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Abstract: Visual plasticity is classically considered to occur essentially in the primary and secondary
cortical areas. Subcortical visual areas such as the dorsal lateral geniculate nucleus (dLGN) or the
superior colliculus (SC) have long been held as basic structures responsible for a stable and defined
function. In this model, the dLGN was considered as a relay of visual information travelling from
the retina to cortical areas and the SC as a sensory integrator orienting body movements towards
visual targets. However, recent findings suggest that both dLGN and SC neurons express functional
plasticity, adding unexplored layers of complexity to their previously attributed functions. The
existence of neuronal plasticity at the level of visual subcortical areas redefines our approach of the
visual system. The aim of this paper is therefore to review the cellular and molecular mechanisms
for activity-dependent plasticity of both synaptic transmission and cellular properties in subcortical
visual areas.

Keywords: visual system; lateral geniculate nucleus; superior colliculus; synaptic plasticity; intrinsic
plasticity; Hebbian plasticity; homeostatic plasticity

1. Introduction
1.1. Lateral Geniculate Nucleus and Superior Colliculus

In the mammalian visual system, the dorsal lateral geniculate nucleus (dLGN), a pri-
mary recipient structure of retinal inputs at the thalamic level, and the superior colliculus
(SC), a lamellar structure involved in the comparison of multi-modal sensory informa-
tion, constitute the main subcortical visual areas and occupy complementary functions.
While the dLGN is involved in precise and conscious vision [1–3], the SC is responsible for
the initiation of eye and head movements towards specific objects [4–7]. Both structures
receive direct inputs from retinal ganglion cells and from the primary visual cortex and
communicate with each other (Figure 1A,B). The dLGN is a thalamic nucleus whose or-
ganization varies across species. In primates and cats, the dLGN is organized in alternate
monocular layers, whereas in rodents, no such clear lamination is visible. Rather, discrete
monocular regions are identified with a large contralateral region surrounding a smaller
ipsilateral projection zone (Figure 1C). Two major functional types of dLGN relay neurons
are found in primates, cats and rodents: cells that display linear summation (X-type or par-
vocellular neurons) and cells that display non-linear summation (Y-type or magnocellular
neurons) [8–10]. The linear type represents the overwhelming majority of dLGN neurons
in primates, cats and rodents.

Receptive fields of visual neurons analyze a portion of visual space and are generally
classified according to their response to a positive contrast transition (i.e., ON) or to a
negative contrast transition (i.e., OFF). Retinal and thalamic receptive fields are concentric
with an ON (or OFF) center and an OFF (or ON) surround. As a consequence, they are
weakly or not direction-sensitive. In the primary visual cortex, ON and OFF responses are
spatially segregated in simple receptive fields, but they are mixed in complex receptive
fields. Cortical receptive fields are usually rectangular and generally direction sensitive.
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Figure 1. Visual pathways. (A) Sagittal view of the rodent visual system. V1, primary visual area; 
SC, superior colliculus; dLGN, dorsal lateral geniculate nucleus. (B) Superior view of the rodent 
visual system. Red, visual inputs from the left eye. Blue, visual inputs from the right eye. (C) Sim-
plified synaptic organization of visual inputs to rodent dLGN. The relay cell receives 3 types of 
excitatory inputs: (1) small amount (~5%) of functionally powerful contralateral inputs from the 
retina on proximal dendrite (red), (2) numerous (~50%) but functionally weak feed-back inputs from 
V1 (orange) on distal dendrites and (3) from the SC (light blue) on medial and distal dendrites. In 
addition, it is inhibited by interneurons located in the TRN (thalamic reticular nucleus) and in the 
dLGN (grey). (D) Principal inputs and outputs of rodent SC neurons. In the superficial layer, SC 
neurons receive excitatory inputs from the retina (red) and from V1 (orange) and an inhibitory feed-
back (grey) from interneurons located deeper in the SC. Superficial excitatory neurons contact 
deeper premotor neurons and neurons in the dLGN. Premotor neurons in the deep layer feed gaze 
centers of the brain. Adapted from [11]. 

Receptive fields of visual neurons analyze a portion of visual space and are generally 
classified according to their response to a positive contrast transition (i.e., ON) or to a 
negative contrast transition (i.e., OFF). Retinal and thalamic receptive fields are concentric 
with an ON (or OFF) center and an OFF (or ON) surround. As a consequence, they are 
weakly or not direction-sensitive. In the primary visual cortex, ON and OFF responses are 
spatially segregated in simple receptive fields, but they are mixed in complex receptive 
fields. Cortical receptive fields are usually rectangular and generally direction sensitive. 

