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Abstract: The bone morphogenetic protein (BMP) pathway is best known for its role in promoting
bone formation, however it has been shown to play important roles in both development and
regeneration of many different tissues. Recent work has shown that the BMP proteins have a
number of functions in skeletal muscle, from embryonic to postnatal development. Furthermore,
complementary studies have recently demonstrated that specific components of the pathway are
required for efficient muscle regeneration.
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1. Introduction

As its name implies, the bone morphogenetic protein (BMP) signaling pathway was first identified
as a key regulator of bone formation. Urist and colleagues isolated proteins from rabbit bone and then
used them to induce bone formation in vitro or in vivo in the rat [1]. Later work showed that these
proteins were highly conserved during evolution and most species had a number of paralogues [2–4].
Mapping of the mouse short ear gene, essential for skeletal patterning and bone repair, to the Bmp5
locus, was the first demonstration of the importance of this pathway in mice [5]. In contrast to
the relatively mild phenotype of Bmp5 deletions in short-eared mice, deletion of either Bmp4 or
Bmp2 and their receptors Bmpr1a and Bmpr2 caused early embryonic lethality, with severe defects in
mesoderm formation, extraembryonic tissues and cardiac development [6–9] (Table A1). In addition
to demonstrating that certain BMP genes are essential for development, this work implicated this
signaling pathway to play important roles in multiple organ systems.

2. Signaling Mechanism

After decades of biochemical work, many components of the BMP signaling pathway and
their mode of action have been described. Signaling activation requires two different receptors,
first discovered by experiments with a human cell line [10]. Today the pathway consists of at least
20 different ligands, four type 1 receptors, and three type 2 receptors, varying combinations of which
give distinct responses [11]. After binding of the BMP ligand, the receptors phosphorylate Smad
cofactors, allowing an interaction with Smad4 and translocation of the Smad complex into the nucleus
(Figure 1) [12–14]. The BMP-specific cofactors are Smad1, Smad5, and Smad9. Surprisingly, while single
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knockouts for Smad1 and Smad5 are embryonic lethal, Smad9 is dispensable for development [15–19].
The interaction between Smad1/5/8 and Smad4 is BMP-specific, while TGFβ signaling induces an
interaction between Smad2/3 and Smad4 [20–22]. Furthermore, Smad1 and Smad4 have homologous
transcriptional activation domains and their nuclear import leads to transcriptional competence [14,23].
While there is some overlap in the two pathways, the specific components, including extracellular
and intracellular inhibitors, receptors, and Smads distinguish BMP from TGFβ signaling, leading to
distinct outcomes and specific developmental consequences [24,25]. The regulation of skeletal muscle
growth and regeneration by the TGFβ pathway falls beyond the scope of this review; readers may
refer to previous works [26,27].
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inhibitory Smad6. 

The most common BMP targets are Id and Msx genes. The canonical downstream target of BMP 
signaling is Id1, first identified in osteoblast-like cells [28]. Later work in embryonic stem cells and a 
number of different cell lines confirmed this target and also identified Id2, Id3, Msx1, and Msx2 as 
direct targets of the pathway [29]. The Drosophila homologue of the Smad proteins, Mad, binds to a 
GCCG motif in target genes [30]. When this site is present in a multimerized form, it is sufficient to 
bind Smad proteins and to confer BMP-specific activation in several mammalian cell lines [31].  

Several inhibitors of the pathway have been identified. Work in Xenopus identified Smad6 as an 
inhibitor of the pathway, which functions by blocking Smad4 association with Smad1 (Figure 1) [32]. 
A number of secreted BMP inhibitors have also been described. Xenopus explant experiments 
demonstrated that Bmp4 and noggin have opposing effects on embryonic patterning [33]. 
Biochemical experiments demonstrated that noggin is able to bind to BMP ligands, rendering them 
incapable of binding to their receptors [34]. Related antagonists chordin and gremlin, function in the 
same way (Figure 1, Table A1) [35–37]. 

