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Abstract
The liver and pancreas originate from overlapping embryonic regions, and single-cell line-

age tracing in zebrafish has shown that Bone morphogenetic protein 2b (Bmp2b) signaling

is essential for determining the fate of bipotential hepatopancreatic progenitors towards the

liver or pancreas. Despite its pivotal role, the gene regulatory networks functioning down-

stream of Bmp2b signaling in this process are poorly understood. We have identified four
and a half LIM domains 1b (fhl1b), which is primarily expressed in the prospective liver

anlage, as a novel target of Bmp2b signaling. fhl1b depletion compromised liver specifica-

tion and enhanced induction of pancreatic cells from endodermal progenitors. Conversely,

overexpression of fhl1b favored liver specification and inhibited induction of pancreatic

cells. By single-cell lineage tracing, we showed that fhl1b depletion led lateral endodermal

cells, destined to become liver cells, to become pancreatic cells. Reversely, when fhl1b was

overexpressed, medially located endodermal cells, fated to differentiate into pancreatic and

intestinal cells, contributed to the liver by directly or indirectly modulating the discrete levels

of pdx1 expression in endodermal progenitors. Moreover, loss of fhl1b increased the regen-

erative capacity of β-cells by increasing pdx1 and neurod expression in the hepatopancrea-

tic ductal system. Altogether, these data reveal novel and critical functions of Fhl1b in the

hepatic versus pancreatic fate decision and in β-cell regeneration.

Author Summary

Lineage-specific multipotent progenitors play crucial roles in embryonic development,
regeneration in adult tissues, and diseases such as cancer. Bone morphogenetic protein
(Bmp) signaling is critical for regulating the cell fate choice of liver versus pancreas, two
essential organs of body metabolism. Through transcriptome profiling of endodermal tis-
sues exposed to increased or decreased Bmp2b signaling, we have discovered the zebrafish

PLOSGenetics | DOI:10.1371/journal.pgen.1005831 February 4, 2016 1 / 33

OPEN ACCESS

Citation: Xu J, Cui J, Del Campo A, Shin CH (2016)
Four and a Half LIM Domains 1b (Fhl1b) Is Essential
for Regulating the Liver versus Pancreas Fate
Decision and for β-Cell Regeneration. PLoS Genet 12
(2): e1005831. doi:10.1371/journal.pgen.1005831

Editor: James Wells, Cincinnati Children's Hospital
Medical Center, UNITED STATES

Received: February 12, 2015

Accepted: January 6, 2016

Published: February 4, 2016

Copyright: © 2016 Xu et al. This is an open access
article distributed under the terms of the Creative
Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.

Funding: CHS is supported by the grants from the
NIH (K01DK081351), the Regenerative Engineering
and Medicine Research Center (GTEC 2731336 and
GTEC 1411318), NSF (1354837), and the School of
Biology (Georgia Institute of Technology). The
funders had no role in study design, data collection
and analysis, decision to publish, or preparation of
the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1005831&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


gene four and a half LIM domains 1b (fhl1b) as a novel target of Bmp2b signaling. fhl1b is
primarily expressed in the prospective liver anlage. Loss- and gain-of-function analyses
indicate that Fhl1b suppresses specification of the pancreas and induces the liver. By sin-
gle-cell lineage tracing, we showed that depletion of fhl1b caused a liver-to-pancreas fate
switch, while fhl1b overexpression redirected pancreatic progenitors to become liver cells.
At later stages, Fhl1b regulates regeneration of insulin-secreting β-cells by directly or indi-
rectly modulating pdx1 and neurod expression in the hepatopancreatic ductal system.
Therefore, our work provides a novel paradigm of how Bmp signaling regulates the hepatic
versus pancreatic fate decision and β-cell regeneration through its novel target Fhl1b.

Introduction
Bone morphogenetic protein (Bmp) signaling plays an essential role in inducing the liver at the
expense of Pdx1-expressing ventral pancreas and intestinal progenitors in different animal
models [1–5]. In murine and zebrafish endodermal progenitors, Bmp signaling activates liver
genes by affecting the expression levels of zinc finger transcription factor Gata4 [5,6]. In addi-
tion, Bmp signaling induces liver genes epigenetically by activating Smad4, a common-media-
tor Smad, and recruiting a histone acetyltransferase, p300 [4]. This activation results in histone
acetylation at the liver gene regulatory elements [4]. Meanwhile, several studies suggest that
Bmp signaling may actively suppress the pancreas gene program. In mice, treating half-embryo
cultures with Bmp4 at the 3–4 somite stage inhibited expression of Pdx1 [3]. Single-cell lineage
tracing in zebrafish showed that lateral endodermal cells close to the Bmp2b signal keep pdx1
expression off, while medial cells distant from the Bmp2b signal turn on pdx1, forming a
medio-lateral pdx1 expression gradient [1]. The former differentiates into the liver and the lat-
ter gives rise to pdx1-positive tissues such as the ventral pancreas and intestine [1]. Consis-
tently, inhibition of BMP signaling was critical for the induction of PDX1 at the expense of
liver gene expression and the consequent generation of INSULIN-secreting β-cells in human
embryonic stem cells (hESCs) and zebrafish [7–11]. Activation of Bmp signaling cell-autono-
mously blocked the induction of β-cells in zebrafish [7]. Nonetheless, the identity of down-
stream gene regulatory networks of Bmp signaling that specify the liver to the detriment of
Pdx1-expressing cells remains to be further elucidated. Moreover, the key question of whether
Bmp signaling suppresses Pdx1 expression keeping progenitors competent to differentiate into
the liver or directly induces the liver gene program has not yet been answered.

The hepatopancreatic ductal (HPD) system, which consists of the extrahepatic duct (EHD),
cystic duct (CD), common bile duct (CBD), and extrapancreatic duct (EPD), connects the
liver, gallbladder, and pancreas with the intestine. Amniotes and zebrafish have developmen-
tally and structurally similar HPD systems, both originating from a specific domain within the
foregut endoderm that lies between the emerging liver and pancreas [12]. Lineage tracing stud-
ies in mammals have revealed that the HPD system and the ventral pancreas, but not the liver,
were derived from cells expressing both Pdx1 and Sox17, a master regulator of the pancreatico-
biliary ductal system [13]. These data are consistent with the pdx1 expression in zebrafish [14].
The existence of a progenitor cell population that can differentiate into liver or pancreas cells
in the HPD system is supported by the wide spread misdifferentiation of hepatocyte-like and
pancreatic-like cells in the HPD system of fgf10 and sox9mutant zebrafish [12,15,16]. Notch
signaling and pdx1 function have been further suggested to play essential roles in the induction
of pancreatic endocrine cells from the progenitors in the HPD system and intrapancreatic
ducts (IPD) of zebrafish [17]. Intriguingly, the expression of Inhibitor of DNA binding 2 (Id2)
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protein, a cell-autonomous marker of Bmp signaling activity [18], is excluded in the endocrine
pancreas, HPD system, and intrapancreatic ducts [7] which are the tissues that retain the
potential to form pancreatic endocrine cells. In a rat pancreatic epithelial cell line, Id2 has been
implicated in repressing the function of key pancreatic endocrine transcription factor Neurod,
which is essential for endocrine pancreas development [19]. In line with these data, suppres-
sion of Bmp signaling by dorsomorphin increased neogenesis of β-cells adjacent to the HPD
system in zebrafish. Nonetheless, the underlying mechanisms of how Bmp signaling orches-
trates the proper lineage choice of the progenitors in the HPD system await further
investigation.

β-cell regeneration can be promoted by either increasing residual β-cell proliferation [20] or
stimulating neogenesis of new β-cells from non-β-cells. Non-β-cells include progenitors resid-
ing in the extra- and/or intra-pancreatic ductal structures [21], other mature cell types includ-
ing glucagon-expressing α-cells [22], or digestive enzyme-secreting acinar cells [23]. Although
the transcriptional network that regulates β-cell development has been well explored [24,25],
the signaling pathways that regulate β-cell regeneration remain largely unknown. Recently, the
adenosine signaling pathway has been shown to increase β-cell proliferation during homeo-
static control and regeneration of the β-cell mass in a zebrafish model of β-cell regeneration
[26]. Nevertheless, compared to several studies that have discovered the origin of newly formed
β-cells [27,28], only a few studies have pinpointed extrinsic signaling pathways that can induce
de novo formation of β-cells during regeneration.

The LIM (LIN-11, ISL-1, and MEC-3) domain is the key protein-protein interaction motif
that integrates diverse cellular processes without intrinsic catalytic activity [29,30]. The LIM
proteins often contribute to biological activity as molecular adaptors or scaffolds to support the
assembly of multimeric protein complexes [31]. The four complete LIM domains with an N-
terminal half LIM domain is characteristic of the four-and-a-half LIM (FHL) proteins [32].
These proteins are expressed in a cell- and tissue-specific manner to regulate cellular processes
such as proliferation, differentiation, and adhesion/migration. However, little is known about
their role in the cell fate choice between the liver and the pancreas and in β-cell regeneration.

Here, by transcriptome analysis, we identified a novel Bmp2b target, four and a half LIM
domains 1b (fhl1b). fhl1b is primarily expressed in the prospective liver anlage. Loss- and gain-
of-function as well as single-cell lineage tracing analyses indicate that Fhl1b inhibits specifica-
tion of the pancreas and induces the liver. Moreover, Fhl1b regulates regeneration of insulin-
secreting β-cells by directly or indirectly modulating pdx1 and neurod expression in the HPD
system.

Results

fhl1b is a target of the Bmp2b pathway
In order to uncover novel Bmp2b target genes essential for regulating the fate of bipotential
hepatopancreatic progenitors, we performed the transcriptome analysis on endodermal tissues
exposed to either increased or decreased levels of Bmp2b signaling (S1A Fig). Total RNA from
FACS-sorted Tg(sox17:GFP)s870-expressing endodermal cells [33] was used in gene expression
profiling analysis. Known genes showing at least a 2-fold (in the case of increased Bmp2b sig-
naling) or a 2.75-fold (in the case of decreased Bmp2b signaling) changes with p� 0.05 were
clustered by biological processes, which were derived from Gene Ontology analysis using PAN-
THER (http://www.pantherdb.org/) (S1B Fig). A total of 998 and 1261 genes showed changes
in increased (S1 Table) and decreased (S2 Table) Bmp2b signaling, respectively. Among the
genes that exhibited at least a 2-fold change in expression in both conditions (S3 Table), four
and a half LIM domains 1b (fhl1b), which encodes a LIM domain only protein (S2B Fig), had a
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prominent change in expression (S1C Fig). The microarray results were confirmed by reverse
transcription quantitative real-time polymerase chain reaction (RT-qPCR) analysis (Fig 1A).
The transcription of fhl1b, which was detected by RT-qPCR analysis of whole embryos, starts
at the 12-somite stage after the endogenous bmp2b expression is initiated in the lateral plate
mesoderm (LPM) (Fig 1B; [1]). Double antibody and in situ hybridization staining in Tg
(sox17:GFP)s870 embryos revealed that fhl1b is primarily expressed in the anterior part of the
endoderm, which corresponds to the prospective liver anlage, at 22–24 hours-post-fertilization
(hpf) (Fig 1C, 1D, 1G and 1G”, black arrows; early-forming dorsal pancreatic bud, which gives
rise exclusively to the principal islet, a cluster of endocrine cells, is marked by white and black
dotted circles in G-G”). Additionally, fhl1b is expressed in the pronephric duct (Fig 1C and 1E,
blue arrowheads) and heart (Fig 1C, 1E and 1F, black arrowheads) from 24 hpf onwards. Dou-
ble antibody and in situ hybridization staining in TgBAC(neurod:EGFP)nl1 [34] embryos
revealed that fhl1b continues to be highly expressed in the liver when the liver has started bud-
ding from the medially migrated endodermal rod [35] at 30 hpf (Fig 1E, 1F and 1H, black
arrows) and 78 hpf (Fig 1I, black arrow). At 78 hpf, levels of fhl1b are also high in patches of
cells in the distal intestine (Fig 1I), low in the HPD system (Fig 1I, black bracket), and absent in
most of the pancreatic cells except for a few cells in the periphery of the principal islet (Fig 1I,
yellow arrow; magnified images of fhl1b expression in the principal islet in Fig 1I’ and 1I”). To
confirm that Bmp2b signaling regulates fhl1b, we examined fhl1b expression in the excess or
absence of Bmp2b signaling. Compared to control embryos (Fig 1J, black bracket, and Fig 1M),
in embryos where bmp2b expression was induced at the 8-somite stage, which is before the ini-
tiation of endogenous bmp2b expression, fhl1b expression showed a significant anterior-poste-
rior (A-P) and M-L expansion in the liver (Fig 1K, black bracket, and Fig 1M). Furthermore,
suppression of Bmp signaling with DMH1 (a highly selective inhibitor of the BMP type I recep-
tors Alk3 (Bmpr1a) and Alk8 (Acvr1/Alk2)) [36] led to a marked reduction of fhl1b expression
in the liver at 30 hpf (Fig 1L, black bracket, and Fig 1M). These data indicate that fhl1b is a tar-
get of Bmp2b signaling and it is primarily expressed in the prospective liver anlage.