The dLGN has a retinotopic organization—that is, it follows the mapping of the ret-
ina. Remarkably, retinal inputs represent ~5% of the inputs to dLGN relay cells, and cor-
tical inputs from layer 6 neurons represent ~50% of their inputs [2,12]. However, dLGN 
receptive fields are similar to those of retinal ganglion cells (i.e., monocular ON or OFF 
center with an OFF or ON surround) and profoundly different from receptive fields of 
layer 6 cortical neurons (binocular squared and mixed ON-OFF). This surprising mis-
match between connection density and functional classification can be explained by sev-
eral features. First, retinal axons form synapses with relay cells at the proximal dendrites, 
thus minimizing voltage attenuation along the dendrites whereas cortico-thalamic synap-
ses are located in distal dendrites [2]. In addition, retinal inputs produce a post-synaptic 
current ~10 times larger than cortical inputs, and retino-geniculate synapses display a 
higher release probability [2]. Thus, retino-geniculate inputs are classically considered as 

Figure 1. Visual pathways. (A) Sagittal view of the rodent visual system. V1, primary visual area;
SC, superior colliculus; dLGN, dorsal lateral geniculate nucleus. (B) Superior view of the rodent
visual system. Red, visual inputs from the left eye. Blue, visual inputs from the right eye. (C)
Simplified synaptic organization of visual inputs to rodent dLGN. The relay cell receives 3 types
of excitatory inputs: (1) small amount (~5%) of functionally powerful contralateral inputs from
the retina on proximal dendrite (red), (2) numerous (~50%) but functionally weak feed-back inputs
from V1 (orange) on distal dendrites and (3) from the SC (light blue) on medial and distal dendrites.
In addition, it is inhibited by interneurons located in the TRN (thalamic reticular nucleus) and in
the dLGN (grey). (D) Principal inputs and outputs of rodent SC neurons. In the superficial layer,
SC neurons receive excitatory inputs from the retina (red) and from V1 (orange) and an inhibitory
feed-back (grey) from interneurons located deeper in the SC. Superficial excitatory neurons contact
deeper premotor neurons and neurons in the dLGN. Premotor neurons in the deep layer feed gaze
centers of the brain. Adapted from [11].

The dLGN has a retinotopic organization—that is, it follows the mapping of the
retina. Remarkably, retinal inputs represent ~5% of the inputs to dLGN relay cells, and
cortical inputs from layer 6 neurons represent ~50% of their inputs [2,12]. However, dLGN
receptive fields are similar to those of retinal ganglion cells (i.e., monocular ON or OFF
center with an OFF or ON surround) and profoundly different from receptive fields of
layer 6 cortical neurons (binocular squared and mixed ON-OFF). This surprising mismatch
between connection density and functional classification can be explained by several
features. First, retinal axons form synapses with relay cells at the proximal dendrites, thus
minimizing voltage attenuation along the dendrites whereas cortico-thalamic synapses
are located in distal dendrites [2]. In addition, retinal inputs produce a post-synaptic
current ~10 times larger than cortical inputs, and retino-geniculate synapses display a
higher release probability [2]. Thus, retino-geniculate inputs are classically considered as
driver inputs, whereas cortico-geniculate inputs are considered as modulator inputs [13].
The other inputs to dLGN relay neurons arise from the thalamic reticular nucleus (TRN),
from dLGN interneurons and from the SC through the stellate cells [14]. TRN and dLGN
interneuron inputs are inhibitory, whereas stellate-SC inputs are excitatory (Figure 1C).

The SC is a three-dimensional structure with sensory inputs organized into a series of
laminae that are topographically mapped and aligned with respect to the visual field [4,7].
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The superficial layers receive visual inputs, whereas deeper layers receive other sensory
and motor inputs [15]. As the dLGN, rodent SC also receives strong inputs from the
retina [16], among which about 80% are common to the dLGN [17]. Both dLGN and SC
receive different classes of ganglion cells (ON, OFF), but transient responding ganglion
cells are more commonly represented in the SC than in the dLGN. In addition, the proteins
transported by retinal ganglion cell axons are mostly different in each target [18]. Retina-
recipient neurons project onto premotor neurons that activate gaze centers and are inhibited
by local interneurons [11,19] (Figure 1D). The activation of premotor neurons located in
the deep layers of the SC can trigger saccades [20]. Saccades correspond to gaze shifts that
aim to maintain the fovea on the target of interest [21]. Saccades are generally so brief that
visual feedback cannot guide them to their targets and thus, the saccadic motor command
must be accurately specified upstream the movement.

1.2. Cortical and Subcortical Plasticity

Activity-dependent plasticity in the visual system was classically thought to be exclu-
sively expressed at the cortical level [22], whereas subcortical areas such as the dLGN and
the SC were traditionally considered to be involved in transmission of visual signals and
thus expressing much less to no plasticity. Supporting this idea, monocular deprivation
has been thought for a long time to produce no change in receptive field properties of
dLGN neurons, dating back to the pioneering work by Wiesel and Hubel in 1963 [23–26].
Thus, for many years, the dogma was that functional plasticity occurs only in the supe-
rior visual areas located in the cerebral cortex where visual information is processed and
possibly stored, whereas subcortical areas are only devoted to a rigid processing of visual
information. However, this dichotomous view between noble and subaltern visual areas
has been challenged by later works indicating that subcortical areas do express functional
plasticity and actively participate in both the elaboration of perceptual decision-making
and cognitive functions [3,27].

