
Vol.:(0123456789)1 3

https://doi.org/10.1007/s12551-022-00949-3

REVIEW

Deep learning‑based image processing in optical microscopy

Sindhoora Kaniyala Melanthota1 · Dharshini Gopal2 · Shweta Chakrabarti2 · Anirudh Ameya Kashyap3 · 
Raghu Radhakrishnan4 · Nirmal Mazumder1 

Received: 12 October 2021 / Accepted: 14 March 2022 
© The Author(s) 2022

Abstract
Optical microscopy has emerged as a key driver of fundamental research since it provides the ability to probe into impercep-
tible structures in the biomedical world. For the detailed investigation of samples, a high-resolution image with enhanced 
contrast and minimal damage is preferred. To achieve this, an automated image analysis method is preferable over manual 
analysis in terms of both speed of acquisition and reduced error accumulation. In this regard, deep learning (DL)-based image 
processing can be highly beneficial. The review summarises and critiques the use of DL in image processing for the data 
collected using various optical microscopic techniques. In tandem with optical microscopy, DL has already found applica-
tions in various problems related to image classification and segmentation. It has also performed well in enhancing image 
resolution in smartphone-based microscopy, which in turn enablse crucial medical assistance in remote places.
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Introduction

Biophotonics is an interdisciplinary field with flourishing 
applications in biomedical research, which allows for the 
delivery of clear insights regarding complex biological 
systems through the interaction of light with biological 
samples. However, modern optical imaging techniques 
that are label-free or employ exogenous labels such 
as wide-field microscopy, phase contrast microscopy, 
fluorescence microscopy, and nonlinear optical microscopy 
may be limited by the quality of output image, post image 
processing, or instrumentation cost (Mazumder et al. 2017). 

Manual image analysis of tissue samples is a very tedious 
and time-consuming process due to the complex nature 
of biological entities, which in turn demands an expert 
pathologist to record an accurate output. Besides, the manual 
analysis is highly subjective. To overcome these limitations, 
an automatic, fast, and robust image analysis technique that 
delivers well-processed images with defined image quality 
criteria is desirable (Rivenson et al. 2017).

Machine learning (ML) is one such area of research, 
which performs statistical learning with the help of various 
multivariate analytical methods such as independent compo-
nent analysis, principal component analysis (PCA), and mul-
tivariate regression. These methods aid in the identification 
of significant features during training of the ML algorithm, 
which may later be utilized for the classification or predic-
tion of the test data set (Zhang, 2017). The ML algorithms 
such as support vector machine (SVM), artificial neural 
network (ANN), and cluster analysis are commonly imple-
mented methods among which ANNs have proved to be 
very effective in addressing classification problems (LeCun 
et al. 2015). The ANN comprises a fundamental unit known 
as perceptron (Hornik et al. 1989) which is inspired by the 
biological neuron—an essential part of the biological neural 
networks. In general, any ANN consists of an input layer, 
a hidden layer, and an output layer (illustrated in Fig. 1). The 
input layer accommodates the neurons equal to the number 
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of data points present in the data to be analyzed. The hidden 
layers may have a variable number of perceptrons optimized 
for the training set whereas the number of neurons in the 
output layer depends upon the problem addressed by ANN 
(Hornik et al. 1989). The input to every layer is drawn from 
the output of the preceding layer which is processed and 
translate to the next layer. The processing in each perceptron 
is performed in the form of an activation function as shown:

Here,  xi is the input corresponding to the perceptron from 
the preceding layer,  wi are the parameters connecting differ-
ent layers,  bj is the bias of the given perceptron and � repre-
sents an activation function. Simply, in a node, the weighted 
sum is calculated by adding  bj to the dot product of  xi with 
its corresponding  wi, and later the node is triggered based 

Oj = σ(Σixi.wi + bj)

on the activation function � of the layer. Due to this process, 
ANN can perform as a universal functional approximator 
and hence used for analyzing data that address a variety of 
analytical problems (Hornik et al. 1989; LeCun et al. 2015; 
Kim et al. 2019; Rahman et al. 2018). Although ML algo-
rithms perform well with a small amount of data, they are 
not fully automated and demand feature extraction from the 
input image. To overcome the limitations of ML techniques, 
ANNs with multiple layers, known as deep learning (DL) 
algorithms have been used (LeCun et al. 2015).

DL is a sub-category of ML, which provides improved 
performance with a prerequisite of advanced computing 
systems and an enormous amount of data to train the model. 
Although there is no specific thumb rule to calculate the size of 
dataset required for training, testing, and validating a model, DL 
algorithms require datasets in the order of thousands (Rivenson 
et al. 2017) whereas ML models require a few hundred (Kim 

Fig. 1  a Block diagram of a simple ANN architecture, b function of 
a node, c architecture of CNN in image classification of hepatocellu-
lar carcinoma graded into well, moderately, and poorly differentiated 

types (upper panel) along with image localization and segmentation. 
The image was reproduced with kind permission from Pradhan et al. 
2020, Wiley
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et  al. 2019) of data based on the complexity of the task 
performed. There are three different types of DL algorithms: 
multi-layered perceptron (MLP) with more than one hidden 
layer, convolutional neural network (CNN), and recurrent 
neural network (RNN). The MLP is a multi-layered ANN, in 
which the data is flown from input to output through hidden 
layers in the forward direction. CNN is a variant of ANN with 
learnable neurons which is specifically designed to analyze the 
spatial definition of the input dataset with more than one spatial 
dimension. In RNN, the feedback connections are used to store 
recent inputs given to the network to incorporate sequential 
data analysis (Pradhan et al. 2020; Elman, 1990; Deng and 
Liu, 2018; Wang et al. 2016). Among these techniques, CNN 
performs well with image processing and is widely used in 
biomedical image analysis to address a variety of problems such 
as image enhancement, classification, and segmentation. In 
general, the multi-dimensional dataset is fed to the CNN using 
the input layer. In the convolutional layer, randomly initialized 
kernels convolve with the input image to develop feature maps. 
Later, these feature maps are downsampled via a pooling layer 
using a pooling function. A CNN architecture may consist of 
multiple convolutional layers, which aids in significant feature 
extraction. Once the abstract features are extracted with 
convolution layers, the flattened features are fed into a fully 
connected layer for further classification (Pradhan et al. 2020; 
Nielsen, 2015). In the midst of wide-ranging applications of 
DL in data analysis, the functioning of these algorithms is not 
completely familiar to the researchers. However, by adjusting 
key variables known as hyperparameters, the performance of 
the same can be controlled during training (Hutter et al. 2019).