3. Role in Skeletal Muscle 

Experiments with rodent myogenic cell lines were the first to demonstrate an inhibitory role for 
BMP signaling on muscle differentiation (Figure 2) [38,39]. The addition of BMP ligands to the 
myogenic L6 and C2C12 cell lines, as well as primary rat cell cultures, inhibited the formation of 
myotubes and the expression of the myogenic differentiation genes myogenin, MyoD, and Myf5, 
while it promoted a concomitant trans-differentiation into osteogenic fate [40–50]. Of note, 
Bmp2-activated muscle tissue was as efficient as autologous bone grafting in the treatment of large 

Figure 1. The BMP signaling pathway. Binding of the ligand to the type II receptor recruits the type I
receptor and activates Smad 1/5/8 by phosphorylation. The later engages Smad4, which is shared with
the TGFb pathway, and the complex translocates to the nucleus to regulate transcription of target genes
(e.g. Id). The pathway is blocked by several inhibitors (e.g. Noggin) as well as the inhibitory Smad6.

The most common BMP targets are Id and Msx genes. The canonical downstream target of BMP
signaling is Id1, first identified in osteoblast-like cells [28]. Later work in embryonic stem cells and a
number of different cell lines confirmed this target and also identified Id2, Id3, Msx1, and Msx2 as
direct targets of the pathway [29]. The Drosophila homologue of the Smad proteins, Mad, binds to a
GCCG motif in target genes [30]. When this site is present in a multimerized form, it is sufficient to
bind Smad proteins and to confer BMP-specific activation in several mammalian cell lines [31].

Several inhibitors of the pathway have been identified. Work in Xenopus identified Smad6 as an
inhibitor of the pathway, which functions by blocking Smad4 association with Smad1 (Figure 1) [32].
A number of secreted BMP inhibitors have also been described. Xenopus explant experiments
demonstrated that Bmp4 and noggin have opposing effects on embryonic patterning [33]. Biochemical
experiments demonstrated that noggin is able to bind to BMP ligands, rendering them incapable of
binding to their receptors [34]. Related antagonists chordin and gremlin, function in the same way
(Figure 1, Table A1) [35–37].

3. Role in Skeletal Muscle

Experiments with rodent myogenic cell lines were the first to demonstrate an inhibitory role for
BMP signaling on muscle differentiation (Figure 2) [38,39]. The addition of BMP ligands to the myogenic
L6 and C2C12 cell lines, as well as primary rat cell cultures, inhibited the formation of myotubes and
the expression of the myogenic differentiation genes myogenin, MyoD, and Myf5, while it promoted a
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concomitant trans-differentiation into osteogenic fate [40–50]. Of note, Bmp2-activated muscle tissue
was as efficient as autologous bone grafting in the treatment of large bone defects [51]. Furthermore, the
implantation of BMP2-soaked beads in rat calf muscle resulted in osteogenic differentiation [52]. On the
contrary, culture of myogenic cells in the presence of BMP inhibitors promoted myogenic differentiation
(Figure 2, Table A1) [42–46,49,53,54]. However, the role of BMP signaling in muscle differentiation
appears to be much more complex in embryonic development and adult muscle regeneration.
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Figure 2. BMP effect on myogenesis. Fine tuning of BMP is essential for normal muscle growth.
On one hand, BMP ensures muscle hypertrophy and its loss leads to muscle atrophy and wasting.
On the other hand, hyperactive BMP leads to impaired regeneration and reduced fiber size post-injury.
Furthermore, in culture and during development, inhibiting BMP is associated with increased myogenic
differentiation, while excess Bmp blocks myogenic differentiation.

4. Regulation of Prenatal Muscle Development

Skeletal muscle is of mesodermal origin, with paraxial mesoderm contributing to limb and trunk
muscles, starting by a segmentation process called somitogenesis. As somites mature, dermomyotomal
cells will either form the myotome by intercalating between the dorsal dermomyotome and ventral
sclerotome or delaminate and migrate from the hypaxial domain specific somites to form the muscle
masses of the limbs, diaphragm, and tongue [55–58]. Stem cells of the developing trunk muscle
will then migrate from the dermomyotome into the myotome [59–62]. On the molecular level, Pax
proteins are known to be involved in the control of many lineages during embryogenesis, with Pax3
and Pax7 acting as key regulators in the muscle lineage. Specifically, they orchestrate progenitor
survival, proliferation, migration, self-renewal, and they trigger the myogenic program. At later stages,
myogenic determination and differentiation are ensured by a family of bHLH transcription factors,
collectively referred to as myogenic regulatory factors (family members: Myf5, MyoD, Mrf4/Myf6,
myogenin) [63]. With the core myogenic program being very well described, several groups are trying
to address impact of different factors or pathways, including the BMP pathway, on this program.