Based on the phylogenetic tree of zebrafish Fhl1b and the related proteins in mammals,
Fhl1 was selected as the mouse ortholog of zebrafish Fhl1b (S2A Fig). Fhl1 ablation exacerbated
the cardiomyopathy in hypertrophic cardiomyopathy (HCM) mice [37]. Fhl1 shares 61%
amino acid identity with Fhl1b (S2B Fig). We examined mRNA and protein expression of Fhl1
in developing mouse embryos. At embryonic day 8.5 (E8.5)- E9.5, Fhl1 is detected in the fore-
gut endoderm where the liver and the pancreas are derived [3] (S2C Fig). From E10.5 onwards,
Fhl1 is expressed in the liver (S2C Fig). At E14.5, Fhl1 proteins are highly expressed in the
Prospero homeobox protein 1 (Prox1)-positive liver cells (S2D–S2D”‘ Fig), whereas their
expression is weakly detected in the Prox1-positive pancreatic cells [38,39] (S2E–S2E”‘ Fig).
These findings suggest that similar to zebrafish Fhl1b, Fhl1 is expressed in the developing liver.
Taken together, these results indicate that the hepatopancreatic expression of Fhl1b and its
mouse ortholog Fhl1 is evolutionarily conserved.

Loss of Fhl1b activity enhances induction of pancreatic cells and
compromises liver specification
To elucidate the role of Fhl1b in regulating the fate choice of endodermal progenitors, we dis-
rupted the function of fhl1b with morpholino oligonucleotides (MOs) either against the splice
acceptor site of the second exon, which includes the start codon (MO 1), or against the splice
donor site of the third exon (MO 2) (S3A Fig). At 30 hpf, either single MO 1- or MO 2- as well
as a mixture of MO 1- and 2-injected embryos (morphants) showed a decrease of the hhex [40]
expression domain in the liver (Fig 2A and 2B, black arrows), whereas its expression appeared
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Fig 1. fhl1b is a target of the Bmp2b pathway. (A) Quantitative real-time PCR analysis of fhl1b in bmp2b-overexpressing or DMH1-treated embryos at 20
hours-post-fertilization (hpf). Gene expression was normalized to that of β-actin and presented as fold changes (mean±SD) against control expression.
Asterisks indicate statistical significance: ***, P < 0.001. (B) fhl1b full-length transcript, which was detected by RT-qPCR analysis of whole embryos, starts to
be expressed from the 12-somite stage onwards. (C-F) Whole-mount in situ hybridization showing the expression of fhl1b at 24 (C-D) and 30 (E-F) hpf. At 24
hpf (C-D), fhl1b is expressed in the anterior part of the endoderm, which corresponds to the prospective liver anlage (black arrows). Additionally, fhl1b is
expressed in the pronephric duct (blue arrowhead) and heart (black arrowhead). At 30 hpf (E-F), fhl1b continues to be highly expressed in the liver (black
arrows) and remains to be expressed in the pronephric duct (blue arrowhead) and heart (black arrowheads). (G-G”) Double antibody and in situ hybridization
staining of fhl1b at 24 hpf in Tg(sox17:GFP)s870 embryos. fhl1b is primarily expressed in the anterior part of the endoderm, which corresponds to the
prospective liver anlage (black arrows). White and black dotted circles locate the dorsal pancreatic bud, which gives rise exclusively to the principal islet, a
cluster of endocrine cells. A merged view of G’ and G” is shown in G. (H-I”) Double antibody and in situ hybridization staining of fhl1b in TgBAC(neurod:
EGFP)nl1 embryos at 30 (H) and 78 (I-I”) hpf. TgBAC(neurod:EGFP)nl1 expression marks the posteriorly located pancreatic endocrine cells. At 30 hpf (H),
fhl1b is highly expressed in the liver (black arrow). At 78 hpf (I-I”), the level of fhl1b expression is continuously high in the liver (black arrow) and in patches of
cells in the distal intestine, low in the HPD system (black bracket), and absent in most of the pancreatic cells except for a few cells in the periphery of the
principal islet (yellow arrow). In the principal islet, fhl1b expression is confined to the peripheral boundary and does not significantly overlap with the TgBAC
(neurod:EGFP)nl1 expression. Magnified images of fhl1b and TgBAC(neurod:EGFP)nl1expression in the principal islet are shown in I’ and I”. (J-L) Double
antibody and in situ hybridization staining showing the endogenous expression of fhl1b in the liver (black brackets), comparing control (J), bmp2b-
overexpressing (K), and DMH1-treated (L) TgBAC(neurod:EGFP)nl1 embryos at 30 hpf. fhl1b expression was greatly expanded when bmp2b expression was
induced at the 8-somite stage (K), but was reduced in DMH1-treated embryos (L). (M) Quantification of the fhl1b-positive in situ hybridization signal at 30 hpf.
The areas of fhl1b-positive signal were selected and measured using Image J with normalization to control. 3 individual embryos were analyzed for each
condition. Asterisks indicate statistical significance: ***, P < 0.001. G-L, confocal single-plane in situ hybridization images combined with the projection
images of Tg(sox17:GFP)s870 (G-G”) and TgBAC(neurod:EGFP)nl1 (H-L) expression, ventral views, anterior to the top. C and E, lateral views, anterior to the
left. D and F, dorsal views, anterior to the left. n = 10 per each time point and condition. Scale bars, 20 μm.

doi:10.1371/journal.pgen.1005831.g001
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Fig 2. Loss of Fhl1b activity enhances induction of pancreatic cells and compromises liver specification. (A-D) Whole-mount in situ hybridization
showing the expression of hhex (A and B) and pdx1 (C and D), comparing control embryos (A and C) and fhl1bmorphants (B and D) at 30 hpf. hhex is
expressed in the liver (black arrows) and the dorsal pancreatic bud (white dotted circles). pdx1 is expressed in the developing pancreas including the dorsal
pancreatic bud (white dotted circles) and intestine (black brackets), but not in the liver. hhex expression was reduced in the liver of fhl1bmorphants, while
expanded in the dorsal pancreatic bud (B). pdx1 expression in the dorsal pancreatic bud was also expanded, while its expression in the intestinal bulb
primordium appeared to be reduced in fhl1bmorphants (D) compared to that of control embryos (C). (E–F0) Confocal images of control embryos (E and E0)
and fhl1bmorphants (F and F0) at 30 hpf, stained for Pdx1 (red; expression in the dorsal pancreatic bud is outlined by white dotted circles) and Prox1 (blue).
The somites are also Pdx1 positive. Compared to that of control embryos (E and E0), in fhl1bmorphants (F and F0), the Pdx1 expression domain in the dorsal
pancreatic bud was expanded, while the Prox1 expression domain was reduced. Note that the Pdx1 expression domain in the intestinal primordium (yellow
brackets) appeared to be decreased in morphants (F’). (G-H’) Confocal images of Tg(ins:GFP)zf5 control embryos (G and G0) and fhl1bmorphants (H and H’)
at 36 hpf, stained for Islet (red; expression in the dorsal pancreatic bud is outlined by white dotted circles) and Prox1 (blue in G and H; grey in G’ and H’). In
fhl1bmorphants (H and H’), the Prox1 expression domain was greatly reduced, whereas the number of Tg(ins:GFP)zf5- and Islet-expressing cells was
increased. (I and J) Confocal images of Tg(sox17:GFP)s870 control embryos (I) and fhl1bmorphants (J) at 55 hpf, stained for Insulin (red; outlined by white
dotted circles) and Prox1 (blue). fhl1bmorphants (J) continuously exhibited an enlarged Insulin-expressing β-cell population with a reduced number of
Prox1-positive cells in the liver. (K) Quantification of the number (mean±SD) of Insulin-positive cells in the pancreas (red) and Prox1-positive cells in the liver
(blue) at 55 hpf. 33.9±2.1 cells were Insulin-positive in control embryos, whereas 57.8±3.6 cells were Insulin-positive in fhl1bmorphants. 148.0±15.2 cells
expressed Prox1 in fhl1bmorphants, while 262.7±14.0 cells were Prox1-positive in control embryos. Cells in 20 planes of confocal images from 5 individual
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to be expanded in the early-forming dorsal pancreatic bud (Fig 2A and 2B, white dotted circles).
The pdx1 expression domain in morphants was also expanded in the dorsal pancreatic bud (Fig
2C and 2D, white dotted circles), whereas its expression in the intestinal bulb primordium
appeared to be reduced (Fig 2C and 2D, black brackets). Immunostaining with the antibodies
recognizing Pdx1 and the early liver marker Prospero homeobox protein 1 (Prox1; [35]) in Tg
(sox17:GFP)s870 embryos [33] (Figs 2E–2F’ and S4A–S4B’) as well as Islet and Prox1 in Tg(ins:
GFP)zf5 embryos ([41], Fig 2G–2H’), respectively, showed an evident reduction of the Prox1
expression domain in the liver (Fig 2E–2H’), an increase in the number of Tg(ins:GFP)zf5-
expressing and Islet-positive pancreatic endocrine cells (Fig 2G–2H’, white dotted circles), and
an expansion of the Pdx1-expressing cell population in the dorsal pancreatic bud in morphants
at 30–36 hpf (Figs 2E–2F’ and S4A, S4B, S4C and S4D, white dotted circles; 78.3±3.2 cells in con-
trols vs. 101.6±4.1 cells in morphants; n = 5 per condition; P = 0.0009). The Pdx1 expression
domain in the intestinal primordium appeared to be decreased in morphants (Fig 2E–2F’, yellow
brackets). At 55 hpf, morphants continuously exhibited an enlarged Insulin-expressing β-cell
population (Figs 2I–2K and S3C, S8I; 33.9±2.1 cells in controls vs. 57.8±3.6 cells in morphants;
n = 5 per condition; P = 0.00003) with a reduced number of Prox1-positive cells in the liver (Figs
2I–2K and S3C and S8I; 262.7±14.0 cells in controls vs. 148.0±15.2 cells in morphants; n = 5 per
condition; P = 0.00003). No TUNEL-positive liver cells were observed in fhl1bmorphants at 48
hpf, suggesting that the small liver observed in morphants was not caused by enhanced cell death
(S5A and S5B Fig). In addition to the endodermal phenotypes, morphants displayed pericardial
edema and a reduced heart rate from 30 hpf onwards (S3H and S3I Fig, black arrowheads).

To validate the specificities of fhl1bMOs, reverse transcription polymerase chain reaction
(RT-PCR) was performed. MO 1 and 2 each blocked the endogenous splice sites of fhl1b and,
as a result, either a deletion of exon 2 (S3B Fig, MO 1, white asterisk) or a formation of a cryptic
splice form of exon 3 (S3B Fig, MO 2, white asterisk) occurred. A mixture of both MO 1 and 2
led to the deletion of both exon 2 and 3 (S3B Fig, MO 1& 2, white asterisk). MO-mediated
knockdown can often induce apoptosis via aberrant p53 activation. Hence, we performed
simultaneous knockdown of tp53 and fhl1b to ameliorate apoptosis induced by MO off-target-
ing [42]. Single fhl1b and double fhl1b/tp53MO-injected embryos and larvae showed no differ-
ence in the phenotypes of small liver (S3E and S3F, white circles, and S3K, S3M and S3N Fig),
an increased Insulin-expressing β-cell population (S3E, S3F and S3H–S3J Fig), and pericardial
edema (S3H–S3I, black arrowheads) at 55 hpf and 5 days-post-fertilization (dpf). These data
indicate that fhl1b knockdown phenotypes in the endoderm and heart are independent of the
p53 pathway. Throughout this study, fhl1bMOs were used as a mixture of MO 1 and 2 (total 4
ng) as each MO caused essentially the same phenotype (S3C Fig), and standard control MO
was used as a negative control. Furthermore, co-injection of fhl1bmRNA with a mixture of
MO 1 and 2 partially rescued the effect of fhl1bMO knockdown (S6A–S6D Fig).

To complement fhl1bMO knockdown studies, knockout of fhl1b was performed by apply-
ing the CRISPR/Cas9 nuclease targeting system [43], which has been shown to lead to highly
efficient biallelic conversion in somatic cells in zebrafish [44]. We microinjected cas9mRNA
and two guide RNAs (gRNAs), which were both designed to target overlapping regions in the
exon 2 of fhl1b (S7A Fig), into one-cell stage embryos. We found that 11.62% of Cas9/gRNA-
treated embryos (38 out of 327 embryos) showed an enlarged Insulin-expressing β-cell popula-
tion (31.6±3.51 cells in controls vs. 45.3±6.0 cells in Cas9/gRNA-treated embryos; n = 5 per
condition; P = 0.02) with a reduced number of Prox1-positive cells in the liver (265±18.6 cells

embryos were counted. Asterisks indicate statistical significance: ***, P < 0.001. A-D, dorsal views, anterior to the left. E-J, confocal projection images,
ventral views, anterior to the top. Scale bars, 20 μm.

doi:10.1371/journal.pgen.1005831.g002
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in controls vs. 164±16.5 cells in Cas9/gRNA-treated embryos; n = 5 per condition; P = 0.002)
as in fhl1bMO knockdown embryos at 55 hpf (S7D–S7F Fig). We randomly selected 4 embryos
with these phenotypes and confirmed to contain insertions/deletions (indels) with the T7
endonuclease I (T7EI) assay and Sanger sequencing. T7EI assay revealed that the percent gene
modification in the 4 tested embryos was between 21.75% and 31.58% (S7B Fig). Sanger
sequencing of these 4 embryos (20–30 PCR amplicons were sequenced for each embryo) con-
firmed site-specific insertions/deletions (indels) including 2–17 bp deletions or 2–11 bp inser-
tions (S7C Fig). Consistent with the report that Cas9 cuts the target DNA at six base pairs
upstream of the protospacer adjacent motif (PAM) [45], all mutations occurred at the 30 end of
the target sequence, further validating the sequence specificity of this targeting process. Taken
together, these comparable MO knockdown and CRISPR/Cas9 knockout results suggest that
Fhl1b is required for restraining endodermal progenitors from specifying to pancreatic endo-
crine cells and for the proper induction of the liver.