DL techniques are used to address a variety of imag-
ing problems including, image resolution enhancement in 
ex vivo and in vivo imaging (Rivenson et al. 2017), image 
focus quality prediction (Yang et al. 2018), and diverse 
image set classification of different organelles (Huttunen 
et al. 2018; Kraus et al. 2017). In addition, the application 
of DL in mobile phone-based microscope has emerged as a 
potential tool for in analyzing biological specimens such as 
blood smear samples, tissue samples, and DNA (Rivenson 
et al. 2018b; Wei et al. 2014). It has also found application 
in cancer diagnosis to determine stages of cancer (Rehman 
et al. 2018; Esteva et al. 2017; Litjens et al. 2016; Chen 
et al. 2014), hyperspectral data classification (Malkiel et al. 
2018), prediction of nanostructures of materials based on 
optical responses (Mohanty et al. 2016), and plant-based 
disease detection using mobile phone images (Li et  al. 
2019). Table 1 provides the brief summary of DL applica-
tion in microscopic image analysis. In this review article, 
we discuss the applications of DL-based image processing 
in optical microscopy, which includes wide-field micros-
copy, fluorescence microscopy, light-sheet microscopy, 
second harmonic generation, coherent anti-Stokes Raman 
scattering (CARS), and stimulated Raman scattering (SRS) 

for improving the image quality, spatial resolution, and 
automatization.

Applications of DL in labelled microscopy

Bright‑field microscopy

Quantitative analysis of microscopic data via existing 
computational programs counts on conventional machine 
learning techniques such as SVM, discriminative analysis, 
decision trees, and k-mean clustering (Hesamian et al. 2019). 
However, inadequate data selection during training, testing, 
and comprehensive examination of the model may lead to 
faulty results. Thus, a deep learning model undergone with 
rigorous training would help in overcoming the limitations 
associated with classical ML integrated image processing. 
A recent study revealed that the bright-field microscopic 
images of parasites in fecal samples can be automatically 
segmented and analyzed using a U-Net-based CNN which 
was initially trained to separate images of parasite eggs from 
the debris. This CNN was validated manually by a trained 
operator which confirmed that deep learning had improved 
accuracy over conventional image processing (Li et al. 2019). 
In another study, single-cell categorisation was employed by 
intelligent image-activated cell sorting (iIACS) technique 
integrated with DL-enabled real-time data analysis (Sozaki 
et al. 2019). For the study, DL-based software was installed 
for implementing the classifiers with the sort-decision 
function. CNN classification models were trained, validated, 
and tested using TensorFlow in the iIACS machine. Image 
augmentation was implemented to increase the training 
dataset, which provided additional variation in the input 
data. Further, the model parameters were tuned to achieve 
maximum classification accuracy through the validation 
dataset (Sozaki et al. 2019). A study conducted by Kraus et al. 
(as shown in Fig. 2) revealed that the use of deep CNN called 
DeepLoc enhanced the automated categorisation of protein 
subcellular localization in yeast cell images. DeepLoc outran 
the binary classifier ensemble (ensLOC) achieving an average 
precision of 84% and increasing the classification accuracy of 
the ensLOC by 15% across all localization categories. Further, 
transfer learning implemented on the fine-tuned model for 
the classification of various microscopic datasets showed 
promising results. Thus, DeepLoc could be used to analyze 
highly divergent microscopic images substantiating deep 
learning as one of the efficient approaches for the analysis of 
microscopic data (Kraus et al. 2017). In general, DL models 
outperform the classical ML models and transfer learning of a 
pre-trained DL model could save a lot of time and effort in 
collecting more data to train a new model.

Further, DL methods are also used in histopathological 
studies for automated cell counting, image segmentation and 
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Fig. 2  DeepLoc input data, architecture, and performance. a Exam-
ple micrographs of yeast cells expressing GFP-tagged proteins that 
localize to the 15 subcellular compartments sed to train DeepLoc. 
b Architecture of DeepLoc. c Average precision of DeepLoc and 
ensLOC on classifying a single cell test set (n = 4197 samples). The 
dashed lines indicate the mean average precision across the localiza-
tion classes (0.49 for ensLOC and 0.84 for DeepLoc). d Average pre-

cision of DeepLoc and ensLOC on assigning localizations to images 
of GFP fusion proteins with single or multiple localization classes 
(n = 2833 proteins). The dashed lines indicate the mean average pre-
cision across the localization classes (0.70 for ensLOC and 0.84 for 
DeepLoc). This figure is adapted with permission from Kraus et  al. 
2017, EMBO press
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the monitoring of the drug response at a molecular level 
(Chen and Chefd’hotel 2014; Jiao et al. 2019; Kobayashi 
et al. 2017; Gallardo-Caballero et al. 2019). Chen et al. 
developed a cell count automation method on the digital 
images of immunohistochemistry (IHC) slides. The method 
included unmixing of colors to separate the IHC image into 
different color channels corresponding to cellular uptake. 
Deep learning was employed to formulate detection of the 
membrane image channel, as the biomarker of interest is 
membrane-bound. The algorithm was evaluated on a clini-
cal data set demonstrating effective detection (Chen and 
Chefd’hotel 2014). In another study, Jiao et al. demonstrated 
a deep learning quantification and analysis system called 
DeepQuantify to analyze WBCs in light microscopic images 
of muscle tissue from female mice. This system segmented 
the images using the localized iterative Otsu’s thresholding 
method, masking post-processing, and classifying WBCs 
using a CNN classifier. Classification of WBCs was achieved 
with high accuracy with minimal manual intervention. The 
DeepQuantify system which employed a two-layered CNN 
architecture achieved better performance compared to other 
deep segmentation architectures such as FCN (fully conven-
tional network), SegNet, and U-Net. It was fully automated, 
suitable for processing large image sets, and it could be used 
for quantifying various protein expressions (Jiao et al. 2019). 
Kobayashi et  al. illustrated that combining bright-field 
microscopy with machine learning algorithms was useful 
in the identification of highly accurate drug-induced mor-
phological variation in the cells (Kobayashi et al. 2017). The 
performance of this technique based on CNN architecture 
has yielded promising results in the pollen grain detection 
system (Gallardo-Caballero et al. 2019). Thus, the evolu-
tion of the DL algorithms has aided in the development of 
novel analytical techniques in histopathology which can out-
perform manual analysis. Although the training period for 
deep learning-based models is around 2–9 h, they provide 
accurate and reliable results. Notwithstanding this limita-
tion, reducing the training period without compromising the 
quality of the image is the goal of DL.

