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Parkinson’s disease (PD) is the second most common neurodegenerative disorder and
has plagued humans for more than 200 years. The etiology and detailed pathogenesis
of PD is unclear, but is currently believed to be the result of the interaction between
genetic and environmental factors. Studies have found that PD patients with the
LRRK2:G2019S variation have the typical clinical manifestations of PD, which may be
familial or sporadic, and have age-dependent pathogenic characteristics. Therefore, the
LRRK2:G2019S variation may be an ideal model to study the interaction of multiple
factors such as genetic, environmental and natural aging factors in PD in the future.
This article reviewed the progress of LRRK2:G2019S studies in PD research in order to
provide new research ideas and directions for the pathogenesis and treatment of PD.
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BACKGROUND

Parkinson’s disease (PD) is the second most common neurodegenerative disorder after Alzheimer’s
disease, and has plagued humans for more than 200 years. According to statistics, the prevalence
of PD is approximately 0.3% in developed countries and is 1% in individuals over 60 years old.
The main pathological changes in PD are the formation of Lewy corpuscles and a decrease in
dopaminergic neurons (DANs) in the substantia nigra-striatum system, which leads to a decrease
in dopamine (DA) content in the related nerve endings and an imbalance between DA and
acetylcholine. It is generally believed that when DANs in the substantia nigra are reduced by more
than 50% and DA content is reduced by more than 70%, PD patients will exhibit typical motor
symptoms such as movement retardation, static tremor, myotonia and abnormal posture and gait
(Rogers et al., 2017). Of course, prior to that, other non-motor symptoms may also occur in some
PD patients such as sensory disturbance and sleep disorders1. Clinically, PD can be divided into
sporadic PD and familial PD. The etiology of sporadic PD is unclear. Familial PD may be caused
by gene mutation. The age at onset, the rate of progression and the severity of PD vary, which

1www.nice.org.uk/guidance/ng71
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may be the result of the interaction between genetic and
environmental factors (Pan-Montojo and Reichmann, 2014).
However, the true real etiology and full pathogenesis of PD
are still unclear. At present, the incidence of PD increases with
the aging of the population and an increased life span, and
the prevalence of PD is also rising worldwide. Because of the
large population in China, the increasing number of PD patients
has resulted in heavy economic and psychological burdens to
society and families. Although scientists continue to make efforts
to study the diagnosis and treatment of PD, few novel and
significant breakthroughs have been reported. Therefore, there
is an urgent need for more in-depth innovative research on
the pathogenesis of PD to obtain more effective and updated
intervention and prevention methods.

With the identification and cloning of disease-related genes,
such as the leucine-rich repeat kinase 2 (LRRK2), α-synuclein
(αSyn), SNCA, Parkin, PINK1, and GBA, the role of genetic
factors in PD has attracted more attention (Lee and Liu, 2008).
At present, of the 23 known pathogenic genes of PD, only
LRRK2 is associated with both sporadic and familial PD. In
addition, PD patients with the LRRK2 variation often present
all the major clinical manifestations of typical non-carrier PD
patients. Therefore, it is of great significance to carry out relevant
research on PD patients with the LRRK2 variation (Di Maio
et al., 2018). Among LRRK2 variations, G2019S mutation is
the most common, as seen in familial and sporadic PD. In
addition, the penetrance of LRRK2:G2019S mutation in PD is
age-dependent, which suggests the important involvement of
age and environmental factors (Goldwurm et al., 2007). This
is consistent with the hypothesis that PD is attributed to the
interaction of genetic, environmental, natural aging and other
factors. Therefore, the LRRK2:G2019S mutation may be an ideal
disease model and one potential breakthrough in PD research to
determine the mechanisms of PD and to develop new treatment
methods by studying PD patients with LRRK2:G2019S variation.

INTRODUCTION OF LRRK2

The coding gene of LRRK2 is located on chromosome 12q12,
spans 7,584 bp, and contains 51 exons. The LRRK2 protein
weighs 280 kD, has 2,527 amino acids, and consists of ankyrin-
like repeats (ALRs), leucine-rich repeats (LRRs), the Ras of
complex (Roc) GTPase domain, carboxy-terminal of Roc (COR),
kinase domain, and the WD40 domain from the N-terminal
to C-terminal (Mata et al., 2006). LRRK2 is expressed in brain
tissues such as the brain stem (midbrain), striatum, olfactory
bulb, cortex, hippocampus, and cerebellum. LRRK2 is mainly
involved in the regulation of protein translation, axon growth
and aging in the nervous system, and its mutation was discovered
in 2004 (Zimprich et al., 2004). At present, the functions of
the major domains of LRRK2 have not been fully defined. It
is generally believed that the WD40 domain, LRR sequence
and ALR sequence are involved in protein-protein interactions
(Figure 1; Gloeckner et al., 2006; Ito et al., 2007). In addition,
the WD40 domain may be involved in protein-lipid interactions,
suggesting a possible interplay between LRRK2 and membrane