Decreased Fhl1b activity augments induction of pancreatic endocrine
cells
To further analyze which pancreatic cell types are induced in fhl1bmorphants, we first exam-
ined the expression of Tg(P0-pax6b:GFP)ulg515, a pan-endocrine progenitor reporter [46]. The
number of Tg(P0-pax6b:GFP)ulg515-expressing cells increased from 82.6±4.5 in controls to
103.2±2.0 in morphants at 30 hpf (Figs 3A, 3B and 3I and S8G; n = 5 per condition;
P = 0.0009). Next, we investigated which endocrine subpopulation was expanded in the mor-
phants. The number of Insulin-expressing β-cells was increased from 30.6±1.5 in controls to
44.6±2.0 in morphants at 30 hpf (Figs 3C–3D and 3I and S8G; n = 5 per condition; P = 0.0004).
While the number of Somatostatin-expressing δ-cells was also increased in morphants (Figs
3E, 3F and 3I and S8G; 20.7±0.8 cells in controls vs. 26.7±2.0 cells in morphants; n = 5 per con-
dition; P = 0.0033), the number of Glucagon-expressing α-cells appeared unaffected in mor-
phants (Figs 3G, 3H and 3I and S8G; 26.5±0.7 cells in controls vs. 24.6±1.5 cells in morphants;
n = 5 per condition; P = 0.2). As recently reported [47], Insulin and Glucagon, but not Insulin
and Somatostatin, are co-expressed in both control embryos and fhl1bmorphants at 30 hpf
(S8G Fig). The number of these dual-hormone expressing cells was slightly increased in fhl1b
morphants at 30 hpf (S8G Fig; 8.0±1.0 cells in controls vs. 10.6±1.5 cells in morphants; n = 5
per condition; P = 0.03).

A previous report showed that cell-autonomous suppression of Bmp signaling is critical for
the induction of endocrine cells derived not only from the early-forming dorsal bud but also
from the late-forming ventral bud [7]. In zebrafish, the late-forming ventral pancreas, which
mostly generates pancreatic exocrine cells (acinar and duct cells) and endocrine cells, subse-
quently encapsulates the early-forming, pdx1-positive, dorsal pancreas, which gives rise exclu-
sively to the endocrine cells, thus establishing the mature pancreatic structure [14]. To test the
role of Fhl1b in the induction of endocrine cells from the ventral bud specifically, we examined
the numbers of the newly differentiated ventral bud-derived endocrine cells in Tg(ins:GFP)zf5;
Tg(ins:dsRed)m1018 double transgenic embryos. As dsRed takes 18–22 hours longer than GFP
to mature, we can distinguish GFP only (ventral bud-derived) from GFP/dsRed double-posi-
tive (dorsal bud-derived) β-cells until at least 60 hpf [48]. At 48 hpf, the number of GFP-only-
positive β-cells increased in morphants compared to that of control embryos (Figs 3J–3L and
S8H; 5.0±0.7 cells in controls vs. 12.2±2.3 cells in morphants; n = 5 per condition; P = 0.0002),
suggesting an augmented induction of β-cells from the ventral bud. We further quantified total
and subpopulations of pancreatic endocrine cells at 72 hpf. The number of Tg(P0-pax6b:
GFP)ulg515-, Insulin-, and Somatostatin-expressing cells was increased from 98.6±3.0, 32.3±2.0,
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and 28.7±1.4, respectively, in control embryos, to 132.0±5.2, 54.8±3.5, and 40.0±2.1, respec-
tively, in morphants (S8A–S8G Fig; n = 5 per condition; P = 0.0003, P = 0.0003, P = 0.006,
respectively), while the number of Glucagon-expressing cells appeared unaffected (S8C, S8F
and S8G Fig; 28.6±1.1 cells in controls vs. 27.3±1.5 cells in morphants; n = 5 per condition;
P = 0.2). Altogether, these data suggest that Fhl1b is required for restricting the induction of
pancreatic endocrine cells, specifically Insulin- and Somatostatin-expressing cells, from endo-
dermal progenitors.

Increased Fhl1b activity suppresses specification of pancreatic cells and
induces liver
In a converse experiment, we assessed the effects of ectopic expression of fhl1b on liver and
pancreas induction. We overexpressed fhl1b using a heat-inducible transgene, Tg(hsp:fhl1b;

Fig 3. Decreased Fhl1b activity augments induction of pancreatic endocrine cells. (A-H) Confocal images showing Tg(P0-pax6b:GFP)ulg515 (A and B,
green), Insulin (C and D, red), Somatostatin (E and F, grey), and Glucagon (G and H, blue) expression at 30 hpf, comparing control embryos (A, C, E, and G)
and fhl1bmorphants (B, D, F, and H). The number of Tg(P0-pax6b:GFP)ulg515 (B)- and Insulin (D)-expressing cells was significantly increased in fhl1b
morphants compared to that of control embryos (A and C, respectively). The number of Somatostatin-expressing cells was also increased (F), while that of
Glucagon-expressing cells appeared unaffected (H) in fhl1bmorphants compared to that of control embryos (E and G, respectively). (I) Quantification of the
number (mean±SD) of total and individual pancreatic endocrine hormone-expressing cells, comparing that of control embryos and fhl1bmorphants at 30 hpf.
The absolute number of Tg(P0-pax6b:GFP)ulg515-, Insulin-, and Somatostatin-expressing cells was increased from 82.6±4.5, 30.6±1.5, and 20.7±0.8,
respectively, in control embryos, to 103±2.0, 44.6±2.0, and 26.7±2.0, respectively, in fhl1bmorphants, while that of Glucagon-expressing cells appeared
unaffected (26.5±0.7 cells in controls vs. 24.6±1.5 cells in fhl1bmorphants). Cells in 20 planes of confocal images from 5 individual embryos were counted.
Asterisks indicate statistical significance: **, P < 0.01; ***, P < 0.001. (J-K’) Confocal images of Tg(ins:GFP)zf5;Tg(ins:dsRed)m1018 control embryos (J and J’)
and fhl1bmorphants (K and K’) at 48 hpf. Compared with the control embryos (J), fhl1bmorphants showed an increased number of GFP-only-positive β-cells
(K, white arrows). (L) Quantification of the number (mean±SD) of GFP- and dsRed-double positive (yellow) and GFP-only-positive (green) β-cells, comparing
that of control embryos and fhl1bmorphants at 48 hpf. In control embryos, 5.0±0.7 β-cells were GFP-only-positive, while 12.2±2.3 β-cells were GFP-only-
positive in fhl1bmorphants. Cells in 20 planes of confocal images from 5 individual embryos were counted. Asterisks indicate statistical significance: ***,
P < 0.001. A-H and J-K’, confocal projection images, ventral views, anterior to the top. Scale bars, 20 μm.

doi:10.1371/journal.pgen.1005831.g003
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hsp:GFP)gt3. In response to heat shock, robust ectopic expression of GFP was observed in a
variety of tissues throughout the embryos without any discernible body phenotype. Concurrent
expression of fhl1b all over the embryos was confirmed with whole-mount in situ hybridiza-
tion. When fhl1b expression was induced at the 8-somite stage, the initial time point of pdx1
expression in the pancreatic exocrine and intestinal progenitors and before the beginning of
endogenous fhl1b expression, hhex expression domain was greatly expanded in the liver at 45
hpf (Fig 4A and 4B, black arrows). In these embryos, pdx1 expression was significantly reduced
in the intestinal bulb primordium and ventral pancreas, which gives rise mainly to the

Fig 4. Increased Fhl1b activity suppresses specification of pancreatic cells and induces liver. (A-D) Whole-mount in situ hybridization showing the
expression of hhex (A and B) and pdx1 (C and D), comparing control embryos (A and C) and fhl1b-overexpressing embryos (B and D, heat shock applied at
the 8-somite stage) at 45 hpf. hhex is expressed in the liver (black arrows) and the dorsal pancreatic bud (white dotted circles). pdx1 is expressed in the
developing pancreas including the dorsal pancreatic bud (white dotted circles) and intestine (black brackets), but not in the liver. When fhl1b expression was
induced at the 8-somite stage, hhex expression was greatly expanded in the liver (B, black arrow), while pdx1 expression in the developing gut was reduced
(D, black bracket). hhex and pdx1 expression in the dorsal pancreatic bud in fhl1b-overexpressing embryos was comparable to that of control embryos.
(E-F’) Confocal images showing Islet (red), Prox1 (blue in E and F; grey in E’ and F’), and Tg(ptf1a:GFP)jh1 (green) expression at 50 hpf, comparing control
embryos (E and E’) and fhl1b-overexpressing embryos (F and F’, heat shock applied at the 8-somite stage). When fhl1b expression was induced at the
8-somite stage (F and F’), the Prox1 expression domain was expanded, whereas Tg(ptf1a:GFP)jh1 expression was drastically reduced. (G) Quantification of
the number (mean±SD) of Prox1-positive cells in the liver at 50 hpf. 235.5±7.3 cells were Prox1-positive in control embryos, while 306.5±12.6 cells were
Prox1-positive in fhl1b-overexpressing embryos (heat shock applied at the 8-somite stage). Cells in 20 planes of confocal images from 5 individual embryos
were counted. Asterisks indicate statistical significance: ***, P < 0.001. (H) Quantification of the number (mean±SD) of Tg(ptf1a:GFP)jh1-expressing cells in
the exocrine pancreas at 50 hpf. The number of Tg(ptf1a:GFP)jh1-expressing cells decreased from 82.2±6.4 in control embryos to 16.0±5.2 in fhl1b-
overexpressing embryos (heat shock applied at the 8-somite stage). Cells in 20 planes of confocal images from 5 individual embryos were counted. Asterisks
indicate statistical significance: ***, P < 0.001. A-D, dorsal views, anterior to the left. E and F, confocal projection images; E’ and F’, confocal single-plane
images, ventral views, anterior to the top. Scale bars, 20 μm.

doi:10.1371/journal.pgen.1005831.g004
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pancreatic exocrine cells, intestine cells, and a few endocrine cells (Fig 4C and 4D, black brack-
ets). pdx1 expression in the dorsal pancreatic bud appeared unaffected (Fig 4C and 4D, white
dotted circles), consistent with the previous data that the lineage of this bud is specified primar-
ily during the gastrulation stage [1]. To determine whether specification of pancreatic exocrine
cells is affected in fhl1b-overexpressing embryos, we examined the expression of Tg(ptf1a:
GFP)jh1 [49], which is largely restricted to the developing exocrine pancreas [50], along with
Prox1, which is highly expressed in the liver and developing exocrine pancreas at 50 hpf. Com-
pared to control embryos, we found that in the embryos where fhl1b expression was induced at
the 8-somite stage, Tg(ptf1a:GFP)jh1expression was almost completely eliminated whereas the
Prox1 expression domain was markedly expanded, suggesting that virtually all Prox1-expres-
sing cells are liver cells (Figs 4E–4F’ and S9A). Quantification showed that while 235.5±7.3
cells were Prox1-positive in control embryos, 306.5±12.6 cells expressed Prox1 in fhl1b-overex-
pressing embryos (Figs 4G and S9B; n = 5 per condition; P = 0.000067). In contrast, the num-
ber of Tg(ptf1a:GFP)jh1-expressing cells was decreased from 82.2±6.4 in controls to 16.0±5.2 in
fhl1b-overexpressing embryos (Figs 4H and S9B; n = 5 per condition; P = 0.000004). These
results suggest that Fhl1b is sufficient to inhibit specification of pancreatic exocrine cells and
induce the liver.