Fluorescence microscopy

Fluorescence microscopy entails the excitation and emission 
of labelled molecules present in the sample under study. It 
provides better contrast as compared to traditional optical 
microscopy due to the high specificity and selectivity of the 
fluorescent molecules present in the sample. A fluorophore 
absorbs a specific amount of energy, is excited to a higher 
energy state, and returns to the ground state emitting energy 
lower than the excitation energy. To process images captured 
by fluorescent microscopy, DL algorithms have been devel-
oped. Function-specific tasks in bioimaging employed by 
DL algorithms such as Cell Profiler 3.0 enable automation of 

image segmentation/restoration (Dumur et al. 2019). Addi-
tionally, DL algorithms such as ILASTIK and cell classifier 
can be used for 2D/3D image classification, segmentation, 
and analysis of fluorescent microscopy images. It was sug-
gested that intelligent image processing was beneficial for 
the analysis of complex 3D/4D interactive images compared 
to supervised learning. This method ensured the delivery 
of the 3D view without compromising spatial dynamics 
(Dumur et al. 2019). Yao et al. developed and validated a 
deep CNN named Net-FLICS (fluorescence lifetime imaging 
with compressed sensing) that was used to record fluores-
cence intensity and lifetime imaging from single-pixel data-
sets, enabling the generation of quantitative intensity maps 
and fluorescence lifetime images (FLI), yielding superior 
results at low photon count (Yao et al. 2019).

Prediction of 3D fluorescence directly from the images 
of transmitted light was proposed by Ounkomol et al. They 
presented a tool based on U-Net architecture for modelling 
relationships between diverse but correlated imaging modal-
ities, and its effectiveness in predicting fluorescence images 
(Ounkomol et al. 2018). Another recent study suggested 
the application of CNN to enhance the fluorescein sodium-
driven intraoperative confocal laser endomicroscopic imag-
ing model, where image style transfer modified the pixel 
values of the target image while the model parameters were 
fixed (Izadyyazdanabadi et al. 2019). Krueger et al. devel-
oped a scalable visual analytics application termed Facetto 
to discover single-cell phenotypes in high-dimensional 
multi-channel microscopy images of human tumours and 
tissues combining unsupervised and supervised learning for 
hierarchial phenotype analysis (Krueger et al. 2019). For 
image segmentation, Caicedo et al. presented an evaluation 
framework to measure accuracy, types of errors, and effec-
tiveness of DeepCell and U-Net. Using neural networks, 
models were trained with small datasets, making them usa-
ble in the small data regime for image segmentation. This 
framework revealed that DL can reduce a significant num-
ber of biologically relevant errors (Caicedo et al. 2019). A 
novel DL-guided Bayesian inference (DLBI) approach was 
proposed for the time-series analysis of fluorescent images 
combining DL and statistical inference factoring three main 
components: (a) a simulator that provides the high-resolu-
tion input image by simulating low-resolution time-series 
fluorescence images to create supervised training data, (b) 
a deep learning module to capture spatial information in the 
low-resolution image and temporal information among the 
time-series images, and (c) Bayesian inference module that 
took the image from the deep learning module and removed 
artefacts by statistical inference, and therefore providing 
more accurate results (Li et al. 2018).

Super-resolution fluorescence microscopy has become an 
essential tool for the direct visualization of biomolecules 
at nanoscale resolution. Existing methods have limitations 

468 Biophysical Reviews (2022) 14:463–481



1 3

which include a longer time of execution, artificial thinning-
thickening of structures, and lack of capacity to capture 
latent structures. Fluorescence microscopic data when com-
bined with CNN analysis for image restoration, deconvolu-
tion, super-resolution, virtual staining, image segmentation, 
classification, and phenotyping has demonstrated major ben-
efits (Belthangady and Royer, 2019). Another study showed 
that content-aware image restoration (CARE) helps in the 
improvement of acquisition parameters, such as photo-
toxicity, speed of imaging, isotropy, or resolution. There-
fore, fluorescence microscopes operated at shorter expo-
sures with higher frame-rates, and lower light intensities in 
combination with content-aware restorations, approaches 
with higher resolution, and enhanced downstream analysis 
(Weigert et al. 2019). A DL-based framework was presented 
to obtain super-resolution using a generative adversarial net-
work (GAN) model in fluorescence microscopy. In the study, 
the images of pulmonary artery endothelial cells acquired 
with the10 × /0.75NA objective were compared with the 
images taken with the 20 × /0.75NA objective during GAN 
training. This converts diffraction-limited input images into 
super-resolved images offering a larger field of view (FOV), 
and depth of field (DOF) allowing a short image acquisition 
time, and freedom for imaging vulnerable objects (as shown 
in Fig. 3) (Wang et al. 2019; Pinkard et al. 2019). Another 
study proposed that Deep-Z digitally increases the DOF 
without axial scanning or compromise in imaging resolu-
tion. It improved volumetric imaging speed, signal-to-noise 
ratio, and generated a virtual image that is temporally syn-
chronized through digital refocusing. Additionally, it had the 
potential to reduce the photobleaching of samples associated 
with volumetric imaging (Wu et al. 2019a, b). Different fluo-
rescent dyes and light sources were used in this microscopic 
technique which made the noise elimination essential for 
analysis. Pre-trained DL algorithms helped in eliminating 
noise and producing super-resolved images, thereby making 
it possible to directly extract useful information. Unsubstan-
tiated details may be misleading, thereby making label-free 
detection in addition to unknown structure discovery and 
nanoscale image resolution a focus of future research.

Further, in a study conducted by Liu et al. the drawbacks 
with fluorescence imaging, owing to diffraction and noise 
are added separately with DL algorithms and alternating 
directions method of multipliers respectively. The decou-
pling of the subproblems high generalization with fidelity 
and enhanced resolution (Liu et al. 2020). In another study, 5 
autophagy (ATG)-related genes of S. cerevisiae were studied 
with respect to time by inducing autophagy using nitrogen 
starvation. A new DL tool called DeepPhagy was designed 
for recognizing autophagic cells with superior accuracy. This 
tool was used to analyze the obtained images and classify 
the phenotypes quantitatively by measuring the autophagic 
activity. High consistency was observed in the classification, 

thereby suggesting that DL-based methods could be applied 
to study different types of autophagy (Zhang et al. 2020a, 
b, c).