structures. The tandem COR domain and Roc domain are
unique to and prevalent in the ROCO superfamily of proteins.
The interaction between COR and Roc domains facilitates the
formation of dimers among ROCO proteins. Normally, LRRK2
proteins act as dimers, the formation of which is dependent on
the COR domain. Sequence homology analysis and functional
characterization demonstrated high sequence similarity between
LRRK2 and mixed-lineage kinases (MLK). However, MLK
possess serine/threonine and tyrosine kinase activity, while
LRRK2 has no tyrosine kinase activity. MLK belongs to the
mitogen-activated protein kinase (MAPK) family, exerting the
function of a MAPK kinase kinase (MAPKKK). Despite the high
similarity between LRRK2 and MLK, whether LRRK2 is also a
MAPKKK and how its role as a MAPKKK is played are still
unclear, as the activation pathway of LRRK2 and its downstream
kinase effectors are currently unknown. Proteomics and random
peptide analysis have suggested that LRRK2 is a serine/threonine
protein kinase that preferentially phosphorylates threonine.

Relevant studies (Di Fonzo et al., 2005; Gilks et al., 2005; Mata
et al., 2005; Nichols et al., 2005) have found that there are many
mutation sites in the LRRK2 gene, resulting in approximately
100 LRRK2 variants, many of which are related to PD, and
the G2019S, R1441G, R1441C, R1441H, Y1699C, I2020T, and
N1437H variants were confirmed to be pathogenic. Among these
variants, for R1441G, R1441C, and R1441H the mutation is
located within the Roc GTPase domain, while for Y1699C the
mutation is within the COR domain, which also reduces the
Roc GTPase activity. In addition, the newly discovered N1437H
mutation within the Roc GTPase domain is also pathogenic.
However, it is not clear which specific effects it has on GTPase
activity. Finally, the remaining I2020T and G2019S mutations are
located in the kinase domain, which increases the kinase activity
of LRRK2. Recently, new mutations such as G2385R, A1441G and
R1628P have also attracted considerable attention.

LRRK2:G2019S AND PD

Among the variations of LRRK2, G2019S is the most common.
It not only comprises a high proportion (approximately 4–5%)
in familial PD, but is also a common mutation (approximately
1%) in sporadic PD. Furthermore, it is markedly increased in
specific populations and is up to 40% in North Africans and 30%
in Ashkenazi Jews (Trinh et al., 2016). It is the first example
of a Mendelian form of PD2. This variation originated from a
G > A substitution at position 6055 of exon 41 of LRRK2 gene
that results in the change of a glycine to serine at codon 2019
of LRRK2. It was previously believed that the LRRK2:G2019S
variation mainly occurred in Caucasians and no correlation was
found between G2019S and PD in Asians until one such case
was reported in Japan (Pirkevi et al., 2009). Fundamental studies
(Xiao et al., 2015, Karuppagounder et al., 2016; Howlett et al.,
2017; Kim et al., 2017, 2018; Litteljohn et al., 2018; Vermilyea and
Emborg, 2018) revealed that the LRRK2:G2019S variation can

2http://www.intechopen.com/books/etiology-and-pathophysiology-of-
parkinson-s-disease/genetics-of-parkinsondisease
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FIGURE 1 | Schematic diagram of the distribution of the main domains of LRRK2 protein and the location of current important mutations (Re-creation based on
Cookson, 2010 and Mata et al., 2005).

lead to elevated levels of αSyn and tau proteins, mitochondrial
dysfunction, synaptic vesicle transport disorder, and can induce
abnormal Erk, c-Jun and Akt signaling pathways, leading
to apoptotic regulation disorder and hyperautophagy, reduce
neurite growth, increase abnormal growth and differentiation
of DANs cells, and induce cellular degeneration. However, the
specific structural and functional changes in DANs and their
related influencing factors and mechanisms in LRRK2:G2019S-
bearing PD patients are still unclear.

Similar to many other LRRK2-associated PD patients,
PD patients with G2019S mutations have a heterogeneous
pathology. However, the pathology has been reported in
patients with a G2019S mutation, and it not only conforms
to the typical α-synuclein Lewy-body type of PD, but also
include diffuse Lewy-body disease, nigral degeneration without
distinctive histopathology and, rarely, even aggregates of the
microtubule-associated protein tau, suggestive of progressive
supranuclear palsy or frontotemporal dementia. To date,
it is still not fully understood how LRRK2 may affect
the biology/pathobiology of α-Syn. One possibility is that
the effect of LRRK2 on α-Syn may take place via the
modulation of other key proteins, such as Rab GTPases
or other kinases, which affect pathways involved in the
degradation of α-Syn, and the propagation of pathology as
well, resulting in PD-associated features, for example the
appearance of typical α-synuclein Lewy-bodies (Outeiro et al.,
2019). Accordingly, a question is raised: “Is LRRK2 detection
in human biofluids a potential Parkinson’s disease biomarker?”
(Taymans et al., 2017). The answer is no. Although LRRK2
cannot be used as a biomarker for PD, West (2017) suggested
that recommendations should be given for a biomarker-guided
initial entry of LRRK2 kinase inhibitors in PD patients. Of
course, this also includes those patients with a G2019S mutation.