Fhl1b regulates the patterning and subsequent fate of the medial and
lateral endodermal progenitors
To determine the role of Fhl1b in the M-L patterning of endodermal progenitors, which is
essential for the fate decision of liver versus pancreas [1], we first examined the pdx1 gradient
in the endodermal sheet of fhl1b-depleted embryos. From the 14-somite stage onwards, mor-
phants showed a dramatic lateral expansion of the pdx1 expression domain (Fig 5A and 5B).
The expression domain of neurod, which marks pancreatic endocrine progenitor cells that
express high levels of pdx1 (corresponding to the cells with white asterisks in Fig 5A and 5B;
[1,51]), was markedly expanded (Fig 5C and 5D). Furthermore, multiple TgBAC(neurod:
EGFP)nl1-expressing cells were found even in the lateral part of the endodermal sheet, which
normally gives rise to the liver, exocrine pancreas, and intestine (Fig 5E and 5F, white arrows)
[1]. Next, we performed single-cell lineage tracing experiments to examine possible cell fate
changes caused by modulation of Fhl1b activity. Tg(sox17:GFP)s870 embryos were injected at
the one-cell stage with the photoactivatable lineage tracer CMNB-caged fluorescein dextran
conjugate, and single endodermal cells at 3 different M-L positions (medial, lateral 1, and lat-
eral 2) at the level of somite 2 were uncaged using a 405nm laser at the 6–8 somite stage. In
consistent with earlier data [1], in control embryos, lateral 2 cells at the level of somite 2 pre-
dominantly gave rise to the exocrine pancreas, intestine, and liver, but rarely to the endocrine
pancreas (Figs 5G and S10C–S10E and S10F (as L2) and S10H; in 1 out of 10 control embryos
lateral 2 cells gave rise to the endocrine pancreas). In every fhl1b-depleted embryo, lateral 2
cells contributed to the pancreatic endocrine cells (Figs 5H and S10D and S10F (as fhl1b MO
L2) and S10H; n = 10). Assessment of exocrine pancreas development and differentiation by
analyzing the expression of Tg(ptf1a:GFP)jh1, which labels developing exocrine pancreatic cells,
as well as that of Tg(fabp10a:DsRed;ela3l:EGFP)gz15 [52], which marks differentiated hepato-
cytes and pancreatic acinar cells, showed a reduced number of pancreatic exocrine cells at 72
and 96 hpf (S11A–S11D Fig). These data suggest that depletion of Fhl1b function results in the
conversion from no/low to high pdx1-expressing cells, leading to a significant increase in the
number of pancreatic endocrine cells along with a concomitant compromise of the develop-
ment of liver and pancreatic exocrine cells, which are derivatives of no and low pdx1-express-
ing cells [1].
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Fig 5. Fhl1b regulates the patterning and subsequent fate of the medial and lateral endodermal progenitors. (A-D) Whole-mount in situ hybridization
showing the expression of pdx1 (A and B) and neurod (C and D), comparing that of control embryos (A and C) and fhl1bmorphants (B and D) at the
14-somite stage (A and B) and 18 hpf (C and D). pdx1 is expressed at high levels in the most medial cells (white asterisks) and at low levels in the lateral cells
(gray arrows). neurod is expressed in the high-level pdx1-expressing cells. In fhl1bmorphants, high levels of pdx1 (white asterisks) and neurod expression
were expanded laterally (B and D). (E-F) Ventral confocal images showing TgBAC(neurod:EGFP)nl1, β-catenin (white), and Topro (blue) at 18 hpf (the
notochord is outlined by yellow dashed lines). Somites are numbered from anterior to posterior (S1-S4). (E) In control embryos, TgBAC(neurod:EGFP)nl1-
expressing cells are located close to the notochord. (F) Ectopic TgBAC(neurod:EGFP)nl1-expressing cells were found in lateral endodermal regions in fhl1b
morphants (white arrows). (G and H) Confocal images of Tg(sox17:GFP)s870 embryos at 55 hpf, stained for uncaged-Fluorescein (red) and Islet (blue). In
control embryos (G), lateral 2 (L2) cells gave rise to the liver (white rhombi), intestine (white arrowhead), and exocrine pancreas (white double arrows), but
rarely gave rise to the endocrine pancreas. In fhl1bmorphants (H), L2 cells contributed to the Islet-positive pancreatic endocrine cells (white arrows), but not
to the liver or exocrine pancreas. (I-L) Whole-mount in situ hybridization showing the expression of pdx1 (I and J) and neurod (K and L) at 18 hpf, comparing
control embryos (I and K) and fhl1b-overexpressing embryos (J and L, heat shock applied at the 8-somite stage). In embryos induced to overexpress fhl1b at
the 8-somite stage (J and L), neurod and high levels of pdx1 expression (white asterisks in J) were maintained, while low levels of pdx1 expression (gray
arrows) were reduced. (M-N’) Confocal images of Tg(sox17:GFP)s870 embryos at 50 hpf, stained for uncaged-Fluorescein (red) and Prox1 (blue in M and N;
grey in M’ and N’). In control embryos (M and M’), lateral 1 (L1) cells gave rise to the exocrine pancreas (white double arrows) and the intestine (white
arrowheads), but not to the liver. In embryos induced to overexpress fhl1b at the 8-somite stage (N and N’), L1 cells mostly contributed to the Prox1-positive
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Conversely, we examined the pdx1 gradient in fhl1b-overexpressing embryos. In Tg(hsp:
fhl1b; hsp:GFP)gt3 embryos in which fhl1b expression was induced at the 8-somite stage, medial
cells, as their counterpart in control embryos, exhibited high levels of pdx1 (Fig 5I–5J, white
asterisks). Consistently, neurod expression appeared unaffected (Fig 5K and 5L). In contrast,
lateral cells exhibited greatly reduced levels of pdx1 compared to that of control embryos (Fig
5I–5J, gray arrows), demonstrating that fhl1b overexpression during the post-gastrulation stage
led to a decrease of pdx1 expression in the pancreatic exocrine and intestinal progenitors. Next,
a single lateral 1 cell in Tg(hsp:fhl1b; hsp:GFP)gt3 embryos was heat- shocked and uncaged at
the 6–8 somite stage. In every embryo where fhl1b expression was induced at the 6–8 somite
stage, lateral 1 cells contributed to the liver (Figs 5N and S10D and S10G (as HS @ 8s L1) and
S10H; n = 11). However, in most control embryos lateral 1 cells only gave rise to the pancreas
and intestine, but not to the liver (Figs 5M and S10B and S10D and S10E and S10G (as L1) and
S10H; 1 out of 10 control embryos showed contribution of lateral 1 cells to the liver). These
results indicate that augmentation of Fhl1b activity decreases pdx1 expression levels in pancre-
atic exocrine and intestinal progenitor cells, leading them to become liver cells.

As previously reported [1], the medial cells at the 6–8 somite stage, which express high levels
of pdx1, give rise mostly to pancreatic endocrine cells (S10A and S10D and S10E and S10H Fig;
n = 11), indicating an early fate restriction of these cells primarily during the gastrulation stage.
Intriguingly, forced induction of fhl1b during the gastrulation stage led to a significant reduc-
tion in the number of high and low pdx1-expressing cells resulting in a decrease in the number
of Insulin-expressing cells and pancreatic exocrine cells (S12A–S12G Fig). Taken together,
these results suggest that Fhl1b plays an essential role in determining the precise patterning of
medial and lateral endodermal progenitors by directly or indirectly modulating the levels of
pdx1 expression for proper fate choice of liver versus pancreas.

Relationship between Bmp2b, Fhl1b, and Id2a in fate choice of liver
versus pancreas
Our data indicate that Fhl1b is a novel physiological effector of Bmp2b signaling that regulates
the adequate fate choice for liver and pancreas. To investigate the epistatic relationship between
Bmp2b signaling and Fhl1b, we induced bmp2b expression at the 8-somite stage in the pres-
ence or absence of fhl1b. As previously reported [1], in bmp2b-overexpressing embryos, the
Prox1 expression domain in the liver was significantly expanded (S13B Fig), whereas the num-
ber of Islet-positive pancreatic endocrine cells appeared unaffected (S13B Fig; red; dorsal pan-
creatic bud is outlined by white dotted circle). We found that the majority of bmp2b-
overexpressing fhl1bmorphants exhibited an enlarged Islet-positive pancreatic endocrine cell
population (S13D Fig, 80%; red; dorsal pancreatic bud is outlined by white dotted circle) with a
reduced number of Prox1-positive cells in the liver (S13D Fig, 80%) as in fhl1bmorphants
(S13C Fig), whereas a small portion of bmp2b-overexpressing fhl1bmorphants restored the
developmental defects of the liver and pancreatic endocrine formation (S13D Fig, 20%). These
results suggest that Fhl1b is a critical mediator of Bmp2b signaling in governing the liver versus
pancreas fate decision. Furthermore, these data raise the possibility of other effector(s) of
Bmp2b signaling that may act in concert with Fhl1b in this process. Hence, we analyzed the
function of Id2, which has been shown to suppress the function of Neurod [19] and an imme-
diate target of Bmp signaling [18]. Zebrafish have two id2 genes: id2a and id2b [53]. Only id2a

liver cells (white rhombi). A-D and I-L, dorsal views, anterior to the top. G-H and M-N, confocal projection images; E-F, M’, and N’, confocal single-plane
images, ventral views, anterior to the top. Scale bars, 20 μm.

doi:10.1371/journal.pgen.1005831.g005
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is expressed in the liver from 30 hpf onwards [53]. We conducted loss-of-function analyses
using published id2aMO [54]. While id2amorphants showed a decrease of the hhex expres-
sion domain in the liver (S13F Fig, black arrow), its expression in the dorsal pancreas appeared
unaffected at 30 hpf (S13F Fig, white dotted circle). Consistently, the pdx1 expression domain
in id2amorphants was comparable to that of control embryos (S13J Fig). Double id2a/fhl1b
morphants exhibited synergistically more severe defects in liver formation (S13H Fig, black
arrow) than that of single id2a (S13F Fig, black arrow) or single fhl1bmorphants (S13G Fig,
black arrow), whereas the dorsal pancreas of double morphants (S13H and S13L Fig, white dot-
ted circles) phenocopied that of single fhl1bmorphants (S13G and S13K Fig, white dotted cir-
cles). The expression of id2a in the liver biliary epithelial cells of morphants was comparable to
that of control embryos at 72 hpf (S13M and S13N Fig). These data suggest that Id2a is
required for hepatic outgrowth, not for the fate decision of liver versus pancreas. Given our
results showing incomplete penetrance of phenotype in fhl1bmorphants (S3C Fig) and restora-
tion of the liver and pancreatic endocrine formation defects in a small portion of bmp2b-over-
expressing fhl1bmorphants (S13D Fig, 20%), these data indicate that other effector(s) of
Bmp2b signaling may also function to regulate the liver versus pancreas fate decision at least in
part (S13O Fig), while Fhl1b plays a major role to govern this process.

Modulation of Fhl1b activity regulates the capacity of β-cell regeneration
Given the critical role of Fhl1b in restricting the induction of pancreatic endocrine cells, we
investigated whether altering Fhl1b activity changes β-cell regeneration efficiency. Using Tg
(ins:CFP-Eco.NfsB)s892 (abbreviated as Tg(ins:CFP-NTR)s892) [55] together with Tg(ins:Kae-
de)jh6 [56], we compared the β-cell regeneration efficiency in control vs. fhl1bMO-injected lar-
vae. We first converted the fluorescence of the Kaede protein from green to red by exposing the
larvae to UV light. This conversion permanently marked all β-cells that were present before the
ablation step. We then treated the larvae from 84−108 hpf with metronidazole (MTZ) to ablate
the β-cells. In this set-up, newly formed β-cells express green-fluorescent Kaede only, whereas
β-cells that survive the ablation co-express red- and green-fluorescent Kaede. We observed that
a greater number of green-only β-cells regenerated in fhl1bMO-injected recovering larvae than
in control recovering larvae (Figs 6A–6C and S14A; 3.8±1.3 cells per islet in controls vs. 9.6
±1.4 cells per islet in fhl1bMO-injected larvae; n = 10 per condition; P = 0.00000005). Con-
versely, we overexpressed fhl1b using Tg(hsp:fhl1b; hsp:GFP)gt3 in conjunction with Tg(ins:
CFP-NTR)s892 and Tg(ins:Kaede)jh6 to measure the regenerative efficiency of β-cells in control
vs. fhl1b-overexpressing larvae. We found that the number of regenerated β-cells significantly
decreased when fhl1b was induced at 50 hpf (S14A Fig; 3.8±1.3 cells per islet in controls vs. 1.5
±0.5 cells per islet in fhl1b-overexpressing larvae; n = 10 per each condition; P = 0.0008). We
further examined the underlying mechanism of how Fhl1b modulates the efficiency of β-cell
regeneration. At 72 hpf, the number of Islet-positive cells in or adjacent to the HPD system
dramatically decreased after inducing fhl1b at 50 hpf even in the presence of Fgf receptor inhib-
itor SU5402, which induces ectopic Islet1-positive cells in the HPD system [7] (S15A–S15C’
Fig). Conversely, at 72 hpf, fhl1bmorphants showed a dramatic increase of pdx1 and neurod
expression in the principal islet (Fig 6D–6G, white dotted circles) and in the HPD system (Fig
6D–6G, white brackets). In line with these expression data, in recovering fhl1bMO-injected
larvae, multiple regenerating β-cells were found at the junction between the pancreas and the
HPD system marked with 2F11 [57] (S14C–S14C” Fig, white arrows). Intriguingly, fhl1b and
pdx1 exhibit a reciprocal expression pattern in control embryos at 3 dpf. The level of fhl1b
expression is high in the liver (Fig 6I, black arrow) and in patches of cells in the distal intestine
(Fig 6I, white dotted lines), low in the HPD system (Fig 6I, white bracket), and absent in most
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Fig 6. Reduction of Fhl1b activity enhances the capacity of β-cell regeneration. (A and B) Confocal
images of [Tg(ins:CFP-NTR)s892; Tg(ins:Kaede)jh6] control larvae (A) and fhl1bMO-injected (B) larvae at 36
hours-post-ablation (hpa) stained with Topro (blue). A greater number of β-cells regenerated in recovering
fhl1b-MO injected larvae (B) compared to that of control larvae (A). (C) Quantification of the number (mean
±SD) of regenerated and survived β-cells. After photoconversion and ablation, the survived β-cells are red
and green (yielding a combined color of yellow), whereas the newly formed β-cells are green only. 3.8±1.3 β-
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pancreatic cells except for a few cells in the principal islet (Fig 6I, yellow arrow). Double anti-
body and in situ hybridization staining in Tg(ins:GFP)zf5 embryos at 3 dpf showed that in the
principal islet, fhl1b expression is confined to the peripheral boundary and does not overlap
with the centrally located β-cells (S14D Fig, yellow arrow) nor does with the δ-cells (S14E Fig,
black arrowheads) but partially with a small number of α-cells (S14F Fig, black arrowheads).
The pdx1 level of expression is high in the proximal intestine (Fig 6H, white dotted lines) and
in most pancreatic cells, moderate in the HPD system (Fig 6H, white bracket), and absent in
the liver (Fig 6H). These results indicate that the antagonistic interplay between fhl1b and pdx1
may affect β-cell regeneration by directly or indirectly modulating pdx1 and neurod expression
in the HPD system.