Smartphone‑based microscopy

Smartphone-based microscopy is one of the emerging tech-
nologies in biophotonics with many futuristic applications. 
They are portable and cost-effective in comparison with 
laboratory-grade microscopic techniques. However, the 
performance of smartphone-based microscopes is limited 
by the sensory distortions in imaging microscopic speci-
mens such as geometrical shrinkage, aberrations with higher 
numerical aperture lenses, etc. In this regard, the applica-
tion of DL algorithms in smartphone-based microscopy can 
enhance the resolution of the image. Rivenson et al. reported 
the use of DL to correct such distortions, resulting in high-
resolution, denoised, and color-corrected images, achieving 
a performance close to high-end optical microscopes. The 
experimental setup consisted of Nokia Lumia 1020 mobile 
phone equipped with additional optical components such 
as laser diodes and focusing knobs for imaging along with 
a series of 12 RGB LEDs as a light source to illuminate the 
sample. The samples such as lung tissue, blood smear, and 
Papanicolaou were imaged on the 3D printed optomechani-
cal stage. While training the algorithm, bright-field micro-
scopic images acquired with a 100 × objective lens were 
considered as reference images and were compared with 
the images acquired with smartphone setup. After training 
and validation, the algorithm was tested with fresh sample 
images to score the performance (Rivenson et al. 2018b; 
Kraus et al. 2017). Additionally, UCLA Samueli School of 
Engineering Researchers demonstrated that deep learning 
can enhance microscopic details in smartphone images and 
improve the resolution and color to approach laboratory-
grade microscope performance (Rivenson et al. 2018b).

Wei et al. reported a solution for sizing DNA molecules 
and determining copy number variations (CNVs) in the 
genome using a field-portable and cost-effective design 
for detection of nervous system disorders, cancers, or drug 
resistance utilizing the mobile phone-based imaging plat-
form (Wei et al. 2014). Uthoff et al. developed a device Len-
Check with an intraoral imaging facility to achieve a quicker 
diagnosis of oral cancer in remote areas. An LG Android 
smartphone was used in the experiment, which was capable 
of imaging the whole oral cavity along with intraoral imag-
ing (as shown in Fig. 4). Both auto-fluorescence and bright-
field images could be acquired with the developed device, 
where auto-fluorescence enabled early detection of cancer. 
The LensCheck system measured the point-spread function 
(PSF) of the intraoral lens system without the smartphone 
camera lens or image sensor and the modulation transfer 
function was determined by the normalization of the Fourier 
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transform of the PSF. Positive predictive value (PPV), nega-
tive predictive value (NPV), sensitivity, and specificity were 
determined to compare the CNN result with gold-standard 
remote specialist diagnosis (Uthoff et al. 2018).

In comparison to the above, smartphones have also been 
employed with different machine learning techniques to per-
form a variety of tasks. A study was conducted to quantify, 
particulate matter (PM) in the air around Los Angeles Inter-
national Airport (LAX), USA, using a device called c_Air 
which could screen 6.5 L of air in 30 s. Custom-developed 

machine learning algorithms were employed for the detec-
tion and sizing of different particles in air (Wu et al. 2017). 
In addition to this, a group of researchers developed a micro-
scopic smartphone-based worm detection setup incorporat-
ing a support vector machine (SVM) for the detection of 
Caenorhabditis elegans (C. elegans). A Samsung S7 smart-
phone with additional lenses was used to image the cul-
tured wild-type C. elegans placed on a petri dish. The SVM 
algorithm was trained with histogram orientation gradient 
(HOG) features extracted from 240 images accumulated 

Fig. 3  a The training process 
and the architecture of the 
generative adversarial net-
work that we used for super-
resolution of images of bovine 
pulmonary artery endothelial 
cells (BPAEC). b Network 
input image acquired with a 
10 × /0.4NA objective lens. A 
small ROI is zoomed-in and 
shown in c network input, d 
network output, e ground truth 
(20 × /0.75NA). f–h Further 
zoom-in on a cell’s F-actin and 
microtubules. This figure is 
adapted with permission from 
Wang et al. 2019, Springer 
Nature
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using the setup. The technique achieved remarkable accu-
racy with 90% sensitivity and 85% specificity (Bornhorst 
et al. 2019). Mobile phone-based microscopy was developed 
with a focus to create low-cost and portable devices.

Light sheet fluorescence microscopy

Light-sheet fluorescent microscopy (LSFM) is a type of fluo-
rescence microscopy having moderate to high resolution and 
high speed. LSFM performs rapid 3D volumetric imaging 
of living cells with low phototoxicity. However, LSFM is 
limited in the axial resolution of ~ 4 to 20 µm which is not 
enough for 3D visualization of neurons. Liu et al. presented 
3D isotropic LSFM imaging of the mouse brain in combina-
tion with multi-view imaging computation. The brain was 
visualized three-dimensionally by using under eight FOVs 
using a homemade selective plane illumination microscopy 
(SPIM). The resultant images provided the structural infor-
mation and a resolution beyond the FOV of the microscope. 
It was further studied with the help of Bayesian-based 
multi-view deconvolution (MVD) and registration for com-
plete details with proper segmentation of a single neuron. 
MVD-LSFM was demonstrated as a cost-effective, simple 

arrangement with better performance. The study showed 
good potential for the development of histopathology, neu-
roscience, and tissue or organ research (Liu et al. 2017).

Silvestri et al. showed that optical microscopy, when 
coupled with other advances could improve resolution and 
imaging quality. In this study, the distribution of Purkinje 
cells (PCs) in the entire cerebellum of the L7-GFP trans-
genic mouse was characterized. These PCs were fluores-
cently labelled, and an algorithm was used for the iden-
tification and localizing of the same. The Purkinje layers 
containing no cells were recognized using a vectorized 
representation of the cell population. This approach was 
used to study the distribution of various cells throughout 
the brain. But it led to the limitation of decreased image 
volume with the increase in resolution. Therefore, software 
tools used could handle large data for both processing and 
storage (Silvestri et al. 2015). DL integrated image pro-
cessing improves the accuracy of the data; however, con-
cepts of topology or smoothness could be hard for ANN 
to encode. Thierbach et al. presented DL-based light-sheet 
microscopy and geometric models preserving topology. In 
the study, active contour methods which are widely used in 
computer vision to perform image segmentation were used. 