2. Functional Plasticity in Subcortical Visual Areas
2.1. Functional Plasticity in the dLGN

The notion that dLGN neurons do not express plasticity was disproved a decade
after Wiesel and Hubel’s publication. Indeed, Ikeda and Wright showed in 1976 that the
spatial resolution of dLGN neurons activated by the deviating eye in kittens reared with
a squint is considerably reduced compared to that of neurons activated by the normal
eye [28]. This result was the first to suggest that loss of normal binocular vision leads to
plastic changes in the LGN. Later on, it was shown in amblyopic patients that functional
deficits in visual response are already observed at the stage of the dLGN [29]. In addition,
in contrast to what was previously assumed, about half of the rodent dLGN relay neurons
in a given monocular territory in fact receive inputs from both eyes, indicating a potential
binocularity for a large proportion of dLGN neurons [30–36]. Moreover, spatial receptive
fields at eye opening in mouse dLGN are ~2 times larger than in adulthood due to an
increase in surround suppression owing to an increased in feed-forward inhibition [37].
Furthermore, monocular deprivation (MD) in the mouse has been shown to produce a
large shift in ocular dominance (OD) in dLGN neurons (Figure 2A) [38–40]. In one of these
studies, GABAergic synaptic inhibition was found to be critical [39]. It is very unlikely
that the plasticity observed in the dLGN only represents altered feedback from the cortex,
because the shift in dLGN responses was resistant to cortical inactivation using the GABAA
receptor agonist muscimol [38].
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[38]). (B) In the SC. In normal patients, gaze orientation occurs upon visual stimulation (light). In 
hemianopia patients, the same light stimulus produces no gaze shift. During audio-visual training 
where light is associated with a sound localized in the same region of space, gaze shift occurs. After 
training, light alone produced a gaze shift (adapted from [41,42]). 
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ies on hemianopia, a permanent visual deficit caused by cortical trauma [41,42,48,49]. Pa-
tients with unilateral hemianopia are totally blind in the contralateral visual hemi-field 
but have preserved subcortical visual structures such as the SC. In basic post-traumatic 
conditions, hemianopia patients display a total lack of gaze orientation towards the blind 
hemi-field; a behavioral response depending on cortico-collicular connections. However, 
when the visual stimulus was temporally paired with an auditory stimulus occurring in 
the same region of the visual space (i.e., audio-visual training), normal gaze orientation 
towards the blind hemi-field (Figure 2B) was observed both in patients [41] and cats 
[42,49]. Interestingly, the re-emergence of visual behavior in cats is correlated with the 
reinstatement of visual responsiveness in deep layer neurons of the ipsilesional SC [42]. 
This audio-visual training procedure is thought to be related to the Hebbian learning and 
to reflect potentiation of visually activated synapses onto gaze-orientation related premo-
tor neurons within the SC that fired under the conjoint activation of auditory synapses. In 
fact, audio-visual training has been shown to be able to reveal auditory or visual responses 
that were absent initially [50].  

 Working memory is classically thought to result from persistent activity in neuronal 
circuits or in neurons [51,52]. The entorhinal cortex is thought to be the principal brain 
locus of working memory [53]. Recent work, however, indicates that the SC is also in-
volved in working memory. In fact, human SC has been shown to participate in a loop of 
persistent activity possibly supporting working memory [54].  

Adaptation of the saccade classically involves the cerebellum [55]. However, the SC 
has also been involved in saccade adaptation as a provider of error signals between the 
desired and actual movement. Inactivation of the SC by infusion of the GABAA receptor 

Figure 2. Functional plasticity in subcortical visual areas. (A) In the dLGN. Left, calcium imaging setup in presynaptic
boutons of dLGN relay cell. Right, calcium signals evoked by visual stimulation (blue bar, stimulation of the right eye;
red bar, stimulation of the left eye). Upper part, before MD; middle part, MD; lower part, after MD. Visual response is
evoked only through one eye before MD, whereas visual response is evoked through each eye after MD on the left eye
(adapted from [38]). (B) In the SC. In normal patients, gaze orientation occurs upon visual stimulation (light). In hemianopia
patients, the same light stimulus produces no gaze shift. During audio-visual training where light is associated with a
sound localized in the same region of space, gaze shift occurs. After training, light alone produced a gaze shift (adapted
from [41,42]).