Previous studies showed that glucose is crucial for β-cell differentiation and regeneration
[47,58] and acts as a potent β-cell mitogen [59–61]. To test the possibility of whether Fhl1b reg-
ulates β-cell regeneration by affecting liver-derived glucose production, we measured free glu-
cose levels. At 3 dpf, prior to MTZ treatment, there was no significant difference in free glucose
levels between control/WT, fhl1b-MO injected, and fhl1b-overexpressing larvae (S14G Fig).
Free glucose levels were dramatically elevated after β-cell ablation, but were recovered to a
great extent from 5–7 dpf in MTZ-treated, MTZ/fhl1bMO-injected, and MTZ/fhl1b-overex-
pressing larvae (S14G Fig). Importantly, normal levels of free glucose were recovered signifi-
cantly faster in the MTZ/fhl1bMO-injected larvae (S14G Fig, green line) than in the MTZ-
treated (S14G Fig, red line) or MTZ/fhl1b-overexpressing larvae (S14G Fig, purple line). Fur-
thermore, MTZ/fhl1b-overexpressing larvae still had increased levels of free glucose at 7 dpf
(S14G Fig, purple line) compared to MTZ-treated (S14G Fig, red line) or MTZ/fhl1bMO-
injected larvae (S14G Fig, green line). Taken together, these data suggest that the activity of
Fhl1b on the HPD system, rather than the liver-derived glucose production, can modulate the
efficiency in restoration of functional β-cells.

Discussion
In this study, we analyzed the essential functions of a novel Bmp2b downstream effector Fhl1b
in the hepatic versus pancreatic fate decision and in β-cell regeneration. In bipotential hepato-
pancreatic progenitors from the 12-somite stage onwards, Fhl1b regulates the proper cell fate
choice of the liver over the pancreas by directly or indirectly modulating the discrete levels of
pdx1 expression (Fig 7A and 7B). fhl1b depletion compromised liver and exocrine pancreas
specification and enhanced induction of pancreatic endocrine cells, causing a hepatic-to-pan-
creatic endocrine fate switch. Conversely, fhl1b overexpression at the 8-somite stage promoted

cells were green-only-positive in control recovering larvae, while 9.6±1.4 β-cells expressed as green-only in
fhl1b-MO injected recovering larvae. Almost no β-cells survived the ablation in both the control and fhl1b-MO
injected recovering larvae. Cells in 20 planes of confocal images from 10 individual larvae were counted.
Asterisks indicate statistical significance: ***, P < 0.001. (D-G) Whole-mount in situ hybridization showing
the expression of pdx1 (D and E) and neurod (F and G) at 72 hpf, comparing control embryos (D and F) and
fhl1bmorphants (E and G). pdx1 is expressed in the pancreas including the principal islet (white dotted
circles), the HPD system (white brackets), and the proximal intestine, but not in the liver. neurod is expressed
mainly in the principal islet (white dotted circles) with slight expression in the HPD system (white brackets).
pdx1 (E) and neurod (G) expression in the principal islet and the HPD system was greatly increased in fhl1b
morphants. (H-I) Whole-mount in situ hybridization showing the expression of pdx1 (H) and fhl1b (I) in wild-
type embryos at 3 dpf. (H) pdx1 is expressed in the pancreas including the principal islet, the HPD system
(white bracket), and the proximal intestine (white dotted line), but not in the liver. (I) fhl1b is expressed at high
levels in the liver cells (black arrow), which never express pdx1, whereas the HPD system (white bracket)
expresses low levels of fhl1b. Most pancreatic cells except for a few cells in the principal islet (yellow arrow)
do not express fhl1b. The distal intestine also expresses fhl1b (white dotted lines). A-B, confocal projection
images, ventral views, anterior to the top. D-I, dorsal views, anterior to the left. Scale bars, 20 µm.

doi:10.1371/journal.pgen.1005831.g006
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Fig 7. Fhl1b is essential for regulating the cell fate choice of liver versus pancreas and for β-cell regeneration. Schematic model for the role of Fhl1b
in lineage specification and in β-cell regeneration. The expression of fhl1b and pdx1 is color-coded as blue and green, respectively. (A) Endodermal
progenitors experience different levels of pdx1 regulating their fates as pancreatic endocrine (high levels of pdx1), pancreatic exocrine (low levels of pdx1), or
liver (pdx1 silencing) cells. (B) From the 12-somite stage onwards, single endodermal cells in the lateral 2 position (L2) between somites 1 and 3 in the
endodermal sheet give rise not only to pancreatic exocrine cells and intestinal cells, but also to liver cells, functioning as bipotential hepatopancreatic
progenitors. bmp2b, which is expressed in the lateral plate mesoderm, induces fhl1b expression in the prospective liver anlage. This may form a reciprocal
gradient of fhl1b-pdx1. Decreased Fhl1b function leads to an increase in levels of pdx1 expression in lateral 1 and 2 cells, causing a hepatic and pancreatic
exocrine to a pancreatic endocrine fate switch. Conversely, augmentation of Fhl1b activity at the initial time point of pdx1 expression in the pancreatic
exocrine and intestinal progenitors (HS@ 8 S) causes a decrease in levels of pdx1 expression in pancreatic exocrine and intestinal progenitor cells, leading
them to become liver cells. The lineage of the most medial cells, which express high levels of pdx1 and subsequently give rise to pancreatic endocrine cells,
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liver specification and inhibited induction of pancreatic cells, redirecting pancreatic progeni-
tors to become liver cells. In the progenitors residing in the HPD system at later stages, Fhl1b
regulates induction of pancreatic endocrine cells and regeneration of β-cells (Fig 7C). Suppres-
sion of fhl1b increased pdx1 and neurod expression in HPD progenitors, augmenting pancre-
atic endocrine cell formation and β-cell regeneration, whereas overexpression of fhl1b
inhibited induction of pancreatic endocrine cells and β-cell regeneration.

Previously, we showed that there is a medial-lateral pdx1 “gradient” in the endodermal
sheet in zebrafish [1]. The most medial cells with high levels of pdx1mainly gave rise to pancre-
atic endocrine cells, whereas lateral 1 cells with low levels of pdx1 gave rise to pancreatic exo-
crine cells and intestinal cells, as well as a few pancreatic endocrine cells. Some lateral 2 cells
without pdx1 expression populate the liver. Consistently in mice, a hypomorphic allele with
targeted deletion of a cis-regulatory region of Pdx1 in combination with a protein-null allele
has demonstrated that the level of Pdx1 gene activity is differentially required for the proper
development of the pancreas and subsequent lineage allocation of the pancreatic endocrine
cells [62]. While homozygous mutants of the Pdx1 enhancer region deletion resulted in severe
impairment of endocrine maturation, but normal formation of acinar tissue, heterozygous
mice showed an islet size similar to that of wild type mice with abnormally more α and pancre-
atic polypeptide- producing PP cells, but fewer differentiated β-cells. These findings support
the possibility that conversion of common endocrine precursors to β-cells relies on a high-level
of Pdx1 expression. Our studies show that depletion of fhl1b resulted in the conversion from
no/low to high pdx1-expressing cells, which is marked by neurod expression. This conversion
led to a significant increase in the number of pancreatic endocrine cells, especially β-cells, and
compromised the development of liver and pancreatic exocrine cells which are derivatives of
no and low pdx1-expressing cells. In these embryos, lateral 2 cells contributed frequently to
pancreatic endocrine cells. Conversely, fhl1b overexpression at the post-gastrulation stage (i.e.
8-somite stage) caused a decrease in the number of low pdx1-expressing cells, leading to the
induction of the liver at the expense of the exocrine pancreas. In these embryos, lateral 1 cells
contributed primarily to liver cells. When fhl1b was overexpressed during the gastrulation
stage, it led to a decrease in the number of low and high pdx1-expressing cells, resulting in a
subsequent reduction in the number of pancreatic exocrine cells and Insulin-expressing β-cells.
These data confirm the critical role of Fhl1b in directly or indirectly modulating pdx1 levels to
coordinate the medio-lateral patterning of the endodermal sheet for proper induction of the
liver and pancreas. Intriguingly, the numbers of β- and δ-cells were increased, whereas the
number of α-cells appeared unaffected in fhl1bmorphants. These results are consistent with
previous data that Bmp receptor alk8MO-injected donor cells mainly gave rise to β- and δ-
cells, but rarely to α-cells [7]. It has been shown that β/δ-cell versus α-cell fate is differentially
regulated by Pax4 and Arx [63]. Moreover, overexpression of Pdx1 eliminated glucagon
mRNA and protein and promoted the expression of β-cell specific genes, while induction of
dominant-negative Pdx1 resulted in differentiation of β-cells into α-cells in the rat insulinoma
cell line [64]. Hence it is plausible to speculate that Fhl1b is an essential mediator of Bmp

is specified primarily during the gastrulation stage. (C) At later embryonic/larval stages, the HPD system comprises a progenitor cell population that can
differentiate into pancreatic endocrine cells and liver cells. At these stages, fhl1b (color-coded as blue) shows a reciprocal expression pattern with pdx1
(color-coded as green). Liver cells, which never express pdx1, express high levels of fhl1b, while the HPD system expresses low levels of fhl1b. The distal
intestine also expresses fhl1b, whereas most pancreatic cells except for a few cells in the principal islet do not express fhl1b. In normal development, the
ventral bud-derived β-cell formation initiates between 40–46 hpf (VB endocrine cells). Overexpression of fhl1b inhibited further induction of pancreatic
endocrine cells and β-cell regeneration by potentially inhibiting pdx1 expression in the HPD system, whereas suppression of fhl1b increased pdx1 and
neurod expression in the HPD system, augmenting pancreatic endocrine cell formation and subsequent β-cell regeneration. Abbreviations: S1, somite 1; S2,
somite 2; S3, somite 3; M, medial; L1, lateral 1; L2, lateral 2; HPD, hepatopancreatic duct; PI, principal islet; P, pancreas; VB, ventral bud; WT, wild-type;
MTZ, metronidazole.

doi:10.1371/journal.pgen.1005831.g007
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signaling by directly or indirectly regulating the discrete levels of pdx1 expression for precise
lineage allocation of the pancreatic endocrine progenitors. Interestingly, we found that in a
portion of embryos from 30 hpf onwards, fhl1b is also expressed in the TgBAC(neurod:
EGFP)nl1-expressing cells. Therefore, it is possible to hypothesize that after serving as an essen-
tial effector for the hepatic versus pancreatic fate decision, Fhl1b may function further to fine-
tune the lineage allocation of the specified pancreatic endocrine cells. As LIM proteins often
function as molecular adaptors or scaffolds to support the assembly of multimeric protein
complexes [31], it will be intriguing to determine whether Fhl1b directly modulates pdx1
expression by facilitating the formation of a novel protein complex that is involved in either
mediator-or chromatin-mediated gene expression control.

Previous studies have suggested the plasticity of cells in the HPD system, where differentia-
tion into a specific lineage is suppressed by Fgf10 and Sox9b in zebrafish [12,15,16]. Further-
more, expression analysis of Id2 has shown that Bmp signaling is blocked and/or excluded in
HPD and non-HPD tissues (principal islets and intra-pancreatic ducts) that retain the potential
to form pancreatic endocrine cells [7]. Our data provide the intriguing evidence that Bmp2b
signaling controls the induction of pancreatic endocrine cells from the HPD system by inhibit-
ing pdx1 expression through its effector Fhl1b. The reciprocal expression pattern of fhl1b and
pdx1 further supports the suppressive effect of Fhl1b on pdx1 expression. At 3 dpf, liver cells,
which never express pdx1 in lineage tracing analyses in mice [62,65] and in zebrafish [1],
express high levels of fhl1b, while the HPD system expresses low levels of fhl1b. Consistently,
the proximal intestine, which has been shown to have marked plasticity [12], expresses low lev-
els of fhl1b. Most pancreatic cells do not express fhl1b except for a few cells in the principal
islet. Intriguingly, these few pancreatic cells are located in the peripheral boundary of the prin-
cipal islet and partially overlap with a small number of α-cells, not with the core β-cells, which
maintain a high-level of pdx1 expression. Manipulating this antagonistic interplay may direct a
common endodermal progenitor pool towards pancreatic endocrine, specifically β-cell, fate by
directly or indirectly modulating distinct levels of pdx1 expression.

While the intrinsic transcriptional network that regulates β-cell development is well identi-
fied [24,25], the extrinsic signaling pathways that control β-cell regeneration remain largely
elusive. For the first time, our studies suggest that Bmp signaling plays an essential role in the
regeneration of β-cells, in part by directly or indirectly modulating pdx1 and neurod expression
in the HPD system through its regulator Fhl1b. Our loss-of-function analyses of Fhl1b during
development imply that increased formation of endocrine progenitors may primarily lead to
enhanced β-cell regeneration. In line with this hypothesis, in β-cell ablated fhl1bMO-injected
larvae, multiple regenerated β-cells were found at the junction between the pancreas and the
HPD system, specifically at the extrapancreatic duct (EPD). However, because of the low
expression levels of fhl1b in a small population of α-cells, we were not able to exclude the com-
pelling possibility that fhl1b depletion lead to the occurrence of high pdx1+ α-cells, augmenting
β-cell regeneration. In mouse and zebrafish models of β-cell regeneration, Pdx1 is detected in
α-cells during α-to β-cell transdifferentiation [22,47,66], contrary to its normal detection in β-
cells [67]. In contrast to Bmp signaling, adenosine signaling, one of the few signals that has
been shown to function during β-cell depletion in zebrafish [26], plays a significant role in reg-
ulating β-cell mass during regeneration, but not under normal conditions. Careful dissection of
extrinsic signals and intrinsic factors acting on a specific aspect of β-cell regeneration will allow
us to perform individual or combinatorial therapies to pinpoint the most valid regeneration
strategy.

Our findings of Bmp2b regulation of Fhl1b suggest a new paradigm of how Bmp signaling
regulates the cell fate choice of liver versus pancreas and β-cell mass. Despite the long-standing
focus on the active role of Bmp signaling on the liver gene program through both genetic and
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epigenetic regulation [4–6], the link between Fhl1b and pdx1 expression shown in this study sug-
gests that Bmpmay function actively to suppress the pancreas gene program to properly modulate
liver induction, lineage allocation, and β-cell regeneration. Hence, our data elucidates why effec-
tive BMP suppression is critical for the induction of PDX1 and the subsequent generation of β-
cells in human pluripotent stem cells (hESCs) [8–11] and zebrafish endodermal progenitors [7].
A comprehensive understanding of how lineage-specific multipotent progenitors make a develop-
mental choice will shed light on the programming and reprogramming of stem/progenitor cells
into specific cell lineages, enabling us to generate functionally relevant cells for clinical utility.