Fig. 4  Smartphone-based oral cancer screening device using both 
WLI and AFI. a Intraoral imaging device. b Whole cavity imaging 
device. c Field testing workflow for smartphone-based oral screening. 
d White light imaging. e Autofluorescence imaging. f Green inten-
sity map with the mean subtraction. Whole cavity module field test-
ing images with suspect areas outlined. On-site specialist diagnoses 

were g normal/variation, h homogeneous leukoplakia, i carcinoma of 
the left mandibular alveolus, j tobacco pouch keratosis demonstrating 
increased fluorescence due to hyperkeratosis, and k tobacco pouch 
keratosis. This figure is adapted with permission from Uthoff et  al. 
2018, PLOS
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The counters are boundaries designed for the area of interest 
in the image and are found to provide smoothness and uni-
form topology. However, these methods required an approxi-
mate number and position of objects in the image. In this 
study, the strengths of CNNs and active contour methods 
were combined to obtain good quality results by detecting 
and segmenting cells with the least annotations. For further 
improvement in cell detection, future research may focus on 
the optimization of the regression network for better detec-
tion of cells (Thierbach et al. 2018). Hay et al. demonstrated 
the use of CNN-based 3D light-sheet fluorescence micros-
copy imaging of larval zebrafish intestines. It achieved high 
accuracy and operated rapidly with two-fold improvements 
compared to other standard methods of machine learning. It 
was suggested that accuracy depended on dataset size and 
augmentation (Hay and Parthasarathy, 2018).

Rieker et al. proposed a cost-effective and flexible light-
sheet microscopy for rapid 3D imaging of protein dynamics 
in model organisms and tissue samples. This system enabled 
multi-fluorescent imaging with low photobleaching and was 
capable of monitoring protein localization and gene expres-
sions. Fluorescence recovery after photobleaching (FRAP) 
assays were performed in cells and tissues of C. elegans. 
Future work may focus on the combination of microfluid-
ics platforms to perform this study on the higher organisms 
(Rieckher et al. 2015). The complementary beam subtrac-
tion (CBS) method using non-diffracting as well as self-
reconstructing Bessel beam (BB) and double scanning could 
decrease the background signal due to out-of-focus and axial 
resolution. The blurring and noise experienced during CBS 
imaging could be avoided with the help of a compressed 
blind deconvolution and denoising (CBDD) algorithm. This 
method however needs double scanning which results in 
huge calculation costs. A deep learning tool for Bessel beam 
based LSFM, capable of recreating good quality images is 
depicted in Fig. 5. As compared to the CBS284 CBDD 
method, the quality of image attainable with this CBS-Deep 
method was found to be competitive, whereas the speed of 
image reconstruction was 100 times faster. Increased fea-
sibility was achieved by decreasing reconstruction time 
and improving the scanning practices. This cost-effective 
and suitable method resulted in good quality images using 
the light sheet imaging technique. DL-based light-sheet 
fluorescence microscopy exhibits robust cell segmentation, 
improved cell detection and, very accurate microscopy data 
along with faster performance (Bai et al. 2019).

Light scattering is one of the major challenges in live 
imaging applications. Xiao et al. reported a DL approach 
ScatNet that reverses the high-resolution 3D fluorescence 
microscopy targets to less quality and light-scattered meas-
urements. This restored the light-scattered and blurred 
images of deep tissue. ScatNet approach can improve the 
imaging depth and its combination with LSFM was used 

in the restoration of cell nuclei images from the live Dros-
ophila melanogaster embryos. It was also be applied with 
two-photon excitation microscopy for mouse brain imaging 
leading to improvement in the SNR and neuron resolution. 
It could help in widespread applications in image segmen-
tation, and imaging away from the superficial cortex area 
(Xiao et al. 2020). Recovering the lost resolution by selec-
tive sub-sampling to obtain a wider field of view in a proper 
time scale was demonstrated by Corsetti et al. by combin-
ing a DL super-resolution with light-sheet microscopy by 
airy beam to obtain high-resolution images than better FOV 
and DOF. This method was implemented in the imaging 
of amyloid plaques in the mouse brain with Alzheimer’s 
disease, tissues of breast and colon cancer, and healthy tis-
sues (Corsetti et al. 2020). LSFM, fast-volumetric imaging 
has been highly prone to artefacts along with being highly 
effective throughput. A novel framework of hybrid light-
sheet microscope and DL-based volume reconstruction in 
which the single light-sheet provides validation and train-
ing data for CNN generating the volumetric microscopic 
data. The framework was applied for the heart dynamics of 
medaka and the neural activity of zebrafish. It was found to 
achieve good quality image reconstructions at high through-
put (Wagner et al. 2021).

Application of DL in label‑free microscopy

Quantitative phase microscopy

Quantitative phase imaging (QPI) is a label-free imaging 
technique that generates a quantitative image of phase delay 
in the optical path through the specimen. It is a cost-effec-
tive, less time-consuming technique that also eliminates the 
requirement for chemical reagents for staining. Rivenson 
et al. reported that DL-based holographic image reconstruc-
tion methods were found to be robust and rapid. In the study, 
CNN was trained using high-quality image labels which pro-
vided a high reconstruction speed in comparison with the 
iterative algorithms (Rivenson et al. 2019b). PhaseStain, a 
digital staining method has been developed which allows the 
transformation of quantitative phase images into bright-field 
microscopy-like images of the same histologically stained 
sample. This was performed by training a GAN (Riven-
son et al. 2019a). Jo et al. proposed a method for screening 
Bacillus anthracis using DL-based holographic microscopy. 
In this method, a deep CNN was trained with unlabelled 
holographic images of living cells to achieve high subgenus 
specificity and single-spore sensitivity. A CNN named Holo-
ConvNet was designed for the holographic image classifi-
cation of each cell. This “Representation learning” method 
enables the training of raw images directly instead of using 
features, extracted manually. Biologic characteristics are 
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identified and utilized as fingerprints. Intelligent holographic 
microscopy could identify and utilize classified fingerprints. 
It is believed that this strategy will result in the accessibility 
of holographic microscopy to doctors and scientists to per-
form rapid and accurate diagnoses leading to novel applica-
tions (Jo et al. 2017).