Interestingly, the total neopterin levels in the cerebrospinal
fluid (CSF) of the LRRK2-PD patients may be one of the
candidate biomarkers, which might be useful for understanding
the pathophysiology of patients with a G2019S mutation
(Ichinose et al., 2018).

Studies have found (Belarbi et al., 2010; Alcalay et al.,
2013; Gatto et al., 2013; Sierra et al., 2017; Gunzler et al.,
2018; Mestre et al., 2018) that the clinical features of PD
patients with the LRRK2:G2019S variation included a high
average age at onset, more female patients, long disease
course, starting mainly in the lower limbs, abnormal posture
and gait disorders, and more depression, hallucinations, sleep
disorders and cognitive disorders. The remaining core clinical
features of PD patients carrying the variation are similar to
those of PD patients not carrying the variation. Moreover,
the penetrance in LRRK2:G2019S carriers increases from only
28% at 59 years of age to 51% at 69 years, suggesting
that it is age-dependent. It has been reported that dynamin
3 (DNM3) may be a potential genetic modifier in the
relationship between LRRK2 and age-dependent penetrance in
LRRK2-associated PD in Arab-Berber patients (Trinh et al.,
2016). However, recent studies in Spain (Fernández-Santiago
et al., 2018), Asia (Foo et al., 2019) and China (Yang
et al., 2019) have not yielded similar results. An incidental
finding showed that SNCA but not DNM3, modifies the
age at onset of LRRK2-related PD, and the studies in Spain
(Fernández-Santiago et al., 2018) and China (Yang et al., 2019)
were noteworthy.

The information mentioned above is in accordance with
the current hypothesis that PD is caused by the interaction of
genetic factors, environmental factors and natural aging factors.
Therefore, this will promote the future study of PD if a PD model
with the LRRK2:G2019S variation can be established.
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The development of induced pluripotent stem cells (iPSCs)
and related techniques has provided new ideas for resolving the
above issues (Park et al., 2008; Bumpei et al., 2016). iPSCs are
generated by introducing pluripotency-related factors such as
Oct4, Sox2, Klf, and c-Myc into mature somatic cells, so that
they can be reprogrammed and restored to the cell state with
embryonic stem cell characteristics. These cells can differentiate
into cell types of multiple lineages (Chari and Mao, 2016).

With maturation of the iPSCs technology, the establishment
of an iPSCs cell model from a LRRK2:G2019S PD patient was
reported in 2011 (Nguyen et al., 2011), and related publications
have gradually increased (Liu et al., 2012; Mak et al., 2012;
Reinhardt et al., 2013; Schwab and Ebert, 2015). However, up
to now, there has been no report on the iPSCs cell model
derived from the LRRK2:G2019S mutant lineage with the same
genetic background. Therefore, it will be of great significance
to obtain the LRRK2:G2019S mutant lineage with the same
genetic background and to use iPSCs and related technologies
to study the pathogenesis of PD in patients with LRRK2:G2019S
mutation. This can then be used to develop relevant prevention
and treatment strategies, especially when there are PD patients
and non-onset carriers present in the family.

CONCLUSION: QUESTIONS AND
PROSPECTS

The onset of PD caused by the LRRK2:G2019S variation is the
outcome of interactions between multiple genes and molecular
mechanisms. On the one hand, this involves the intersection
of familial and sporadic PD, and on the other hand the
embodiment of PD gene-environment-aging factor interactions.
Therefore, more attention should be paid to the study of
LRRK2:G2019S variation. It has been suggested that individuals
with a family history of PD caused by LRRK2:G2019S variation
should be screened. Early dopamine transporter imaging with
single photon emission computed tomography (DAT-SPECT)
evaluation (Artzi et al., 2017) or measurement of Lamp2
concentration in the cerebrospinal fluid has been proposed
(Klaver et al., 2018). However, further investigations are necessary
to determine whether these procedures are applicable to areas

with a low incidence and a low LRRK2:G2019S mutation rate,
as a LRRK2:G2019S mutation carrier who was neurologically
healthy at the age of 80 has been reported (Kay et al., 2005).
Of course, the study of LRRK2:G2019S-related PD is not only
about disease screening and diagnosis, but also about its clinical
application in the future. It was found that the effect of deep brain
stimulation (DBS) in patients with LRRK2 gene was better than
that in non-mutation carriers (Sayad et al., 2016).

In addition, research on the genetic correction of LRRK2:
G2019S has also been carried out (Sanders et al., 2014). At
present, most of the targeted drugs are LRRK2 kinase inhibitors
(Deng et al., 2011). Other drugs include coenzyme Q10,
rapamycin and lovastatin (Cooper et al., 2012; Lin et al., 2016).
Finally, we believe that the LRRK2:G2019S mutation will not
only open a novel era in PD genetics, as proposed by Bonifati
(2006), but will also bring about a new prospect, as the latest
research showed that normal LRRK2 gene also promotes PD
(Di Maio et al., 2018).
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