Materials and Methods

Ethics statement
This study was approved by the Institutional Animal Care and Use Committee at Georgia
Institute of Technology (A13075). All animal work was performed according to procedures
approved by the Institutional Animal Care and Use Committee at Georgia Institute of
Technology.

Zebrafish strains
This study was approved by the Institutional Animal Care and Use Committee at Georgia
Institute of Technology (A13075). All animal work was performed according to procedures
approved by the Institutional Animal Care and Use Committee at Georgia Institute of Tech-
nology. Adult fish and embryos were raised and maintained under standard laboratory condi-
tions [68]. We used the following published zebrafish transgenic lines: Tg(P0-pax6b:GFP)ulg515

[46], Tg(ins:GFP)zf5 [41], Tg(ins:dsRed)m1018 (fromW. Driever, Freiburg), TgBAC(neurod:
EGFP)nl1 [34], Tg(sox17:GFP)s870 [33], Tg(hsp70l:bmp2b)f13 [69], Tg(fabp10:dsRed, ela3l:
GFP)gz12 [52], Tg(ptf1a:GFP)jh1 [49], Tg(ins:Kaede)jh6 [56], Tg(ins:CFP-NTR)s892 [55], and Tg
(fabp10a:CFP-Eco.NfsB)gt1 [70]. To generate the Tg(hsp:fhl1b; hsp:GFP)gt3, fhl1b coding
sequence was amplified (forward: 5’-CCGGAATTCATGGCAAGCCGGTCCAACTG-3’,
reverse: 5’-CCGGAATTCTTACAGTTTCTTGGAGCAGTCG-3’) and cloned into a vector
containing a multimerized minimal heat shock promoter, which drives gfp and fhl1b transcrip-
tion bi-directionally in response to a heat shock [71]. Tol2-mediated transgenesis was achieved
as described [72].

Microarray and phylogenetic analysis
Tg(sox17:GFP)s870 embryos were either crossed with Tg(hsp70l:bmp2b)f13 to induce overexpres-
sion of bmp2b at the 8-somite stage or treated with 0.3 μMDMH1. For each condition, 100
embryos were used. At 20 hpf, sox17:GFP-positive endodermal cells from dissected zebrafish
trunks containing the organ-forming area were isolated by FACS and subjected to transcrip-
tome profiling using the Zebrafish 44K gene expression microarray (Agilent Technologies).
Data with an average fold change of 2 (bmp2b overexpressing) or 2.75 (DMH1-treated) at
p� 0.05 were considered for GO analysis using PANTHER (http://www.pantherdb.org/). The
phylogenetic tree of zebrafish Fhl1b (NM_199217) was constructed using Phylogeny.fr [73]
with mammalian homologous proteins sorted by performing alignment on UniProtKB/Swiss-
Prot database.

Reverse transcription quantitative real-time polymerase chain reaction
Total RNA was extracted using the Trizol Reagent (Invitrogen). cDNA synthesis was per-
formed using Superscript III First-strand Synthesis System (Invitrogen). PCR was conducted
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using iTaq Universal SYBR Green Supermix in triplicate (Bio-Rad). Optimized primers target-
ing each gene were designed using Primer3 [74]. The StepONE Plus PCR System (Applied Bio-
systems) was used to obtain the Ct value. The relative gene expression of each sample was
determined using the comparative Ct method with β-actin as an internal control [75]. The fol-
lowing primers were used: fhl1b: forward 5’-GTGAGGAAAGACGAGAAACAAG-3’, reverse
5’-GGCACATCGGAAACAATCAG-3’; β-actin: forward 5’-CGAGCTGTCTTCCCATCCA-3’,
reverse 5’-TCACCAACGTAGCTGTCTTTCTG-3’; mouse Fhl1: forward 5’- ATAAGGTGGG
CACCATGTCGG-3’, reverse 5’- GTGATTCCTCCAGATGTGATGG-3’.

Embryo microinjection
Knockdown of fhl1b was performed via injection of individual fhl1bMO 1 (2 ng; 5’-CCCGCG
AAAAGCTGTGAGAAATAAT-3’) or MO 2 (2 ng; 5’-ATAAATATCTGTCCCCTCACCTGG
C-3’) or a combination of MO 1 and 2 (4 ng; Gene Tools, LLC). A standard control MO (4 ng;
5’-CCTCTTACCTCAGTTACAATTTATA-3’) targeting a human beta-globin intron mutation
was used as a negative control (Gene Tools, LLC). id2aMO (5’ -GCCTTCATGTTGACAG
CAGGATTTC-3’) [54] and tp53MO (5’- GACCTCCTCTCCACTAAACTACGAT-3’) [42]
were purchased from Gene Tools, LLC. 4 ng of id2aMO or 2 ng of tp53MO was used. The
primers annealing to the first (5’- GCAAAACACTTTGCTGTGGC-3’) and the sixth (5’- GCC
AGGTTGAGGGAGCATTT-3’) coding exons were used to confirm the specificity of fhl1b
MOs. Sense-strand-capped fhl1b-P2A-mCherrymRNA was synthesized with mMESSAGE
mMACHINE kit (Ambion). For rescue experiments, embryos were injected with 200 pg of
fhl1b-P2A-mCherrymRNA with a mixture of fhl1bMO 1 and MO 2.

In situ hybridization and immunohistochemistry
Whole-mount in situ hybridization was performed as previously described [76], using the fol-
lowing probes: pdx1 [77], neurod [78], hhex [79], and fhl1b (template for antisense RNA probe
was amplified from embryonic cDNA with the following primers: forward: 5’-CCGCTCGAG
ATGGCAAGCCGGTCCAACTG-3’, reverse: 5’-ACGGCTGGTCCTGGTAATTC-3’). Immu-
nohistochemistry on whole-mount zebrafish embryos was performed as previously described
[12] using the following antibodies: mouse anti-Glucagon (1:100; Sigma), mouse anti-2F11
(1:200; Abcam), mouse anti-β-catenin (1:100; BD Transduction Laboratories), chicken anti-G
FP (1:1000; Aves Labs), rabbit anti-Somatostatin (1:100; MP Biomedicals), mouse anti-Islet1/2
(1:10; Developmental Studies Hybridoma Bank (DSHB), clone 39.4D5), guinea pig anti-Insulin
(1:100; Sigma), rabbit anti-Prox1 (1:100; Millipore), guinea pig anti-Pdx1 (1:200; gift from C.
Wright), rabbit anti-pan-Cadherin (1:1000; Sigma), goat anti-Fluorescein (1:100; Molecular
Probes), rabbit anti-Carboxypeptidase (1:100; Rockland), and fluorescently conjugated Alexa
antibodies (1:200; Molecular Probes). Nuclei were visualized with TOPRO (1:10000; Molecular
Probes). For the TUNEL assay, embryos were fixed in 3% formaldehyde, preincubated in
PBST, and then labeled with the TUNEL kit (Roche) for 1 hour at 37°C. For coimmunostaining
with Prox1, sections were first incubated with primary antibodies, then with TUNEL solutions,
and finally with secondary antibodies. For the detection of mouse Fhl1 protein, the entire gut,
including the liver and pancreas of E14.5 mice, was isolated and fixed in 4% paraformaldehyde,
then embedded in Tissue-Tek OCT compound (Sakara Finetek). 8 μm cryostat sections were
obtained by using a cryostat microtome (Leica CM1520). Immunohistochemistry was per-
formed using the following antibodies: rabbit anti-FHL1 (1:200; Abcam), goat anti-Prox1
(1:20; R&D Systems), and fluorescently conjugated Alexa antibodies (1:200; Molecular Probes).
Embryos and sections were mounted in Vectashield (Vector Laboratories) and imaged on a
Zeiss LSM 510 VIS confocal microscope.
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fhl1b gene disruption with the CRISPR/Cas9 system
The guide RNA (gRNA) targeting sites, which are downstream of the start codon (gRNA 1:
5’- CTGTCGTGAGGACCTCAG-3’, gRNA 2: 5’- AGTGGAAAGAAGTTCGTG-3’), were
selected using the online application available at crispr.mit.edu. Complementary oligonucleo-
tides corresponding to the target sequences were annealed as previously described [44].
Annealed oligonucleotides (1 μl) were mixed with 500 ng of the gRNA cloning vector pDR274,
0.5 μl of BsaI-HF, 0.5 μl of T4 DNA ligase, 1 μl of 10× NEB buffer 2, 1 μl of 10× T4 ligase buffer,
and water for a total of 10 μl. Digestion and ligation were performed in a single step as previously
described [44]. The gRNAs were transcribed using HindIII-digested expression vectors as tem-
plates and the MEGAshortscript T7 kit (Life Technologies). The cas9mRNA was transcribed
using NotI-digested Cas9 expression vector and the mMESSAGE mMACHINE kit (Ambion).
The mixture of 1 nl of cas9mRNA (300–450 ng/μl) and an individual or a combination of gRNA
1 and 2 (final concentration 12.5 ng/μl) were injected into one-cell stage embryos.

T7 Endonuclease I (T7EI) assay
The genomic region flanking the target sites was amplified using PCR (forward: 5’-ACTTACA-
CATGAGGGGCTGTG-3’, reverse: 5’- ATAGTCCTTAATGGAAAACATGCTG-3’). A total
of 200 ng of the purified PCR products was denatured and re-annealed, as previously described
[44] to facilitate heteroduplex formation. The re-annealed products were digested with 10 units
of T7 endonuclease I (New England Biolabs) at 37°C for 30 min. The reaction was stopped by
adding 1 μl of 0.5 M EDTA. Samples were analyzed by 2% agarose gel. Band intensity was
quantified using ImageJ software (National Institutes of Health). Gene modification levels were
estimated based on the following equation [80]:

% gene modification ¼ 100� 1� ð1� fraction cleavedÞ12
� �

%:

DNA sequencing
For sequencing the target region in injected embryos, the PCR products were cloned into
pGEM T-easy vector (Promega). Plasmid DNA was isolated from individual transformants
and sequenced.

Chemical treatment and heat-shock experiment
Embryos were treated with 0.3 μMDMH1 (EMD Chemicals) from 12 hpf to 20 hpf or 3 μM
SU 5402 (Tocris Bioscience) from 50 hpf to 72 hpf in egg water. To ablate β-cells, Tg(ins:
CFP-NTR)s892 embryos were treated with freshly prepared 5 mMmetronidazole (MTZ)
(Sigma) from 84 hpf to 108 hpf in the dark, followed by 24–48 hours recovery. Before ablation,
Tg(ins:Kaede)jh6-expressing β-cells were converted from green to red by exposing them to UV
light. Control embryos from the same batch were treated with DMSO in egg water. Tg(hsp:
fhl1b; hsp:GFP)gt3 and Tg(hsp70l:bmp2b)f13 embryos were heat shocked at various stages by
transferring them into egg water pre-warmed at 40°C and 37°C, respectively. After a 30-minute
heat shock, embryos were returned into a 28°C incubator and harvested at various stages.

Synthesis and photochemical properties of caged fluorescein dextran
Caged fluorescein dextran was synthesized by coupling a dextran-spermine conjugate to 5-car-
boxymethoxy-2-nitrobenzyl (CMNB)-caged carboxyfluorescein succinimidyl ester. Dextran-
spermine conjugate was produced from dextran (MW 10 kDa, Molecular Probes). In the final
product, 20% glucose units were bonded with spermine (estimated by 1H NMR spectroscopy).
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Amixture of dextran-spermine conjugate (8 mg) and CMNB-caged carboxyfluorescein succi-
nimidyl ester (1 mg, Molecular Probes) in 1 mL of borate buffer (0.1 M, pH 8.5) was added
into a tinted tube and reacted on a vortexer at room temperature for 24 hours, protected from
light. After the reaction, the solution was poured into a dialysis membrane (14000 cutoff cellu-
lose membrane) and dialyzed with deionized water at 4°C for 1 day. The dialysate was gravi-
metrically filtered to remove insoluble parts and lyophilized to dryness. A total of 4.6 mg were
obtained (yield 57% w/w). The average loading of CMNB-caged carboxyfluorescein on dextran
was 3.2 dye molecules per dextran chain (estimated from UV-Visible spectra). Light exposure
at 360 nm removed the CMNB cage and rendered the free fluorescein modified dextran.
Uncaging was followed in solution by the increase in absorbance in the region of 350–550 nm
and the increase in fluorescence emission between 460–700 nm. Apparent quantum yield of
uncaging is calculated to be 0.0051 from fluorescence spectra.

Lineage tracing
Tg(sox17:GFP)s870 embryos were injected with 2 nl of 0.5% caged fluorescein dextran and
allowed to develop until the 6-somite stage (corresponding to 12 hours-post-fertilization
(hpf)). After manual dechorionation, embryos were mounted ventrally in a mold filled with
egg water. Using a Nikon Eclipse Ti confocal microscope, we visualized the endodermal sheet
in live embryos at the 6–8 somite stage, and the A-P position of endodermal cells was deter-
mined by counting somites. Caged-fluorescein was activated in a single endodermal cell in
each embryo with a 405 nm laser focused through a 40X objective lens. The uncaged embryos
were fixed at various time points and stained with antibodies against GFP, uncaged-Fluores-
cein, and Islet1 or Prox1.