2.2. Functional Plasticity in the SC

The SC is the mammalian equivalent of the optic tectum in inferior vertebrates [5].
While many studies reported functional and synaptic plasticity in the tadpole optic tec-
tum [43–46], fewer investigations have been performed on the mammalian SC. As for the
dLGN, the SC was thought to be largely devoid of functional plasticity, since receptive field
features were found unchanged after MD [47]. However, recent findings suggest that SC
express functional plasticity. The best demonstration of SC plasticity comes from studies
on hemianopia, a permanent visual deficit caused by cortical trauma [41,42,48,49]. Patients
with unilateral hemianopia are totally blind in the contralateral visual hemi-field but have
preserved subcortical visual structures such as the SC. In basic post-traumatic conditions,
hemianopia patients display a total lack of gaze orientation towards the blind hemi-field;
a behavioral response depending on cortico-collicular connections. However, when the
visual stimulus was temporally paired with an auditory stimulus occurring in the same
region of the visual space (i.e., audio-visual training), normal gaze orientation towards the
blind hemi-field (Figure 2B) was observed both in patients [41] and cats [42,49]. Interest-
ingly, the re-emergence of visual behavior in cats is correlated with the reinstatement of
visual responsiveness in deep layer neurons of the ipsilesional SC [42]. This audio-visual
training procedure is thought to be related to the Hebbian learning and to reflect potentia-
tion of visually activated synapses onto gaze-orientation related premotor neurons within
the SC that fired under the conjoint activation of auditory synapses. In fact, audio-visual
training has been shown to be able to reveal auditory or visual responses that were absent
initially [50].

Working memory is classically thought to result from persistent activity in neuronal
circuits or in neurons [51,52]. The entorhinal cortex is thought to be the principal brain
locus of working memory [53]. Recent work, however, indicates that the SC is also involved
in working memory. In fact, human SC has been shown to participate in a loop of persistent
activity possibly supporting working memory [54].

Adaptation of the saccade classically involves the cerebellum [55]. However, the SC
has also been involved in saccade adaptation as a provider of error signals between the
desired and actual movement. Inactivation of the SC by infusion of the GABAA receptor
agonist muscimol impairs saccade motor learning in monkeys [56], indicating that intact
SC is required for saccade adaptation and that the error signal in this process is provided
by the SC.
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3. Structural Plasticity in Subcortical Visual Areas
3.1. Structural Plasticity in the dLGN

The visual system is immature at birth and several structural plasticity phenomena
occur during early post-natal development, but also at later ages. In particular, a profound
reorganization occurs at the retino-geniculate synapse during early post-natal development.
For instance, the number of retinal ganglion cells innervating a relay neuron of mouse
dLGN decreases from about 10 before eye opening to 1 at the adult stage [57,58] (Figure 3A).
This refinement occurs mainly by means of synapse elimination, synapse strengthening
and clustering of synaptic boutons [59]. In addition, the dendritic tree in both relay neurons
and interneurons evolves during the first weeks of post-natal development, from small
to large arborization with a transient peak in dendritic complexity at the time of eye
opening [60,61].
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asynchronous (right) relation. Adapted from [62]. (C) Homeostatic plasticity at cortico-geniculate 
synapses. MD induces an up-regulation of synaptic transmission. Adapted from [63]. NR, normal 
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These maturation processes depend on visual activity. In particular, the dLGN as a 
whole depends on visual inputs to establish and maintain itself as a functioning structure. 
The major effect of altering normal vision by suppressing inputs from one eye is to induce 
the degeneration of downstream visual structures. This has been well documented at the 
level of the dLGN, where different paradigms of visual deprivation translate into the 
shrinkage of dLGN relay cells axons, loss of thalamic cells, reduction in soma size and 
reduction in dLGN volume compared to non-deprived counterparts [23,64–70]. The effect 
of visual deprivation on dLGN relay cell dendritic trees has also been characterized. Both 
in a mouse model of glaucoma and in mice lacking retinal ganglion cells axons, dendritic 
trees of surviving relay cells ended up showing a strong reduction in size and complexity 
after an eventual intermediary phase of exuberant branching [70–72]. Similarly, albinism 

Figure 3. Plasticity in the dLGN. (A) Structural plasticity. Refinement, synapse elimination and
synapse strengthening at rodent retino-geniculate inputs during postnatal development. Synaptic
currents evoked by increasing stimulus intensity before eye opening (left) and in the adult (right).
Note the multiple and small synaptic responses in immature dLGN neurons and the all-or-none
and large response in mature dLGN neurons. (B) Hebbian synaptic plasticity at retino-geniculate
synapses induced by pairing presynaptic stimulation with postsynaptic firing with synchronous
(left) or asynchronous (right) relation. Adapted from [62]. (C) Homeostatic plasticity at cortico-
geniculate synapses. MD induces an up-regulation of synaptic transmission. Adapted from [63]. NR,
normal rearing.

