485

metric of socioeconomic status, were not correlated with the isotropic inflation factor estimates of the486

same traits (Fig. S20).487
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Data488

UK Biobank. The UK Biobank is a large database with extensive phenotypic and genetic information489

for over half a million individuals in the UK who were between 40 and 69 years of age at the time of490

recruitment37. The individuals included in this study were those who passed checks excluding individuals491

who: were identified by the UK Biobank to have sex chromosome aneuploidy, self-reported sex differing492

from sex determined by genotype data, and participants who withdrew from the study as of the last493

withdrawal notification delivery (April 24, 2024). We excluded individuals in the standard GWAS cohort494

who were third-degree relatives or closer as identified by the UK Biobank in data field 22021. We further495

limited our sample to those individuals who were classified as “White British” (data field 22006) by the496

UKB. These individuals self identified as both White and British. In addition, these individuals are very497

tightly clustered in the genetic principal component space37,88. Finally, individuals who we identified as498

having full siblings in the cohort were removed to ensure no sample overlap between the standard-GWAS499

and sib-GWAS cohort. For each phenotype, we also omitted individuals who had missing data for the500

phenotype of interest, resulting in between 96,942 and 321,718 individuals across the 17 continuous traits501

we analyzed in the standard-GWAS. In the sibling cohort, we only included pairs of siblings who both502

had phenotypic measurements, resulting in between 2,163 and 17,328 sibling pairs across phenotypes. A503

full account of the traits studied, corresponding UK Biobank data field identifiers, and GWAS sample504

sizes can be found in Table S1.505

A few specific phenotypes are worth noting for the transformations and filtering steps. We calculated506

the phenotype ‘years of schooling’ by converting the maximum educational attainment of the participants507

to years following Okbay et al. 89 . For the ‘hand grip strength’ phenotype, we took the average of the508

measurement across both hands. Finally for diastolic blood pressure levels, we adjusted the measurements509

of individuals who were taking blood pressure medication upward by 10 mmHg90.510

From the relatedness information provided by the UK Biobank in Resource 531 and data field 22021,511

we identified 17,353 White British full-sibling pairs using the following protocol. Groups of siblings were512

identified as those pairs of individuals who had a kinship coefficient between 0.1768 and 0.3536, as well as513

an IBS0 value greater than 0.0012, as estimated using the software KING91. From each of the resulting514

family groups we then selected two individuals, resulting in the aforementioned 17,353 sibling pairs where515

every individual is only a part of a single sibling pair. Each individual identified as a part of a sibling516

pair were omitted from the standard-GWAS analysis of each trait.517

We identified a set of 9,607,691 genetic variants that passed the following quality control filters using518

the PLINK 2 software86 in the standard cohort to include in both the standard-GWASs and sib-GWASs519

for all traits. Using the set of genotyped and imputed variants, we first filtered out all variants with520

and INFO score lower than 0.8. We then removed all SNPs with genotype missingness greater than 0.05521

using the PLINK 2 flag --geno 0.05 and minor allele count greater than 5, PLINK 2 flag --mac 5 .522

Finally, we removed all variants that were not biallelic SNPs ( --snps-only ) and all variants which are523

far from Hardy-Weinberg equilibrium ( --hwe 1e-10 ).524

1000 Genomes. In order to estimate the SAD variance in the 17 complex traits of interest in the525

UK Biobank, we downloaded the whole genome sequences from phase three of the 1000 Genomes (1KG)526

project at https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/. From the initial set527
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of roughly 80 million SNPs, we extracted the set of overlapping SNPs between those remaining in the528

UK Biobank which resulted in 6,131,234 SNPs to be included in our analysis. We used these variants for529

all future analyses of both the entire 1KG cohort (N = 2,504 sometimes referenced as the 1KG All) and530

those individuals in the European superpopulation (N = 504, referenced as the 1KG Europeans).531

Software availability532

All of the summary statistics generated in this study are available on the Harpak Lab website’s data tab533

https://www.harpaklab.com/data. The software for SAD variance estimation and a working example534

are available at https://github.com/harpak-lab/PGSUS. GIANT summary statistics were downloaded535

from https://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_536

data_files. EA4 Summary statistics were downloaded from the SSGAC data repository (https:537

//thessgac.com/). Finally, AADR data were downloaded from https://reich.hms.harvard.edu/538

datasets. See further details on external data processing in Text S7.539
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