Glucose measurements
Glucose measurements were performed 3 times on 10 zebrafish larvae per condition using a
fluorescence-based enzymatic detection kit (Biovision Inc.) [26]. The larvae were collected in
1.5 ml microcentrifuge tubes. Excess medium was removed and embryos were frozen on
crushed dry ice. After thawing, 200 μl PBS was added and the larvae were homogenized using a
hand-held mechanical homogenizer. Reactions were assembled on ice in black, flat bottom
96-well plates (Costar). Standard curves were generated using glucose standard solution
(according to instructions) and were included in each assay. To measure glucose in embryo
extracts, 15 μl of sample were used. Control reactions without sample lysate were included in
each row. Reactions were incubated for 30 minutes at 37°C in the dark. Fluorescence (excita-
tion 535 nm; emission, 590 nm) was measured using a Safire II plate reader equipped with
XFLUOR4 software (v 4.51). Fluorescence values were corrected by subtracting measurements
from control reactions without sample. Glucose levels were interpolated from standard curves.
Each sample was measured in triplicate and each experiment repeated three times.

Statistical analysis
The p-values were calculated using an unpaired two-tailed Student t-test with Excel (Microsoft,
Redmond, WA).

Supporting Information
S1 Fig. Strategy for the identification of Bmp2b downstream genes associated with the liver
versus pancreas fate decision. (A) Bmp2b signaling was pharmacologically or genetically
manipulated in Tg(sox17:GFP)s870 embryos either by treating with DMH1 or inducing bmp2b
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expression at the 8-somite stage. Tg(sox17:GFP)s870 -positive endodermal cells from dissected
zebrafish trunks containing the organ-forming area (red rectangle) were isolated by FACS and
subjected to transcriptome profiling at 20 hpf. (B) Functional clustering and distribution of
known genes identified in the expression profiling with a p-value� 0.05 and minimum a
2-fold change in bmp2b overexpressing or a 2.75-fold change in DMH1-treated embryos. Fifty-
six known genes showed significant changes in both bmp2b overexpressing and DMH1-treated
embryos. (C) List of genes showing prominent changes in both DMH1-treated and bmp2b-
overexrpessing conditions.
(TIF)

S2 Fig. Fhl1, the ortholog of zebrafish fhl1b, is expressed in the liver during mouse embry-
onic development. (A) Phylogenetic tree of zebrafish Fhl1b (highlighted in blue) and the
related proteins in mammals. This tree was constructed using Phylogeny.fr with sorted candi-
dates from UniProtKB/Swiss-Prot database. Zebrafish (dr), Mouse (mm), Rat (rn), and
Human (hs). (B) Alignment of zebrafish Fhl1b and mouse Fhl1 amino acid sequences. Identical
residues are indicated with asterisks. (C-E”‘) Expression of Fhl1 in developing mouse embryos.
(C) Fhl1 full-length transcript is expressed in the mouse foregut endoderm at embryonic day
8.5 (E8.5)-E9.5. From E10.5, Fhl1 is expressed in the liver. (D-E”‘) Immunofluorescent labeling
of Fhl1 in the liver (D-D”‘) and pancreas (E-E”‘) of E14.5 mice (n = 3). (D-D”‘) Fhl1 proteins
are highly co-expressed in the Prox1-positive liver cells. (E-E”‘) Fhl1b proteins are weakly
detected in the Prox1-positive pancreas cells. To better visualize hepatic and pancreatic Fhl1
expression, magnified images for Prox1 (red; top panel), Fhl1 (green; middle panel), and a
merged view (bottom panel) are shown in insets in D’-D”‘ and E’-E”‘, respectively.
(TIF)

S3 Fig. Specificity of fhl1bmorpholinos. (A) Schematic diagram of fhl1b genomic structure
and targeting positions of fhl1bMOs (red lines). Black arrows indicate the position of primers
(F and R) used for RT-PCR analysis shown in (B). E1-E6: exon 1 to exon 6. Dark grey, coding
regions; Light grey, untranslated regions. (B) RT-PCR analysis of fhl1b knockdown efficiency.
Both MO 1 and MO 2 blocked the endogenous splice site of fhl1b and, as a result, either a dele-
tion of exon 2 (MO 1, white asterisk) or a formation of a cryptic splice form of exon 3 (MO 2,
white asterisk) occurred, while a combination of MO 1 and 2 led to deletion of both exon 2 and
3 (MO 1 & 2, white asterisk). (C) The percentages of embryos are given for each single MO or
combination of MOs based upon the expression domain of Tg(ins:GFP)zf5 in the pancreas and
Prox1 in the liver at 55 hpf. The embryos were scored as having a “reduced” or “increased”
expression domain when the expression area of each marker was distinctly (> 25%) smaller or
larger than that of the control embryos based upon the calculation using ImageJ. (D-F) Fluo-
rescent images of Tg(ins:dsRed)m1018 and Tg(sox17:GFP)s870 expression showing that the devel-
opmental defects of the liver (white dotted circles) and β-cell formation in single fhl1b
morphants (E) was comparable to double fhl1b/tp53morphants (F) at 55 hpf (n = 52, control;
n = 64, single fhl1bmorphants; n = 72, double fhl1b/tp53morphants). (G-I) Bright-field images
combined with fluorescent images showing the overall morphology of embryos and Tg(ins:
dsRed)m1018 expression (red) in control (G), single fhl1bmorphants (H), and double fhl1b/tp53
morphants (I) at 5 dpf. The enlarged Tg(ins:dsRed)m1018 -expressing cell population (white
squares and insets) in single fhl1bmorphants (H) was similar to that in embryos co-injected
with fhl1b and tp53MOs (I). Note that potential off-target ventricle lumen inflation defects in
the brain of single fhl1bmorphants were attenuated by co-knockdown of tp53 (black arrows),
whereas pericardial edema persisted both in single fhl1bmorphants and double fhl1b/tp53
morphants (black arrowheads). (J) Quantification of the results in G-I. The embryos were
scored as having an “increased” expression domain when the expression area of Tg(ins:
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dsRed)m1018 was distinctly (> 25%) larger than that of the control embryos based upon the cal-
culation using ImageJ. (K) Quantification of the number (mean±SD) of Prox1-positive cells in
the liver at 55 hpf. 252.6±11.5 cells were Prox1-positive in control embryos, while 151.3±16.2
and 142.3±17.4 cells expressed Prox1 in single fhl1bmorphants and double fhl1b/tp53mor-
phants, respectively (P = 0.0009 and P = 0007, respectively). Cells in 20 planes of confocal
images from 5 individual embryos were counted. Asterisks indicate statistical significance: ���,
P< 0.001. (L-N) Confocal images of control embryos (L), single fhl1bmorphants (M), and
double fhl1b/tp53morphants (N) at 55 hpf, stained for Prox1 (blue). The reduced Prox1-ex-
pressing cell population in single fhl1bmorphants (M) was similar to that in embryos co-
injected with fhl1b and tp53MOs (N). D-F, dorsal views, anterior to the left. G-I, lateral views,
anterior to the right. L-N, confocal projection images, ventral views, anterior to the top. Scale
bars: D-F and L-N, 20 μM; G-I, 100 μM.
(TIF)

S4 Fig. Loss of Fhl1b activity compromises liver specification and enhances induction of
Pdx1-positive cells in the dorsal pancreatic bud. (A-B’) Confocal images of Tg(sox17:
GFP)s870 control embryos (A and A0) and fhl1bmorphants (B and B0) at 30 hpf, stained for
Pdx1 (red; dorsal pancreatic bud is outlined by white dotted circles) and Prox1 (blue in A and
B; grey in A’ and B’). The somites are also Pdx1 positive. Compared to control embryos (A and
A0), in fhl1bmorphants (B and B0), the Pdx1 expression domain in the dorsal pancreatic bud
was expanded, while the Prox1 expression domain was significantly reduced. (C-D) Quantifi-
cation of the number (mean±SD) of Pdx1-positive cells in the pancreas at 30 hpf. Cells in 20
planes of confocal images from 5 individual embryos were counted. Asterisks indicate statisti-
cal significance: ���, P< 0.001. A-B’, confocal projection images, ventral views, anterior to the
top. Scale bar, 20 μm.
(TIF)

S5 Fig. Cell death does not contribute to the reduction of liver size upon fhl1b depletion.
(A-B) TUNEL labeling (red) combined with anti-Prox1 immunostaining (grey) revealed that
no TUNEL-positive liver cells were observed both in fhl1bmorphants and control embryos at
48 hpf. (C-C’) As a control, Tg(fabp10a:CFP-NTR)gt1 embryos were used. Treating metronida-
zole (MTZ) caused apoptosis in a large number of hepatocytes. A-C’, confocal projection
images, ventral views, anterior to the top. Scale bar, 20 μm.
(TIF)

S6 Fig. fhl1bmRNA injection partially rescues the effect of fhl1bMO knockdown. (A-C”)
The developmental defects of the liver (A-C and white dotted circles in A”-C”) and β-cell forma-
tion (A-C and A’-C’) in fhl1bmorphants (B-B”) could be partially rescued by injection of fhl1b-
P2A-mcherrymRNA (C-C”), restoring liver size and the β-cell population to a degree comparable
to that of control embryos (A-A”) at 55 hpf. Fhl1b translation was monitored by mCherry expres-
sion as shown in C. (D) Quantification of the results in A-C”. The embryos were scored as having
a “reduced” or “increased” expression domain when the expression area of Tg(ins:dsRed)m1018 and
Tg(sox17:GFP)s870 was distinctly (> 25%) smaller or larger than that of the control embryos based
upon the calculation using ImageJ. A-C, bright-field images combined with fluorescent image of
Tg(ins:dsRed)m1018 and Tg(sox17:GFP)s870 expression. A’-C”, fluorescent images of Tg(ins:
dsRed)m1018 and Tg(sox17:GFP)s870 expression. Dorsal views, anterior to the left. Scale bar, 20 μm.
(TIF)

S7 Fig. Cas9/gRNAs induces indels in the fhl1b locus in zebrafish. (A) Illustration showing
the position of two gRNA-targeting sites (red lines) in the fhl1b locus in zebrafish. Black arrows
indicate the position of primers (F and R) used for sequencing to identify indels shown in (C).
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(B) Representative T7EI assay showing the efficiency of Cas9-mediated cleavage in a single
embryo at 55 hpf. (C) Representative Sanger sequencing results of the PCR amplicons of 4 indi-
vidual embryos at 55 hpf, showing indels induced by Cas9/gRNA in the targeted fhl1b locus.
Twenty to thirty clones were sequenced for each embryo. The wild-type sequence is shown at the
top with the target sites highlighted in yellow and the PAM sequences (TGG and AGG)
highlighted in blue. Deletions are shown as red dashed lines and insertions are highlighted in red.
The net change in length caused by each indel is to the right of each sequence (+, insertion; -, dele-
tion). (D-E’) Confocal images of Tg(ins:GFP)zf5 control embryos (D and D’) and Cas9/gRNA-
induced mutant embryos (E and E’) at 55 hpf, stained for Prox1 (blue in D and E; grey in D’ and
E’) and Islet (red; expression in the dorsal pancreatic bud is outlined by white dotted circles). Cas9/
gRNA-induced mutant embryos exhibited an enlarged Insulin-expressing β-cell population with a
reduced number of Prox1-positive cells in the liver, phenocopying that of the fhl1bMO knock-
down embryos. (F) Quantification of the number (mean±SD) of Insulin-positive cells in the pan-
creas (green) and Prox1-positive cells in the liver (blue) at 55 hpf. 31.6±3.5 cells were Insulin-
positive in control embryos, whereas 45.3±6.0 cells expressed Insulin in Cas9/gRNA-induced
mutant embryos. 164±16.5 cells expressed Prox1 in Cas9/gRNA-induced mutant embryos, while
265±18.6 cells were Prox1-positive in control embryos. Cells in 20 planes of confocal images from
5 individual embryos were counted. Asterisks indicate statistical significance: �, P< 0.05, ��,
P< 0.01. D-E’, confocal projection images, ventral views, anterior to the top. Scale bar, 20 μm.
(TIF)

S8 Fig. Decreased Fhl1b activity increases the number of pancreatic endocrine cells. (A-F)
Confocal images showing Tg(ins:dsRed)m1018 (A and D) or Insulin (B-C, E-F, red) expression
with Tg(P0-pax6b:GFP)ulg515 (A and D, green), Somatostatin (B and E, grey), or Glucagon (C
and F, blue) expression at 72 hpf, comparing control embryos (A-C) and fhl1bmorphants
(D-F). The number of Tg(ins:dsRed)m1018- or Insulin-expressing cells was significantly
increased in fhl1bmorphants (D-F) compared to that of control embryos (A-C). The number
of Tg(P0-pax6b:GFP)ulg515- and Somatostatin-expressing cells was also increased (D and E,
respectively), whereas that of Glucagon-expressing cells appeared unaffected (F) in fhl1bmor-
phants compared to control embryos (A, B, and C, respectively). (G) Quantification of the
number (mean±SD) of total and individual pancreatic endocrine hormone-expressing cells,
comparing control embryos and fhl1bmorphants at 30 and 72 hpf. (H) Quantification of the
number (mean±SD) of dsRed- and GFP-positive β-cells, comparing control embryos and fhl1b
morphants at 48 hpf. (I) Quantification of the number (mean±SD) of Insulin-positive cells in
the pancreas and Prox1-positive cells in the liver at 55 hpf. A-F, confocal projection images,
ventral views, anterior to the top. G-I, cells in 20 planes of confocal images from 5 individual
embryos were counted. Scale bar, 20 μm.
(TIF)