These maturation processes depend on visual activity. In particular, the dLGN as a
whole depends on visual inputs to establish and maintain itself as a functioning structure.
The major effect of altering normal vision by suppressing inputs from one eye is to induce
the degeneration of downstream visual structures. This has been well documented at
the level of the dLGN, where different paradigms of visual deprivation translate into
the shrinkage of dLGN relay cells axons, loss of thalamic cells, reduction in soma size
and reduction in dLGN volume compared to non-deprived counterparts [23,64–70]. The
effect of visual deprivation on dLGN relay cell dendritic trees has also been characterized.
Both in a mouse model of glaucoma and in mice lacking retinal ganglion cells axons,
dendritic trees of surviving relay cells ended up showing a strong reduction in size and
complexity after an eventual intermediary phase of exuberant branching [70–72]. Similarly,
albinism or dyslexia reduces the size of the dLGN [73,74]. Altogether, developmental and
deprivation studies show that retinogeniculate projections have a trophic and necessary
role in establishing and maintaining the morpho-functional complexity of dLGN neurons.
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3.2. Structural Plasticity in the SC

Structural plasticity has also been reported in the SC during post-natal development.
Retino-collicular synapses in adult rodents follow the retino-topic organization [75]. Early
studies have shown that this topographic organization is preserved upon partial lesions of
the SC, thanks to an orderly compression of the entire retinal projections onto the remaining
SC [76]. Conversely, following partial retinal lesion, remaining axons connect their correct
targets to maintain the retinotopic map [77]. These studies suggest that complex signaling
mechanisms exist to dynamically establish the topographic organization of retino-collicular
connections. However, during early development, retinal axons transiently branch and
arborize in inappropriate regions of the SC [78], resulting in topographically diffuse retinal
projections. Thus, the ordered projection found in adults ultimately emerges after competi-
tive interactions between retino-collicular contacts. Parallel to this refinement, a transient
increase in the complexity of the dendritic tree has been reported in the binocular region
of the mouse SC, one week before eye opening [79]. In rodents enucleated at birth, the
topographic structure of the retinal projection to the SC is altered, showing that the estab-
lishment of an adult topographic map within the SC is mediated by plastic mechanisms
during development that depend on visual inputs [80].

4. Synaptic Plasticity in Subcortical Visual Areas
4.1. Synaptic Plasticity in the dLGN
4.1.1. Hebbian Synaptic Plasticity in the dLGN

Hebbian synaptic plasticity at the retino-thalamic synapse was first demonstrated in
2007 by the group of Carla Shatz [62]. Patterned spontaneous activity in the developing
retina is known to drive synaptic refinement in the dLGN before eye opening [81–84].
Using burst-based activity patterns mimicking retinal waves, Shatz and colleagues showed
that, before eye opening, synaptic plasticity at retinogeniculate synapse depends on the
relative timing between pre- and post-synaptic bursts [62]. Following the Hebbian principle
reported at hippocampal synapses [85,86], coincident bursts produced long-term synaptic
potentiation (LTP), whereas non-overlapping bursts produced mild synaptic long-term
depression (LTD) [62] (Figure 3B). Such LTP induced by pre- and post-synaptic synchronous
bursts is likely to be involved in the stabilization of the winner synapses during synaptic
refinement. On the other hand, LTD induced by asynchronous burst is likely to reflect
preliminary steps leading to synapse elimination [87]. Supporting this idea, deletion of
two proteins from the major histocompatibility complex class I (MHC I) required in CNS
development and plasticity [88–92] not only suppresses synapse elimination, but also
eliminates LTD [93].

4.1.2. Homeostatic Synaptic Plasticity in the dLGN

Homeostatic regulation of synaptic transmission has been reported in dLGN neurons
following MD in mice [63]. Interestingly, homeostatic regulation occurs on cortico-thalamic
inputs but not on retino-thalamic inputs, suggesting that MD introduces a complex redis-
tribution of synaptic weight in dLGN relay neurons (Figure 3C). In this case, presynaptic
release probability was found to be higher at the cortical input on the deprived side [63].
However, no change on the post-synaptic side has been reported.

4.2. Synaptic Plasticity in the SC
4.2.1. Hebbian Synaptic Plasticity in the SC

While many studies reported long-lasting Hebbian synaptic plasticity in the tadpole
optic tectum [43,94,95], fewer investigations were performed on long-term synaptic plas-
ticity in the mammalian SC. The first evidence for LTP induction in the SC was provided
30 years ago in the superficial layer of the SC following electrical stimulation at 50 Hz
of the optic tract [96]. Since then, several studies have been devoted to identifying the
involved cellular mechanisms [97,98]. Interestingly, eye opening itself induces synaptic
potentiation in the SC similar to NMDAR-dependent LTP at retino-collicular synapse [99].
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Moreover, the cellular mechanisms triggered by eye opening are the prerequisites for the
induction of further LTP in the developing rat SC [100]. However, no investigation has
been undertaken, so far, to check whether the excitatory synapse linking visual neurons
from the upper layer of the SC to premotor neurons from deeper layer express Hebbian
potentiation, as suggested by behavioral studies [41,42,48].