The first studies of BMP in muscle development were largely concerned with the role of the
pathway in axis patterning and repression of the myogenic program. BMP diverts paraxial mesoderm
fate towards lateral-plate fate, while BMP loss-of-function leads to expansion of the paraxial mesoderm
domain [64]. Several groups showed that exogenous BMP ligands could skew Xenopus and avian
mesoderm towards a ventral fate, at the expense of dorsal fates, including muscle [35,65–68], while these
findings were more recently confirmed by Smad1 addition to Xenopus dorsal mesoderm [43]. In contrast,
addition of the BMP inhibitors noggin or chordin to Xenopus embryo explants or chick embryos was
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able to drastically increase transcripts of muscle actin and MyoD, respectively (Table A1) [33,35,69,70].
In keeping with a muscle-repressive role, experiments in chick embryo explants demonstrated that
BMP signaling favored the differentiation of cartilage over muscle [71]. Of note, co-injection of noggin
and constitutively active BMP receptor led to a failure of noggin to dorsalize Xenopus embryos [34].
Thus, initial studies argued for a repressor role of BMP on myogenic fate.

The idea that BMP universally repressed muscle formation was soon challenged (Table A1)
by explant experiments demonstrating that Bmp4 acted as a morphogen in Xenopus embryos [72].
A specific range of concentrations actually promoted the expression of Myf5 and formation of muscle.
Furthermore the antagonizing function of noggin led to a gradient of Bmp4 activity distinct from the
expression pattern of Bmp4. In chick embryo explants, exogenous Bmp4 had no effect on expression of
the broad dermomyotomal marker Pax3, but repressed genes involved in myogenic differentiation
including MyoD [70]. Further work in chick embryos implicated ectodermal and mesenchymal tissue
Bmp2, Bmp4, and Bmp7 in sustaining Pax3 expression in myogenic progenitors of the limb and trunk
as well as in proliferation of these progenitors [57,73–75]. This effect was shown to be dose-dependent
in the limb [73]. Ectopic Bmp4 or constitutively active Bmpr1a during fetal myogenesis increased
the number of Pax7+ and differentiating (MF20+) cells, while ectopic Bmp4 and ectopic noggin
at E18 respectively increased and decreased the number of satellite cells, which are the stem cells
of adult skeletal muscle [76]. Cranial myogenesis also relies upon a balance of ectodermal BMP
ligands and the BMP antagonists noggin and gremlin produced in the cranial neural crest and other
head tissues [77], while Bmp2 was found to negatively affect myogenic differentiation in embryonic
tongues [78]. Specifically, in vivo transduction of cranial paraxial mesoderm with Bmp4 leads to loss
of the branchial arch musculature, while activation of skeletal myogenesis correlates with the presence
of noggin/gremlin-expressing cranial neural crest cells [77]. The above studies point to an essential
contribution of BMP effectors and inhibitors on proper muscle formation.

While it is clear that BMP signaling plays a key role in myogenesis, it remains ambiguous exactly
which cells of the muscle express BMP ligands and antagonists, and which cells transduce BMP signals
in vivo. During zebrafish muscle development, BMP was specifically absent from the slow-twitch
muscle pioneers and medial fast-twitch fibers (MFFs) of the central domain of the myotome, while BMP
inhibition by dorsomorphin or Bmpr1a morpholino treatment led to premature activation of the pioneer
marker Engrailed and subsequent increase in the numbers of pioneers and MFFs [79–81]. Analysis of
the BMP expression pattern in chick embryos revealed Bmp2 and Bmp4 presence in the posterior margin
and apical ectodermal ridge (Bmp2) or anterior mesenchyme (Bmp4) [81], while Bmp4-expressing
cells were flanking Pax3-expressing cells in the trunk [73,74]. In line with these findings, Pax7+