S9 Fig. Increased Fhl1b activity during the post-gastrulation stage inhibits specification of
exocrine pancreas and induces liver. (A) The expression of Tg(ptf1a:GFP)jh1 in the exocrine
pancreas and Prox1 in the liver (heat shock applied at the 8-somite stage) was examined at 50
hpf and the percentages of embryos were quantified. The embryos were scored as having a
“reduced” or “increased” expression when the expression of each marker was distinctly
(> 25%) smaller or larger than that of the control embryos based upon the calculation using
ImageJ. (B) Quantification of the number (mean±SD) of Tg(ptf1a:GFP)jh1-positive pancreatic
exocrine cells and Prox1-positive cells in the liver, comparing control embryos and fhl1b-over-
expressing embryos (heat shock applied at the 8-somite stage) at 50 hpf. Cells in 20 planes of
confocal images from 5 individual embryos were counted.
(TIF)

Fhl1b Regulates Liver vs. Pancreas Fate Choice

PLOS Genetics | DOI:10.1371/journal.pgen.1005831 February 4, 2016 26 / 33

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pgen.1005831.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pgen.1005831.s009


S10 Fig. Endodermal progenitors contribute to distinct endodermal tissues based on their
M-L position and the activity of Fhl1b. (A-C) Confocal images of Tg(sox17:GFP)s870 embryos
at 55 hpf, stained for Islet (blue) and uncaged-Fluorescein (red), showing the progeny of the
medial (A), lateral 1 (B) and lateral 2 (C) cells. Medial cells (A) mostly gave rise to pancreatic
endocrine cells (white arrows). Lateral 1 cells (B) gave rise to pancreatic exocrine (white double
arrows), endocrine (white arrow), and intestinal (white arrowheads) cells. Lateral 2 cells (C)
gave rise to liver (white rhombi), intestine (white arrowhead), and pancreatic exocrine cells
(white double arrow). (D-H) The numbers and the percentages of embryos that showed incor-
poration into a given tissue type in each specific position, comparing control embryos (D, E, F
(as L2), G (as L1), and H) as well as fhl1bmorphants and embryos induced to overexpress
fhl1b at the 8-somite stage (D, F (as fhl1b MO L2), G (as HS @ 8s L1), and H). In every fhl1b-
depleted embryo, lateral 2 cells contributed to the pancreatic endocrine cells (D, F (as fhl1b
MO L2), and H), while in control embryos, most of the lateral 2 cells gave rise to the exocrine
pancreas, intestine, and liver, but seldom gave rise to the endocrine pancreas (D, E, F (as L2),
and H). In control embryos, lateral 1 cells mostly gave rise to pancreatic and intestinal cells, but
not to liver cells (D, E, G (as L1), and H), whereas in every fhl1b-overexpressing embryo, lateral
1 cells contributed to the liver (D, G (as HS @ 8s L1), and H). Data in each 3-D column (%) in
E-G were obtained by summing the number of embryos that showed incorporation into a
given tissue type and normalizing it to the total number of embryos examined in each specific
position: M, L1 and L2. Colored rectangles in H highlight the most dominant pattern in fhl1b
morphants (red) and fhl1b-overexpressing (blue) embryos. A-C, confocal projection images,
ventral views, anterior to the top. Scale bar, 20 μm.
(TIF)

S11 Fig. Decreased Fhl1b activity inhibits liver and exocrine pancreas differentiation.
(A and B) Confocal images of Tg(ptf1a:GFP)jh1 control embryos (A) and fhl1bmorphants (B),
stained for Prox1 (blue) and Islet (red). The expression domain of the Prox1 and Tg(ptf1a:GFP)jh1

was reduced in fhl1bmorphants (B) compared to that of control embryos (A). (C and D) Confocal
images of Tg(fabp10a:RFP, ela3l:EGFP)gz12 control embryos (C) and fhl1bMO-injected larvae (D)
at 96 hpf. The expression domain of the Tg(fabp10a:RFP, ela3l:EGFP)gz12 was reduced both in the
liver and exocrine pancreas in fhl1bMO-injected larvae (D) compared to that of control larvae (C).
A-D, confocal projection images, ventral views, anterior to the top. Scale bars, 20 μm.
(TIF)

S12 Fig. Forced induction of fhl1b during the gastrulation stage directly or indirectly mod-
ulates pdx1 levels for the endocrine and exocrine pancreas development. (A-D)Whole-
mount in situ hybridization showing the expression of pdx1 at 18 hpf (A-B) and 48 hpf (C-D),
comparing control embryos (A and C) and fhl1b-overexpressing embryos (B and D, heat shock
applied at 6 hpf). In embryos induced to overexpress fhl1b at 6 hpf, both high (white asterisks)
and low (gray arrows) levels of pdx1 expression were reduced at 18 hpf (B). Consistently, at 48
hpf, pdx1 expression in the principal islet (white dotted circle) and in the developing exocrine
pancreas (white bracket) was reduced (D). (E and F) Confocal images of control embryos and
embryos induced to overexpress fhl1b at 6 hpf, stained for Insulin (red). The number of insulin
cells was reduced in fhl1b-overexpressing embryos (F), compared to that of control embryos (E)
at 78 hpf. (G) The expression of Tg(ins:GFP)zf5 (heat shock applied at 6 hpf) was examined at
50 hpf and the percentages of embryos were quantified. The embryos were scored as having a
“reduced” expression when the expression of Tg(ins:GFP)zf5 was distinctly (> 25%) smaller than
that of the control embryos based upon the calculation using ImageJ. A-D, dorsal views, anterior
to the top. E-F, confocal projection images, ventral views, anterior to the top. Scale bars, 20 μm.
(TIF)
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S13 Fig. Fhl1b is an essential mediator of Bmp2b signaling directing the liver versus pan-
creas fate decision. (A-D) Confocal images of control embryos (A), bmp2b-overexpressing
embryos (B), fhl1bmorphants (C), and bmp2b-overexpressing fhl1bmorphants (D) at 72 hpf,
stained for Islet (red; expression in the dorsal pancreatic bud is outlined by white dotted circles)
and Prox1 (blue). (B) Prox1 expression in the liver was greatly expanded when bmp2b expres-
sion was induced at the 8-somite stage, whereas Islet expression in the mesenchymal cells sur-
rounding the HPD system as well as in the pancreatic endocrine cells appeared unaffected. As
in fhl1bmorphants (C), the majority of bmp2b-overexpressing fhl1bmorphants exhibited an
enlarged Islet-positive pancreatic endocrine cell population with a reduced number of Prox1--
positive cells in the liver (D, 80% (22 out of total 28 embryos analyzed)). A small portion of
bmp2b-overexpressing fhl1bmorphants restored the developmental defects of the liver and
pancreatic endocrine formation (D, 20% (6 out of total 28 embryos analyzed)). (E-L) Whole-
mount in situ hybridization showing the expression of hhex (E-H) and pdx1 (I-L), comparing
control embryos (E and I), id2amorphants (F and J), fhl1bmorphants (G and K), and double
fhl1b/id2amorphants (H and L) at 30 hpf. hhex is expressed in the liver (black arrows) and the
dorsal pancreatic bud (white dotted circles). pdx1 is expressed in the developing pancreas
including the dorsal pancreatic bud (white dotted circles) and intestine (black brackets), but
not in the liver. The hhex expression domain was reduced in the liver of id2amorphants (F,
black arrow) but appeared unaffected in the dorsal pancreatic bud (F, white dotted circle).
fhl1bmorphants showed a reduced hhex expression domain in the liver (G, black arrow) with a
concomitant expansion of its expression domain in the dorsal pancreatic bud (G, white dotted
circle). Double fhl1b/id2amorphants showed a more severe reduction of hhex expression
domain in the liver (H, black arrow), whereas its expression domain in the dorsal pancreatic
bud was comparable to that in single fhl1bmorphants (compare G and H, white dotted circles).
pdx1 expression in id2amorphants was comparable to that in control embryos (J). pdx1
expression domain in double fhl1b/id2amorphants in the dorsal pancreatic bud was expanded
(L, white dotted circle), whereas its expression in the intestinal bulb primordium appeared to
be reduced (L, black bracket), and was comparable to that in fhl1bmorphants (K, white dotted
circle and black bracket, respectively). (M-N) Whole-mount in situ hybridization showing the
expression of id2a. The expression of id2a in the liver biliary epithelial cells of fhl1bmorphants
(N) was comparable to that in control embryos (M) at 72 hpf. (O) Schematic model of the rela-
tionship between Bmp2b, Fhl1b, and Id2a in liver versus pancreas fate decision. Fhl1b is essen-
tially required for suppressing pdx1 expression to keep progenitors competent to differentiate
into the liver, while Id2a is required primarily for liver development. Solid lines indicate con-
nections supported by the data previously reported and presented in this study, while dashed
lines indicate potential connections by an unknown Bmp2b effector. A-D, confocal projection
images, ventral views, anterior to the top. E-N, dorsal views, anterior to the left (n = 20 per
each condition). Scale bars, 20 μm.
(TIF)

S14 Fig. Fhl1b regulates the capacity of β-cell regeneration. (A) Quantification of the num-
ber (mean±SD) of regenerated (Green+) and survived β-cells (Yellow+; co-expressing green
and red) in control, fhl1bMO-injected, and fhl1b-overexpressing (HS @ 50 hpf) larvae at 36
hours-post-ablation (hpa). Cells in 20 planes of confocal images from 10 individual larvae were
counted. (B-C) Confocal images of [Tg(ins:CFP-NTR)s892; Tg(ins:Kaede)jh6] control (B-B”) and
fhl1bMO-injected (C-C”) larvae at 24 hpa stained with 2F11 (red) and Carboxypeptidase
(blue). A greater number of regenerated β-cells in fhl1b-MO injected larvae were mainly
located at the junction between the pancreas and the HPD system, specifically at the EPD
(C-C”). While upper insets in B’, B”, C’, and C” show the enlarged images of EPD with white
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arrows pointing the regenerated β-cells, lower insets in B’, B”, C’, and C” only display the mag-
nified images of EPD with white arrows. Abbreviations: GB, gallbladder; CBD, common bile
duct; EHD, extrahepatic duct; EPD, extrapancreatic duct; IHD, intrahepatic duct; IPD, intra-
pancreatic duct. n = 10 per condition. (D) Double antibody and in situ hybridization staining
of fhl1b at 3 dpf in Tg(ins:GFP)zf5 embryos. At 3 dpf, the level of fhl1b expression is high in the
liver (black arrow) and in the distal intestine, low in the HPD system (black bracket), and
absent in most pancreatic cells except for a few cells in the principal islet (yellow arrow). In the
principal islet, fhl1b expression is confined to the peripheral boundary and does not signifi-
cantly overlap with the core β-cells marked by Tg(ins:GFP)zf5 expression. n = 10. (E-F) Double
antibody and in situ hybridization staining of fhl1b with Somatostatin (E) and Glucagon (F) at
3 dpf in Tg(ins:GFP)zf5 embryos. In the principal islet, fhl1b expression (black arrowheads in E
and F) does not overlap with the Somatostatin-expressing δ-cells (E) but partially with a small
number of Glucagon-expressing α-cells (F). Tg(ins:GFP)zf5 expression is pseudo colored as
white, whereas Somatostatin (E) and Glucagon (F) expression is outlined by both white and
black dotted circles. The relative position of fhl1b-expressing cells to the Somatostatin (E) and
Glucagon (F) expression are indicated by white (E) and yellow (F) arrowheads. Merged views
of the middle and right panels are shown in the left panels. n = 10 per condition. (G) Free-glu-
cose levels were measured during β-cell regeneration in wild-type, MTZ-treated, MTZ/fhl1b
MO-injected, and MTZ/fhl1b-overexpressing embryos/larvae. At 7 dpf, free-glucose levels
were significantly lower in MTZ/fhl1bMO-injected larvae (green line, 512 pmol/larva) than
MTZ-treated (red line, 633 pmol/larva) or MTZ/fhl1b-overexpressing (purple line, 742 pmol/
larva) larvae. �, P< 0.05; ��, P< 0.01; ���, P< 0.001. n = 30 larvae (3 pools of 10 larvae) per
data point. B, B” and C, C”, confocal projection images. B’ and C’, confocal single-plane images.
D-F, confocal single-plane in situ hybridization images combined with the projection images
of Tg(ins:GFP)zf5 (D), Somatostatin (E), and Glucagon (F) expression. Ventral views, anterior
to the top. Scale bars, 20 μm.
(TIF)

S15 Fig. Fhl1b blocks induction of late-forming ventral bud-derived endocrine cells. (A-C’)
Confocal images of control embryos without SU5402 (A and A’) and with SU5402 (B and B’)
treatment as well as fhl1b-overexpressing embryos with SU5402 treatment (C and C’, heat
shock applied at 50 hpf) at 72 hpf, stained for Islet (red) and Cadherin (blue). Upon treatment
of Fgf receptor inhibitor SU5402, ectopic Islet-positive endocrine cells appeared in the hepato-
pancreatic ductal system (HPD) (B and B’, white asterisks). This effect was blocked by overex-
pression of fhl1b (C and C’). The white lines depict the junction between the pancreas and the
HPD. A-C, confocal projection images. A’-C’, confocal single-plane images. Ventral views,
anterior to the top. Scale bar, 20 μm.
(TIF)

S1 Table. List of genes showing changes in the case of increased Bmp2b signaling. 998 genes
with at least 2-fold changes are shown.
(XLSX)

S2 Table. List of genes showing changes in the case of decreased Bmp signaling. 1261 genes
with at least 2.75-fold changes are shown.
(XLSX)

S3 Table. List of genes exhibiting changes in the case of both increased and decreased Bmp
signaling. 107 genes with at least 2-fold changes are shown (the genes listed in the S1C Fig are
highlighted in blue).
(XLSX)
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