LTD has been also reported in the SC. Remarkably, LTD is specifically induced at
strong but not weak inputs [101], thus suggesting that cooperativity among many activated
synapses is required for LTD induction in this structure.

4.2.2. Homeostatic Synaptic Plasticity in the SC

Homeostatic synaptic plasticity has been reported in the optic tectum of the tadpole
following chronic visual deprivation [102] or mechanosensory stimulation [103]. However,
no data about homeostatic plasticity have been reported so far in the SC.

5. Intrinsic Plasticity in Subcortical Visual Areas

Beyond synaptic plasticity, changes in intrinsic neuronal excitability represent the
other side of functional plasticity that usually goes hand-in-hand with synaptic modifica-
tions [104,105] and possibly participate to developmental plasticity and learning [106,107].
Intrinsic plasticity is generally triggered by synaptic activity (induction phase) that induces
plasticity of synaptic transmission in parallel. However, the expression of plasticity of
intrinsic neuronal excitability depends on the regulation of voltage-gated ion channels
(expression phase) such as hyperpolarization-activated cyclic nucleotide-gated (HCN)
channels [108–111], Nav [112], Kv1 [113] and Kv7 [114] channels.

Whereas intrinsic plasticity has been extensively studied in the visual cortex [115–119]
and in the tectum of amphibians [120–122], little is known about plasticity of intrinsic
excitability in mammalian subcortical areas. In a mouse model of glaucoma in which
ganglion cells partly degenerate, intrinsic excitability in dLGN neurons is enhanced and
strongly increases spike output [123], suggesting that activity-dependent plasticity of
neuronal excitability can be triggered in these neurons. However, the underlying expression
mechanisms remain unknown.

6. Molecular Correlates of Subcortical Plasticity

While many studies have been devoted to the molecular characterization of subcortical
visual areas of mammals through RNA sequencing [124–128], only a handful of studies
have examined implications of molecular actors in activity-dependent plasticity in the
amphibian tectum [129] and mammalian subcortical visual areas [130–132].

6.1. Molecular Categorization

Different types of thalamo-cortical neurons with distinct morphologies, connectivity
patterns and conveying different aspects of visual information to the cortex have been
identified in the dLGN of mice, cats and primates. However, this functional categorization
is difficult to translate into molecular terms.

In thalamic nuclei, three major molecular profiles of thalamo-cortical neurons have
recently been identified using RNA sequencing [127]. This categorization cannot be ex-
plained by cortical projections but reflects a progressive topographical shift across laterally,
intermediate and medially localized thalamic nuclei. Notably, ion channels and receptor
profiles were organized along the same lines. As a result, differentially projecting thalamic
neurons such as thalamo-cortical neurons of the dLGN and ventrobasal sensory neurons, all
located in the most lateral part of the thalamus, express a common specific set of genes [127].
Moreover, gene profiling in the mature dLGN showed that transcriptomic differences be-
tween principal cell types are subtle relative to the observed differences in morphology
and cortical projection targets [128]. In conclusion, these two studies intriguingly reveal a
low diversity in dLGN neuron genes.
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6.2. Molecular Actors in Retinogeniculate Synapse Refinement

The developing retino-geniculate synapse before eye opening constitutes a classical
model to study the molecular mechanisms occurring during synaptic refinement and
elimination. Microglial activation participates in these mechanisms [133]. Interestingly,
immune response proteins occupy a specific place [134] in the process of synapse elimina-
tion through microglia. The complement molecule C1q and its downstream component
C3 are involved in retino-geniculate refinement, as knocking out C1q prevents the normal
segregation of retinal inputs and maintains multiple innervation [135]. Externalization of
phosphatidyl-serine, an amphiphilic brain phospholipid, on the neuronal surface of inactive
synapses has been recently identified as an “eat me” signal for microglia-mediated pruning
in the dLGN [136]. The major histocompatibility complex (MHC) class I molecule H2-D(b)
is necessary and sufficient for synapse elimination in the retinogeniculate system [93].

Molecular mechanisms responsible for synaptic maintenance also involve secreted
proteins [137]. Among them, neuronal pentraxins (NPs) resemble immune system pen-
traxin which recognize and eliminate pathogens by utilizing the complement pathways and
macrophages in the host. Importantly, NP1/NP2 knock-out mice exhibited defects in the
segregation of eye-specific retinal ganglion cell (RGC) projections to the dLGN [138]. Inter-
estingly, synthetic protein complexes composed of extracellular scaffolding proteins such
as cerebellin-1 and NP1 restore normal function in mouse models of brain disease [139].
However, it is still unknown whether such complexes are able to restore visual function in
MD animals.