dermomyotomal cells in zebrafish embryos co-expressed pSmad1/5/8 and there was an increase in
Pax7+ cells in response to Bmp2b overexpression [82]. On the contrary, noggin was expressed in the
mesenchyme core of the developing limb bud, in close proximity to MyoD-expressing cells [73] and in
the dorsomedial lip of the dermomyotome of more rostral somites [70]. Work in fetal human muscle
showed that most Bmp4- and Bmpr1a-expressing cells were located in between developing fibers, while
gremlin was expressed in interstitial progenitor cells and fibers [83]. Ex vivo, sorted Bmp4-expressing
cells could give rise to muscle, while they were able to inhibit the differentiation of gremlin-expressing
cells. Immunostaining for phosphorylated Smad1/5/8 in chick embryos showed that muscle progenitors
at the tips of developing muscles adjacent to tendon were transducing BMP signals [76]. Implantation
of Bmp2- or noggin-soaked beads changed the domains of Tcf4-expressing cells [81], a population that
has been shown to pre-pattern limb muscles [84]. Furthermore, increasing and decreasing the levels
of BMP signaling with viruses led to an expansion or reduction, respectively, of muscle progenitors
and muscle size. Genetically increasing BMP signaling by knocking out noggin in mice led to lack or
malformation of many muscles, decrease in thick fibers and reduction in Pax7+ cells [85], confirming
previous findings on Pax7+ cells by ectopic noggin expression [76]. Analysis of noggin KO in different
backgrounds showed that even though the early specification (either Pax3+ progenitor cells or MyoD+

precursor cells) was unaffected, the terminal stages of myogenesis were delayed, with mutant E14.5
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embryos and newborns having less fusion and disorganized muscles, respectively [86]. Chordino
mutant zebrafish embryos, which lack the chordino BMP inhibitor, exhibit upregulated BMP leading
to a dorsally expanded Bmp4 expression domain and enlarged tail somites [87,88].

Three groups tried to address when BMP has a stronger impact on myogenesis, analyzing more or
less advanced stages of myogenic progression during prenatal development. In an ex vivo system to
develop Pax7+ myogenic progenitors from Xenopus embryos, it was shown that Bmp4 overexpression
increased Pax7+ cells and Pax7 expression, an effect counteracted by induction of heat-shock-inducible
noggin. Bmp4 treatment even induced paraxial explants to develop Pax7+ cells, although such cells
are not formed normally from paraxial tissue. However, this was only observed when the treatment
was done at stage 13, but not 18 or 22. The findings were confirmed in vivo, with Bmp4 and the BMP
downstream target Msx1 increasing the number of Pax7+ cells, when injected in Xenopus embryos [89].
Transcriptional analysis of Myf5-expressing cells from embryonic and fetal mouse muscle revealed
a higher expression of the BMP target genes Id2 and Smad6 in embryonic myoblasts [90]. Bmp4
addition to cultured embryonic myoblasts had no effect, while it inhibited myotube formation in fetal
cultures [90]. Together these results suggested that BMP signaling supports embryonic myogenesis but
represses muscle differentiation in fetal stages. In keeping with a potential role of BMP in earlier stages
of the myogenic differentiation, Bmpr1a ablation in Myf5+ cells led to smaller muscles comprised of
less and smaller myofibers and fat accumulation, while Bmpr1a ablation in MyoD+ cells did not affect
muscle mass [91]. Overall, it appears that BMP signaling plays a more important role in early prenatal
stages of myogenic differentiation.

5. Regulation of Early Postnatal Muscle Growth

The passage from small, proliferative prenatal myogenic populations to a large, post-mitotic
adult tissue requires a critical early postnatal period with major changes in terms of hyperplasia,
hypertrophy, cell-cycle status and acquisition of quiescence. In the late fetal stage, muscle progenitors
are progressively embedded under the basal lamina [59–62]. At that point, they are described as muscle
satellite cells, providing the pool of muscle stem cells required for postnatal growth and muscle repair
after achieving quiescence at adult stage [92]. Only a limited number of studies investigated the role of
BMP in the crucial early postnatal phase of muscle formation. Several components of the pathway were
shown to be expressed both in whole muscle extracts and in satellite cells at different time-points from
P3 to P28 in mice and rats (Table A1) [93,94]. Using the muscle fiber-specific myosin light chain 1 fast
Cre, Sartori and colleagues found that deletion of Smad4 in muscle fibers led to decreased muscle size
(Table A1) [95]. However, in that study it was not investigated whether smaller muscles were the result
of defects in embryonic, fetal or postnatal myogenesis. Moreover, the deletion of Smad4 blocks both
TGFβ and BMP signaling, making result interpretation difficult. For instance, Myf5-Cre:Smad4f/f mice
have small tongues prenatally, which was attributed to the loss of TGFβ signaling rather than BMP,
as revealed by subsequent analysis [96]. Hence, BMP is likely to play a role in postnatal myogenesis,
but the negative impact of Smad4 blockade on muscle formation should be cautiously interpreted,
as Smad4 is in the interconnection of the TGFβ and BMP pathways.