Digital holographic microscopy (DHM) is used to create 
a hologram of the sample by encoding a 3D optical field into 
intensity modulations through the interference of reference 
and scattered waves of the sample. However, challenges of 
DHM include missing phase, the appearance of coherence-
related artefacts like speckle noise and reflection interfer-
ence reducing the contrast of the image thereby affecting 
its utility. Ren et al. proposed that implementing DL solves 
autofocusing in digital holography by correctly labelling a 
hologram or predicting the accurate distance. The trained 
CNN could predict distance without the knowledge of 

parameters such as exposure time, object, or incident angle. 
The time consumed was observed to be lesser compared 
to that of conventional autofocussing techniques (Ren et al. 
2018). Gupta et al. demonstrated that CNN when combined 
with DHM achieved 91.3% accuracy in the classification of 
immune cells with a high throughput rate of more than 100 
cells per second. This proved to be an automated and robust 
method for application in clinical studies (Gupta et al. 2019). 
Conventional digital holography imaging (DHI) algorithms 
used many iterations to recover reconstructed focussed 
images and they were found to be time-consuming. Zhang 
et al. reported that a U-net CNN could be implemented to 
recover the original phase of the sample to a great extent. 
This was done by producing data sets to simulate various 
degrees of defocused image. This approach was applied in 
a real-time off-axis digital holographic microscope and was 
found to be feasible, accurate, and fast. To improve image 

Fig. 5  a Schematics of the 
CBS-based LSFM imaging sys-
tem. b Training of the network 
using a BB image and a corre-
sponding CBS-CBDD reference 
image in the x–y direction and 
then reconstructing the high-
quality output image using this 
trained x–y network. Com-
parison of the testing images, 
i.e., first row for fluorescent 
microspheres and the second for 
mouse brain section, obtained 
by c BB, d CBS-CBDD, and e 
the CBS-Deep methods, respec-
tively. This figure is adapted 
with permission from Bai et al. 
2019, IEEE Photonics Society
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quality, future research may concentrate on the removal of 
complex background additional phases (Zhang et al. 2018a, 
b).

In-line holography systems require phase recovery as an 
essential component which requires reconstructing multiple 
intensity holographic images/holograms. Rivenson et al. 
showed that a CNN-based rapid method could be used 
for phase recovery and image reconstruction by a single 
intensity hologram. A graphic processing unit (GPU)-
based laptop requires 3.11 s to recover phase and sample 
amplitude images for a FOV of 1  mm2. It was observed that 
this process was able to remove twin images and artefacts 
related to self-interference. The method was validated for 
Pap and blood smears. The CNN-based method used for 
this study, predominantly processed images by eliminating 
defocussed interference artefacts that may appear due to 
dust particles present on different surfaces of the imaging 
arrangement (Fig.  6) (Rivenson et  al. 2018a). Digital 
holographic microscopy allows the 3D reconstruction 
of samples throughout the volume from a snapshot of a 
single hologram, but the quality of reconstructions may be 
compromised by fringe interference. Wu et al. implemented 
an effective method combining the contrast of bright field 

microscopy with holographic image reconstruction using 
GAN. Snapshot imaging of bioaerosols in 3D was found to 
match the contrast and axial sectioning of a high numerical 
aperture bright-field microscope. This cross-modality 
method eliminated the need to scan the volumetric sample 
(Wu et  al. 2019a, b). Wu et  al. reported that a CNN-
based method was used to increase DOF by performing 
autofocusing and phase recovery. The deep-learning-based 
framework known as holographic imaging using deep 
Learning for Extended Focus (HIDEF), used random pairs 
of defocussed holograms and focussed phase-recovered 
images. This resulted in decreased time complexity of 
image reconstruction in 3D by simultaneously refocussing 
and phase recovery (Wu et al. 2018).

Pitkäaho et  al. demonstrated the determination of 
focussed reconstruction depth of Madin-Darby canine kid-
ney cell clusters using DL. CNN was trained with focussed 
depths of many holograms, and it later predicted the depth 
with high accuracy without any numerical propagation (Pit-
käaho et al. 2019). Zhang et al. proposed a deep phase shifter 
that was used to produce multiple interferograms from a 
single interferogram. It was reported that a deep-phase-shift 
network (DPS-net) was trained with simulation data set and 

Fig. 6  a Architecture of deep neural network is composed of convo-
lutional layers, residual blocks, and upsampling blocks which blindly 
outputs artefact-free phase and amplitude images of the object using 
only one hologram intensity. Comparison of the holographic recon-
struction results for different types of samples: b–i Pap smear, j–q 
breast tissue section. b, j Zoomed-in regions of interest from the 
acquired holograms. c, d, k, l Amplitude and phase images result-
ing from free-space back-propagation of a single hologram intensity, 
shown in b and j, respectively. e, f, m, n Corresponding amplitude 
and phase images of the same samples obtained by the deep neural 
network, demonstrating the blind recovery of the complex object 

image without twin-image and self-interference artefacts using a 
single hologram. g, h, o, p Amplitude and phase images of the same 
samples were reconstructed using multi-height phase retrieval with 8 
holograms acquired at different sample-to-sensor distances. q Corre-
sponding bright-field microscopy images of the same samples, shown 
for comparison. The yellow arrows point to artifacts in g, h, o, p (due 
to out-of-focus dust particles or other unwanted objects) that are sig-
nificantly suppressed by the network reconstruction, as shown in e, 
f, m, n. This figure is adapted with permission from Rivenson et al. 
2018a, Springer Nature