Leucine-rich repeat trans-membrane 1 protein (LRRTM1) is a key postsynaptic protein
involved in synaptogenesis through induction of presynaptic differentiation in contacting
axons [140]. The lack of this protein is associated with neuropsychiatric and neurodevelop-
mental disorders. In dLGN neurons, LRRTM1 also plays the role of a synaptic organizer. By
performing next-generation transcriptome analysis of developing mouse visual thalamus,
the LRRTM1 expression was found to be highest at eye opening in dLGN neurons [141].
Genetic deletion of LRRTM1 led to a loss of complex retino-geniculate synapses, reduced
retinal convergence in visual thalamus and impaired performance in visual tasks requiring
processing multiple elements of the visual field [141].

Using single-cell RNA sequencing, the gene encoding the intracellular signaling
protein kinase C delta (PKCδ) has been identified as the most highly up-regulated gene in
the developing dLGN near eye opening (P10-P16) [124]. Interestingly, PKCδ plays a critical
role in growth, differentiation and apoptosis [142].

In conclusion, deletions of genes coding for C1p, NPs, MHC type 1 and LRRTM1 all
prevent synaptic refinement of retinogeniculate inputs (Figure 4). In addition, deletion of
one of these genes (MHC type 1) prevents LTD induction [93].



Cells 2021, 10, 3162 9 of 15Cells 2021, 10, x FOR PEER REVIEW 9 of 16 
 

 

 
Figure 4. Molecular mechanisms of plasticity in subcortical visual areas. Top, in WT animals before 
eye opening, thalamocortical neurons are fed by multiple and weak retinal inputs, while in WT 
adult animals retinal inputs are strong and reduced (refinement). Note that LTP and LTD can be 
induced at an immature stage. Bottom, in KO animals for proteins involved in synaptic pruning 
(C1p, NPS, MHC, LRRTM1, and others), no synaptic refinement occurs. Note that LTD is prevented 
in MHC KO. 

6.3. Visual Experience-Dependent Maintenance of Retinogeniculate Connections 
Due to a lack of molecular analyses in the late postnatal dLGN, little is known about 

the mechanisms underlying visual experience-dependent maintenance of retinogenicu-
late connections [143]. However, a few studies have attempted to fill the gap. Retino-ge-
niculate and cortico-geniculate synapses are provided with different AMPA receptor sub-
units; while AMPA-type 1 receptor (GluA1) is expressed at retinogeniculate synapses, it 
is not present at cortico-geniculate synapses [144]. Blocking synaptic activity by means of 
the local infusion of tetrodotoxin into the dLGN or binocular deprivation reduced GluA1-
containing AMPARs trafficking at the retinogeniculate postsynaptic density (PSD) [144]. 
Another specificity of retino-geniculate inputs is their strong short-term depression that 
is, in a large portion, mediated by AMPA receptor (AMPAR) desensitization [145]. 
CKAMP44, an auxiliary subunit of AMPARs, has recently been found to account for most 
of the short-term synaptic depression observed at retino-geniculate inputs [130]. Further-
more, in mice lacking the transcriptional repressor methyl CpG binding protein 2 
(MeCP2), retinogeniculate refinement occurs normally until P21 [146]. However, during 
a later sensory-dependent phase of synapse development, it results in disruption of con-
nectivity and strength of the retinogeniculate circuit [146].  

Cytokine receptor fibroblast growth factor-inducible 14 (Fn14), a transcription re-
pressor, is expressed in dLGN neurons. Mice lacking Fn14 showed deficits in synapse re-
finement: smaller size of retinogeniculate boutons, higher number of PSDs, associated 
with a higher number of functionally retinogeniculate inputs [125]. In fact, visual experi-
ence not only induces Fn14 expression in dLGN relay neurons but also the induction of 
its ligand TWEAK in microglia [147]. Fn14 increases the number of spines that are not 
bound to TWEAK-expressing microglia. However, microglial TWEAK bound to Fn14 sig-
nals a decrease in synapse number. This microglia-driven loss of synapse occurs through 
a non-phagocytic mechanism.  

6.4. Molecular Analysis of Visual Plasticity 
In the optic tectum of the tadpole of Xenopus laevis, 83 differentially synthesized pro-

teins that are candidate plasticity proteins have been identified using mass spectrometry 
[129]. These proteins are involved in a wide range of biological function, including protein 
translation, RNA splicing and chromatin remodeling. Functional analysis shows that eu-
karyotic initiation factor three subunit A (eIF3A), the RNA binding protein fused in sar-
coma (FUS), and ribosomal protein s17 (RPS17) are required in experience-dependent 

Figure 4. Molecular mechanisms of plasticity in subcortical visual areas. Top, in WT animals before
eye opening, thalamocortical neurons are fed by multiple and weak retinal inputs, while in WT adult
animals retinal inputs are strong and reduced (refinement). Note that LTP and LTD can be induced
at an immature stage. Bottom, in KO animals for proteins involved in synaptic pruning (C1p, NPS,
MHC, LRRTM1, and others), no synaptic refinement occurs. Note that LTD is prevented in MHC KO.