Specific blockade of the BMP pathway with multiple genetic and pharmacological studies in
neonatal mice helped clarify the situation [94]. Stantzou and colleagues showed that the loss of BMP
signaling in satellite cells led to decreased satellite cell numbers, reduced muscle weight and fiber
length. Thus BMP signaling appeared to play a similar role as in embryogenesis by maintaining
proliferation of activated satellite cells. Furthermore, introduction of exogenous BMPs into postnatal
muscle led to pronounced hypertrophy [97]. Upstream of BMP, miR-26a seems to target Smad1, Smad4,
and the BMP target Id3 [98]. Blocking miR-26a in neonatal mice increased proliferation and decreased
myogenic differentiation [98]. An unexpected role for the BMP pathway in muscle was found when
deleting the receptor Bmpr1a in MyoD- and Myf5-expressing cells [91]. The epaxial muscles of mutants
contained smaller myofibers and increased fat infiltration, potentially due to the role of this pathway
in endothelial progenitors, some of which also underwent Cre recombination [91].
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6. Regulation of Adult Muscle Homeostasis and Regeneration

Once muscle growth ceases, adult muscle is comprised of multinuclear, post-mitotic myofibers,
and mononuclear quiescent muscle stem cells. In response to injuries or homeostatic needs, satellite
cells become activated and support the formation of new myofibers, while a subpopulation will
renew the quiescent pool for future needs. The skeletal muscle niche also includes a microvascular
network, neurons, immune cells, and interstitial populations of mesenchymal progenitor cells, all of
which participate in different stages of muscle maintenance and regeneration (for a comprehensive
review see [99]). The role of BMP on adult muscle maintenance and repair has been investigated
by analysis of homeostatic and regenerating muscle, respectively, by overexpression or deletion of
different components of the pathway.

Two studies reported the effect of BMP administration on homeostatic (resting) muscle and both
groups demonstrated that BMP promotes hypertrophy under these conditions (Figure 2). In the absence
of injury, administration of Bmp7, Follistatin, or Bmpr1a led to increased Smad1/5 phosphorylation
and subsequently fiber hypertrophy, mediated by the IGF and AKT/mTOR axes [95,97]. Hypertrophy
was counteracted by simultaneous injection of Smad6 and Bmp7 or Smad6 and Follistatin [97]. Noggin
administration or Smad1/5 knock-down also led to muscle wasting due to atrophy [95]. On the contrary,
loss of the downstream Id1 and Id3 was not sufficient to induce a muscle phenotype [100]. Thus, in the
absence of muscle injury (i.e., homeostatic muscle), exogenous BMP promotes muscle hypertrophy,
raising the question of whether BMP is also involved in the generation of new muscle fibers following
muscle injury and the associated muscle fiber loss and satellite cell activation.

Work from several groups established that quiescent satellite cells are pSmad-negative, but BMP
signaling is active in adult regenerating muscle, in which satellite cells are activated in response to
injury (Table A1) [44,45,76,91,100]. Of note, over a third of satellite cells co-express Smad1/5/8 and the
Smad targets Id1 and Id3 at day 3 post-injury [100], while pSmad was also found in myonuclei and
connective tissue cells [76]. BMP signaling through Acvr1, Bmpr1a, and Bmpr1b was identified as
an important cue to stimulate cell cycle entry of differentiated myotubes and muscle fibers during
newt limb regeneration [101]. Loss of Id1 and Id3 delays regeneration by reduction of satellite cell
numbers and satellite cell proliferation at day 3 after injury [100]. Of note, Pax7 has been found to
block premature differentiation of quiescent satellite cells by inducing the expression of Id2 and Id3,
with quiescent satellite cells being Pax7+Id3+ [102]. Ono and colleagues used single fiber cultures
to examine the involvement of BMP signaling in satellite cell activation. They first showed that
Bmpr1a, pSmad1/5/8, Smad4, and noggin are all absent from the quiescent population and induced by
culture, with noggin expressed in differentiating myogenin+ cells [45]. Furthermore, they found that
exogenous BMP treatment inhibited differentiation of multiple cultures, and blockade of BMP signaling
during cardiotoxin-induced muscle regeneration delayed the repair process [45]. Regeneration was
also delayed when BMP was overactivated by relieving the miR-26a block on Smad1/Smad4/Id3
during muscle repair [98]. Similarly, hyperactivation of BMP signaling through the receptor Acvr1
led to a decrease in fiber size and an increase in fibrosis post-injury [103], showing that fine tuning of
BMP levels is essential during the regeneration process (Figure 2). The effects of hyperactive Acvr1
were counteracted by rapamycin, which improved myofiber size and dissolved fibrosis [103]. Finally,
BMP electroporation into regenerating rat muscles led to differentiation into osteogenic cells [104],
corroborating in vitro results of BMP driving muscle cell lines into a bone fate [40–50].