474 Biophysical Reviews (2022) 14:463–481



1 3

it could be used in phase recovery for real samples. It was 
found to be a feasible, precise method, with the potential to 
improve the quantitative phase imaging technology (Zhang 
et al. 2020a, b, c). It has been observed that for the early 
diagnosis of parasitic infection, usually, the present screen-
ing techniques struggle to provide adequate sensitivity and 
volumetric throughput. Zhang et al. demonstrated a label-
free motility-based computational imaging device to detect 
motile parasites in the body fluids. Detection of the parasites 
in a bodily fluid is tedious due to the presence of a large 
number of red blood cells, white blood cells and platelets in 
comparison with a limited number of parasites (100 para-
sites/mL) in the sample. Also, state-of-the-art immunol-
ogy techniques such as polymerase chain reaction (PCR) 
and rapid diagnostic tests (RDTs) are limited by sensitiv-
ity. Hence, the holographic speckle analysis algorithm with 
deep learning could be the best method that can be used to 
detect trypanosomes in the whole blood and cerebrospinal 
fluid. It was reported that 10 trypanosomes per mL of blood 
and three trypanosomes per mL of CSF were detected. The 
method was found to be fast, accurate, and cost-effective for 
the detection of parasites (Zhang et al. 2018a, b). Lens-free 
holographic microscopy (LFHM) is a profitable instrument 
for large FOV imaging. Lou et al. proposed a DL-based pixel 
super-resolution (PSR) method that overcomes the resolu-
tion limit of LFHM with the help of a sequence of sub-pixel 
shifted lesser resolution (LR) lens-free holograms to create a 
high-resolution hologram (HR). This approach could notably 
increase the acquisition of data and the high-resolution holo-
gram reconstruction processes, hence providing a solution to 
lens-free, high-resolution imaging. This method successfully 
overcame the resolution limit of LFHM. With the growth in 
DL-based holographic imaging and the computing power of 
GPU, fast and large FOV super-resolution lens-free imag-
ing for screening and lab-on-a-chip applications be achieved 
(Luo et al. 2019).

Deep neural networks (DNNs) have been extensively used 
for QPI, especially for transparent samples. An untrained 
DNN, which does not need training data was used for meas-
urement, imaging, and phase reconstruction (Ye et al. 2020). 
Ye et al. demonstrated the latest phase retrieval approach on 
DNN. The approach has simplified the procedure of meas-
uring by giving one interferogram as input and QPM based 
on off-axis holography measures it and gives QPI as an out-
put image. It has made real-time phase retrieval easier by 
abolishing the need for phase unwrapping. The method was 
found to be similar when compared with the Fourier Trans-
form method of phase retrieval. DNN-based phase retrieval 
may result in wider application of QPM in material metrol-
ogy and bioimaging in the future (Bostan et al. 2020). A 
DL-based network, conditional GAN (C-GAN) can remove 
twin-image noise from the phase images of Gabor holog-
raphy which were trained by a quantitative contrast-phase 

image from the off-axis digital holography. A human red 
blood cell and elliptical cancer models were trained, and the 
biochemical properties were quantified. The model was able 
to recover other elliptical cell lines as well. The misalign-
ments could be neglected especially in the case of incorrect 
reconstruction distance as this model could still extract in-
focus images (Moon et al. 2020). O’Connor et al. demon-
strated a first DL approach in the identification of cells and 
diagnosis of disease with the help of spatio-temporal infor-
mation of cells retrieved by a DHM system. Shearing DHM 
could record live cells and phase profiles were reconstructed 
for the classification at each time instances of segmented 
cells. This data was then input in the recurrent bi-directional 
long short-term memory (Bi-LSTM) network which in turn 
classify cells depending on their time-varying behavior. The 
proposed approach showed better performance compared to 
traditional machine learning methods on a dataset of dis-
eased and healthy human red blood cells (O’Connor et al. 
2020). Based on the morphology and motility observed by 
Bright field microscopy, a sperm cell is selected for the intra-
cytoplasmic sperm injection (ICSI) procedure of assisted 
reproductive technology (ART). However, to identify and 
distinguish even the smallest morphological feature which 
may affect the fertilizing potential of the sperm cell, bright 
field contrast is not sufficient. A partially spatially coherent 
DHM (PSC-DHM) was developed to distinguish between 
normal sperm cells and the ones under stress conditions like 
cryopreservation, around hydrogen peroxide and ethanol. 
Using the data from PSC-DHM, phase maps for normal and 
stress-conditioned sperm cells were reconstructed and clas-
sified by DNN. During the validation using the test dataset, 
specificity of 84.88%, the sensitivity of 95.03% and accu-
racy of 85% were obtained. DNN-based QPI can be further 
applied for diagnosing and classifying semen based on its 
quality and fertilizing ability (Butola et al. 2020).

Raman microscopy

Raman spectroscopy is one of these techniques that have 
managed to gain considerable attention, as it is non-destruc-
tive and provides precise information at a molecular level 
(Mahadevan-Jansen and Richards-Kortum 1996; Stone et al. 
2004). It is an efficient analytical technique that helps to 
study the structure and binding of molecules by examining 
their scattering properties. The sensitivity of Raman spec-
trometers has helped to obtain high-quality Raman spectra 
from tissues and cells. Confocal Raman microscopy was 
used for the detection of lung cancer. The stained sections 
of normal lung tissue were used as a reference and scanned 
with a microscope. Mean spectra are calculated from these, 
and two spectra were obtained for malignant and normal tis-
sues. A data reduction technique called principal component 
analysis (PCA) has been used in combination with Raman 
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microscopy to analyze the presence of variation among the 
spectra by reducing it to a smaller number of principal com-
ponents. PCA, along with Raman microscopy, has there-
fore been applied to distinguish normal and malignant lung 
tissue with a sensitivity and specificity of 84% and 61%, 
respectively. Many subtle differences in intensities between 
the two main spectra can be identified along with the main 
differences in intensity of the Amide I band in lung tumors. 
Raman microscopy of tissue sections can differentiate 
between malignant and normal bronchial tissue and predict 
the postoperative occurrence of cancer (Magee et al. 2010). 
Although, the spontaneous Raman technique is used for vari-
ous biomedical applications, however, it suffers from small 
scattering cross-section, sensitivity and live-cell imaging.

Stimulated Raman scattering (SRS) microscopy is 
a quantitative label-free chemical imaging method that 
has exhibited biomedical imaging utilities. However, the 
absorption and scattering of light often cause a low signal-
to-noise ratio (SNR) and low image quality. Manifold et al. 
proposed the application of a deep learning algorithm to 

denoise the signal and to retain the quality of the image 
at the same time. The DL algorithm was based on U-net 
CNN, which was used for the images at different imaging 
depths, power, and zoom. Hence, deep learning was found 
to be a powerful tool in imaging, where parameters were 
not constant and ground-truth images were not used to 
create a supervised learning training set. Other denoising 
algorithms used, resulted in blurred biological features of 
the image (Fig. 7) (Manifold et al. 2019). A study by Suzuki 
et al. reported the use of CNN structure (VGG-16) in the 
analysis of images of blood cells and E. gracilis obtained 
from the  SRS imaging flow cytometer by classifying 
different cell types (Suzuki et al. 2019). This technique is 
label-free and hence it overcomes the cytotoxicity problem 
faced with conventional flow cytometry. Further, it showed 
a high throughput of 140 cells/s. Another application was 
found in cancer diagnosis. Acquiring a 3-D assessment of 
tumor edges was difficult and the presence of sub-mucosal 
extension may cause recurrence of the tumor. Hence, 
Zhang et  al. demonstrated that a deep learning model, 