6.3. Visual Experience-Dependent Maintenance of Retinogeniculate Connections

Due to a lack of molecular analyses in the late postnatal dLGN, little is known about
the mechanisms underlying visual experience-dependent maintenance of retinogeniculate
connections [143]. However, a few studies have attempted to fill the gap. Retino-geniculate
and cortico-geniculate synapses are provided with different AMPA receptor subunits;
while AMPA-type 1 receptor (GluA1) is expressed at retinogeniculate synapses, it is not
present at cortico-geniculate synapses [144]. Blocking synaptic activity by means of the
local infusion of tetrodotoxin into the dLGN or binocular deprivation reduced GluA1-
containing AMPARs trafficking at the retinogeniculate postsynaptic density (PSD) [144].
Another specificity of retino-geniculate inputs is their strong short-term depression that is,
in a large portion, mediated by AMPA receptor (AMPAR) desensitization [145]. CKAMP44,
an auxiliary subunit of AMPARs, has recently been found to account for most of the
short-term synaptic depression observed at retino-geniculate inputs [130]. Furthermore,
in mice lacking the transcriptional repressor methyl CpG binding protein 2 (MeCP2),
retinogeniculate refinement occurs normally until P21 [146]. However, during a later
sensory-dependent phase of synapse development, it results in disruption of connectivity
and strength of the retinogeniculate circuit [146].

Cytokine receptor fibroblast growth factor-inducible 14 (Fn14), a transcription re-
pressor, is expressed in dLGN neurons. Mice lacking Fn14 showed deficits in synapse
refinement: smaller size of retinogeniculate boutons, higher number of PSDs, associated
with a higher number of functionally retinogeniculate inputs [125]. In fact, visual experi-
ence not only induces Fn14 expression in dLGN relay neurons but also the induction of its
ligand TWEAK in microglia [147]. Fn14 increases the number of spines that are not bound
to TWEAK-expressing microglia. However, microglial TWEAK bound to Fn14 signals
a decrease in synapse number. This microglia-driven loss of synapse occurs through a
non-phagocytic mechanism.

6.4. Molecular Analysis of Visual Plasticity

In the optic tectum of the tadpole of Xenopus laevis, 83 differentially synthesized
proteins that are candidate plasticity proteins have been identified using mass spectrom-
etry [129]. These proteins are involved in a wide range of biological function, including
protein translation, RNA splicing and chromatin remodeling. Functional analysis shows
that eukaryotic initiation factor three subunit A (eIF3A), the RNA binding protein fused in
sarcoma (FUS), and ribosomal protein s17 (RPS17) are required in experience-dependent
structural plasticity in tectal neurons. It will be important to verify whether these new
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candidate plasticity proteins also play an important role in activity-dependent plasticity in
the mammalian visual system.

Neuronal nogo-66 receptor 1 (NgR1) is a high affinity receptor for Nogo, a protein
of the myelin that inhibits axon outgrowth. Interestingly, NgR1 is expressed throughout
the visual system, including the retina, dLGN, and V1. NgR1 is required to close the
critical period of MD-induced plasticity in the cortex [148,149]. Deleting ngr1 gene in the
thalamus is insufficient to restore eye dominance in the cortex following MD but yields an
improvement in acuity to normal [131].

7. Conclusions

The analysis of the current knowledge on activity-dependent plasticity leads to impor-
tant conclusions. First, the role of dLGN neurons is not limited to a simple relay linking the
retina to the cortex but dLGN neurons are capable of complex integration of visual signals
arising from the retina, the cortex and the SC. dLGN neurons also participate to cognitive
functions and do express functional and synaptic plasticity. Similarly, SC neurons also
display cognitive functions, express functional and synaptic plasticity and have recently
been shown to be involved in the recovery from hemianopia, in working memory and in
saccade adaptation.

Many questions remain unsolved. First, the molecular mechanisms underlying func-
tional plasticity are underexplored, and further studies will be required to decipher the
key molecular actors involved in functional plasticity in subcortical visual areas. Second,
while synaptic plasticity at excitatory synapses have been characterized in subcortical
visual areas, little is known about inhibitory synaptic plasticity [150]. Third, the plasticity
of intrinsic neuronal excitability has not been explored in detail in the dLGN and the SC.
There is no doubt that many of these questions will be addressed in the future.
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