Apart from satellite cells, BMP has been implicated in the regulation of additional cell populations
during muscle regeneration. BMP inhibition in mesangioblasts contributed to enhanced grafting
potential and muscle recovery [105]. Similarly, noggin treatment of bone marrow-derived mesenchymal
stromal cells led to more dystrophin expression after engraftment into mice that lack dystrophin,
a structural protein that maintains myofiber stability. On the contrary, Bmp4 treatment resulted
in reduced dystrophin restoration [106]. Huang and colleagues found increased fat deposition in
cardiotoxin-induced regenerating muscle of MyoD-Cre:Bmpr1af/f and Myf5-Cre:Bmpr1af/f mice. Their
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analysis suggested that BMP signaling in myo-endothelial progenitors repressed an adipogenic
program both in developing and regenerating muscle [91].

Several studies also investigated the effects of conditional ablation of Smad4 on muscle regeneration
(Table A1). Analysis of Myl1-Cre; Smad4f/f mice showed that denervation injury significantly
increased the level of atrophy in mutant mice, due to an increase in transcription of ubiquitin ligases,
including Musa1 [95,97]. Later work demonstrated that inducible deletion of Smad4 with the use
of a Pax7-CreERT2 allele led to significant impairment of muscle regeneration following cardiotoxin
injection, with decreased fiber size and increased fibrosis [48]. On the contrary, knock-down of
Smad4 in all muscle populations during regeneration (siRNA or miR-431 administration at D2 and D5
post-injury) leads to fiber hypertrophy [107]. However, these findings must be interpreted carefully,
as the deletion of Smad4 abrogates TGF-β signaling, in addition to the BMP pathway.

The role of BMP in aging or pathological muscles is less characterized. One study has shown
that late middle-aged rats have lower BMP (measured by Bmp2, Bmp7, and pSmad1/5/8 levels) than
young controls, while BMP levels can increase with exercise [108]. On the contrary, muscles exhibiting
wasting associated with motor nerve transaction, degeneration or disuse were shown to have increased
Smad1/5 phosphorylation and suppressed Smad6 and noggin, while administration of Bmp7 or Bmpr1a
prior to denervation partially rescued the muscle wasting [97]. Deficiency in Fibrillin2, which is
inversely correlated with BMP signaling, led to myopathic features in mice, including poor muscle
architecture, reduction in muscle mass, and increase in centronucleated fibers, which are indicative
of ongoing damage and regeneration [109]. The myopathic phenotype was exacerbated by Bmp7
overexpression but rescued by Bmp7 partial ablation or noggin overexpression [109]. In Duchenne
muscular dystrophy (DMD), one of the most prevalent myopathies, Bmp4 was shown to be higher than
in control samples and this increase was associated with the defective differentiation of myoblasts into
myotubes [110]. Increased BMP was also observed in DMD iPSC-derived myoblasts [111]. Expectedly,
noggin administration to an animal model of the disease induced the expression of myogenic markers
(MyoD, myogenin) and mildly alleviated the disease phenotype [63]. Furthermore, Bmp4 was increased
in patient myoblasts of the LMNA myopathy, while Bmp4 downregulation or Smad6 overexpression
in mutant myoblast cultures promoted myogenic differentiation in vitro [112]. In Myhre syndrome,
which is characterized by generalized muscular hypertrophy, there are Smad4 mutations associated
with 8-fold increase in pSmad2/3 and 11-fold increase in pSmad1/5/8 [113,114]. Fibrodysplasia
ossificans progressiva (FOP) is an extremely rare condition in which muscle and other soft tissues are
spontaneously transformed into bone, and it is caused by a specific activating mutation in Acvr1 [115].