Fig. 7  Coronal mouse brain SRS images acquired at 2990   cm−1. 
a Low-power image acquired at 1 mW Stokes and 20 mW pump. b 
The low-power image denoised with VST. c The low-power image is 
denoised with the deep learning algorithm. d The high power image 
acquired at 20 mW Stokes and 20 mW pump. Two-color (lipids and 
proteins) composite SRS images of ex  vivo mouse brain and cor-
responding pixel value-line plots. e Low-power image acquired at 1 

mW Stokes 20 mW pump. f The low-power image is denoised using 
VST. g The low-power image is denoised with the deep learning algo-
rithm. h The high-power image acquired at 20 mW Stokes and pump. 
Pixel value-line plots along the red line are shown for each composite 
image; Two-color (lipids-green, proteins-blue) SRS images of a coro-
nal mouse-brain slice. This figure is adapted with permission from 
Manifold et al. 2017, SPIE
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ResNet combined with SRS imaging has the potential for 
intraoperative diagnosis of such resection margins. This 
model may be further optimized for robust and automated 
prediction in the future (Zhang et al. 2019).

CARS is a label-free imaging technique with great 
potential in cancer diagnosis. However, conventional 
methods face challenges due to low signal-to-noise ratio 
and uneven background. They also perform inefficient 
CARS image segmentation. Various studies have shown 
that the DL-based CARS image analysis has been able to 
overcome these challenges with effective and automated 
nuclei segmentation. Hammoudi et  al. demonstrated a 
fully automated approach for nuclei segmentation by 
combining superpixels and artificial neural networks for 
nuclei identification in CARS images of lungs. The nuclei 
segmentation was performed without even looking for 

cell morphology which was a very critical step. Results 
proved that this approach showed great potential in nuclei 
segmentation (Hammoudi et al. 2011). In a study by Weng 
et al. the application of DL algorithms to CARS images was 
shown for cancer tissue identification in the lungs. A CNN 
was pre-trained on ImageNet data and retrained with CARS 
images using the transfer learning method (illustrated in 
Fig. 8). This method led to a reduced processing time with 
real-time analysis. Additionally, this method could also 
differentiate between cancerous lung tissue and normal 
lung tissue with an accuracy of 89.2%. With respect to 
the current research and interesting developments, a 
miniaturized CARS imaging method for fiber-based micro-
endoscopic imaging and a multimodal image classification 
algorithm for real-time tissue detection would be desirable 
in the future (Weng et al. 2017).

Fig. 8  a Transfer learning layout. A GoogleNet Inception v3 CNN, 
pre-trained on the ImageNet data is fine-tuned with CARS images 
comprising four classes: normal, small-cell carcinoma, squamous 
carcinoma, and adenocarcinoma. b–e Representative CARS images 
and f–i corresponding H&E-stained images of human lung tissues: 
b, f normal lung, c, g adenocarcinoma, d, h squamous cell carci-
noma, and e, i small-cell carcinoma. Scale bars: 50 μm. Deep CNN 
model performance on the j normalized confusion matrix. Each row 

represents the instances in a ground-truth class and the value in each 
column represents what percentage of the images is predicted to a 
certain class. k ROC curves for three conditions: separating cancer-
ous from normal lung images (light blue); separating small-cell carci-
noma from nonsmall cell carcinoma lung images (dark blue); separat-
ing adenocarcinoma and squamous carcinoma lung images (orange). 
AUC scores are given in the legend. This figure is adapted with per-
mission from Weng et al. 2017, SPIE
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Limitations of DL

Despite the many advantages of DL algorithms for the 
accurate assessment of microscopic images, there are a 
few limitations. Biophotonics is a growing field, and the 
availability of an all-inclusive clinical dataset is critical 
DL requires a large amount of annotated data to perform 
an underlying analysis (Dumur et al. 2019). Using a small 
dataset to train the DL models could lead to overfitting 
that cause poor generalizability of the dataset. To reduce 
the need for supervised learning methods, approaches such 
as transfer learning, unsupervised learning, and weakly 
supervised learning could be adopted. In transfer learn-
ing a trained algorithm is restructured and used according 
to the requirement whereas in weekly supervised/unsu-
pervised methods the model is trained with the raw data. 
However, they have not been proven as effective as super-
vised learning (Hägele et al. 2020; Zhang et al. 2020a, b, 
c). Moreover, DL performs better on images from bench-
marked datasets as compared to images from an alien 
dataset, calling for time-consuming training (Hesamian 
et al. 2019). Along with this, the lack of variability in the 
training dataset causes an imbalance and greatly affects 
the performance of the model. Additionally, the direct 
implementation of DL models in the healthcare system 
is a crucial issue, since the performance of the model is 
still not known.

Conclusion

The applications of DL-based image processing methods 
in optical microscopy have been found to improve the 
image quality and spatial resolution with automated analy-
sis of the acquired images (Rivenson et al. 2017; Caicedo 
et al. 2019). In recent years, the availability of an enor-
mous amount of data and high-speed computing systems 
has led to the rapid development of DL techniques. By 
using publicly available data sets it is possible to develop 
algorithms from scratch and it is also feasible to use pre-
trained networks such as GoogleNet, Vgg-16, and UNet, 
with transfer learning (Mohanty et al. 2016). Such tech-
niques have proven to enhance image resolution in vari-
ous microscopic techniques and enable automated disease 
classification (Li et al. 2018). Additionally, DL in optical 
microscopy is also used to monitor gene expression and 
protein localization in organisms (Silvestri et al. 2015). 
The application of DL in smartphone-based microscopy 
has led to the development of portable devices which facil-
itate the early detection of cancer (Rivenson et al. 2018b; 
Wei et al. 2014; Uthoff et al. 2018; Bornhorst et al. 2019). 

Holographic image reconstruction has been made easy 
with the use of DL, which helps in the accurate recon-
struction of the image with reduced hardware requirement 
(Jo et al. 2017; Rivenson et al. 2018a). Accordingly, CNN-
based DL networks employed in medical image process-
ing have emerged as one of the potential tools in image 
enhancement and prediction.
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