7. Perspectives

After several decades of work on BMP signaling in myogenic cells, it is clear that there is
significant overlap in the function of this pathway during development and regeneration (Figure 2).
In both scenarios, activation of the pathway seems crucial to maintaining expression of satellite cell
master regulators like Pax3, while its timely repression is likewise required for differentiation and
formation of muscle fibers. The main difference in BMP requirements between developmental and
adult myogenesis seems to be that in the prenatal stage BMP has been shown to act as morphogen.
However, several questions remain open regarding the levels and dynamics of BMP signaling in
regeneration. Many groups have shown that a precise level of BMP signaling, tempered by the presence
of inhibitory proteins, is crucial for initial stages of myogenic specification. We do not have the same
detailed understanding of BMP levels in regenerating muscle, necessitating the development of new
functional approaches, for instance that could modify the output of the BMP signaling pathway. It is
also worthwhile to investigate the role of this pathway in other cell types that make up the skeletal
muscle niche, including endothelial cells, immune cells, or mesenchymal progenitors, both during
development and regeneration.
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Appendix A. Skeletal Muscle Glossary

Appendix A.1. Core Muscle Cells

Muscle progenitor cells: the stem cells building the skeletal muscle tissue during development.
Myoblasts: myogenic precursor cells.
Myocytes: mononuclear cells, engaged to myogenic differentiation.
Myotubes: multinucleated cells emanating from fusion of myogenic cells.
Myofibers: long syncytial multinucleated post-mitotic cells that comprise the adult skeletal muscle.
Satellite cells: the skeletal muscle stem cells, located on the periphery of the myofibers under the
basal lamina. Quiescent in the adult muscle, but capable of re-entering the cell cycle, activating the
myogenic program, forming new myofibers, and renewing the quiescent pool.

Appendix A.2. Rough Molecular Regulation

Pax3/7: paired box transcription factors that regulate myogenic progenitors and stem cells.
Myf5, MyoD, Mrf4/Myf6, myogenin: a family of basic helix-loop-helix (bHLH) factors that ensure
progenitor (during development) or stem cell (postnatal satellite cells) commitment and differentiation
into the myogenic lineage. Collectively referred to as myogenic regulatory factors (MRFs).

Appendix A.3. Muscle Origin and Regeneration

Somites: segmented units of paraxial mesoderm that give rise, among other tissues, to muscle.
Developmental myogenesis: embryonic and fetal waves of myogenesis, including progressive
differentiation and fusion to form myofibers.
Early postnatal myogenesis: critical period during which (a) muscle size increases by hyperplasia
(nuclei number increase in myofibers through fusion of postnatal satellite cells) and hypertrophy (fiber
size increase), and (b) satellite cell quiescence is established.
Muscle regeneration: injury-induced reestablishment of the structural and functional properties of the
skeletal muscle. Its phases include necrosis, inflammation, myogenesis/fusion, remodeling/maturation.

Appendix B. Studying the Skeletal Muscle (Methodologies)

Appendix B.1. In Vitro

(a) Murine myogenic cell line C2C12,
(b) Primary myoblasts extracted by enzymatic dissociation of muscles and FACS isolation of

their myoblasts.

Both cultures are proliferative under high serum conditions, but serum starvation induces differentiation
into myogenin + myocytes and eventually MyHC + myotubes.

Appendix B.2. Ex Vivo

(a) Explant cultures (mostly for developmental studies),
(b) Single myofiber cultures (isolation and culture of single fibers from early postnatal and adult animals).

Appendix B.3. In Vivo

(a) Gross macroscopic analysis or cryosection analysis of resting (uninjured) muscles,
(b) Lesions with physical (e.g., cryoinjury) or chemical (e.g., BaCl2) techniques for induction of

regeneration and study of muscle repair.
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Appendix C

Table A1. Major Findings on BMP Effects on Myogenesis.

Finding [Reference] Stage

Bmp signaling is necessary for mesoderm
formation [6–9] development

In vitro inhibition of Bmp signaling promotes muscle
differentiation [42–46,49,53,54] in vitro evaluation

In vivo inhibition of Bmp signaling promotes muscle
differentiation [33,35,69,70] development

Specific Bmp ligand concentrations promote
embryonic muscle differentiation in vivo [57,72–77] development

Bmp signaling is required for postnatal muscle
growth [93–95] early postnatal growth

Bmp signaling is activated during muscle
regeneration [44,45,76,91,100] adulthood (regeneration assay)

Smad4 deletion is detrimental to muscle
regeneration [48,95,97] adulthood (regeneration assay)
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