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Abstract: Inflammation is a natural response to tissue injury. Uncontrolled inflammatory response
leads to inflammatory disease. Acute pancreatitis is one of the main reasons for hospitalization
amongst gastrointestinal disorders worldwide. It has been demonstrated that endogenous hydrogen
sulfide (H2S), a gasotransmitter and substance P, a neuropeptide, are involved in the inflammatory
process in acute pancreatitis. Cell adhesion molecules (CAM) are key players in inflammatory
disease. Immunoglobulin (Ig) gene superfamily, selectins, and integrins are involved at different
steps of leukocyte migration from blood to the site of injury. When the endothelial cells get acti-
vated, the CAMs are upregulated which leads to them interacting with leukocytes. This review
summarizes our current understanding of the roles H2S, substance P and adhesion molecules play in
acute pancreatitis.

Keywords: ICAM-1; VCAM-1; MAdCAM-1; VAP-1; Hyaluronan; hydrogen sulfide; substance P;
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1. Introduction

The main objective behind this review is that we highlight a key role of hydrogen
sulfide, substance P, and cell adhesion molecules in inflammation of pancreas.

To the best of our knowledge, this is the first review to highlight these the roles of
specific cell adhesion molecules from Immunoglobulin superfamily cell adhesion molecule
(IgSF CAM), as well as a couple of atypical adhesion molecules (Hyaluronan and Vascu-
lar Adhesion Protein-1/Amine Oxidase Copper Containing 3 (VAP-1/AOC3)) in acute
pancreatitis and associated inflammatory response.

Acute pancreatitis is an inflammatory disorder of the pancreas that is associated
with significant morbidity and mortality. It is characterized by acute inflammation; the
severity can vary between mild acute pancreatitis with local edema to severe disease with
widespread parenchymal necrosis with severe hemorrhage. Mild acute pancreatitis can be
reversible. However, in cases of high severity, acute pancreatitis is associated with systemic
inflammatory response syndrome (SIRS), which, if excessive, can lead to multiple organ
dysfunction syndrome (MODS) (a major component of which is lung injury, clinically
manifested as acute respiratory distress syndrome—ARDS) and even death [1].

Hydrogen sulfide (H2S) and substance P are key mediators of inflammation in acute
pancreatitis. Recruitment of leukocytes to the site of injury/inflammation by adhesion
molecules is a key step in the regulation of the inflammatory process. There is evidence
for the vital role played by adhesion molecules in the pathogenesis of inflammation in
acute pancreatitis. This review describes our current understanding on the role of H2S and
substance P and their interaction with adhesion molecules in the regulation of inflammation
in acute pancreatitis
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2. Acute Pancreatitis

The prevalent etiological factors leading to the development of acute pancreatitis
are pancreatic ductal obstruction due to gallstones and excessive alcohol consumption,
which together are responsible for over half (50%) of the reported cases. A medical
procedure called endoscopic retrograde cholangiopancreatography (ERCP) and common
drugs such as thiazide diuretics, can also trigger pathological cellular pathways and
organelle dysfunction, leading to characteristic pathology of acute pancreatitis, which
involves acinar cell death accompanied by local and systemic inflammation.

In the industrialized world, acute pancreatitis affects 10–20 per 100,000 people. On
the global scale, acute pancreatitis affects 34 people per 100,000, and the incidence is
increasing [1,2]. Currently, it is the most common gastrointestinal disorders to cause
hospitalization in the USA, generating an annual bill of $9.3 billion for the healthcare
system [3,4]. Around 18% of the people suffering from acute pancreatitis experience
recurrence, and 8% of people go on to develop chronic pancreatitis. Both of these together
add to the financial burden on healthcare [5,6]. In 2013, readmissions costs resulting from
acute pancreatitis exceeded $3.8 billion in the USA [7].

3. Inflammatory Mediators

Acute pancreatitis, as the name suggests, is an inflammatory disease with a rapid onset.
Like other inflammatory conditions, different mediators, such as hydrogen sulfide, substance
P and adhesion molecules, play critical roles at various stages of disease progression.

3.1. Hydrogen Sulfide (H2S)

Hydrogen sulfide (H2S) is a colorless, poisonous, and toxic gas with a foul odor. It
is a biological gaseous signaling molecule, which plays an immense pathophysiological
role in various diseases [8]. Endogenously synthesized H2S has been implicated in various
physiological and pathological aspects of an inflammatory response [9]. H2S is also impli-
cated in increasing the generation of different pro-inflammatory mediators and worsening
systemic inflammation.

3.1.1. Synthesis

There are 2 main sources through which H2S is synthesized:
Enzymatic source
There are currently three known enzymes that are capable of synthesizing hydrogen

sulfide: cystathionine-γ-lyase (CSE), cystathionine-β-synthase (CBS), and 3-mercaptopyruvate
sulfurtransferase (3MST). Both CBS and CSE are found in the cytosol, and 3MST is found in
the mitochondria [10]. The tissue distributions of these three enzymes are varied in location
as well as levels of expression. The liver and kidney are the two organs that express all
three enzymes at high levels [11–13]. CBS is also expressed in the brain, lung, stomach, and
pancreas [11] while CSE is found in the stomach, small intestine, pancreas, and smooth
muscle [9,13,14]. 3-MST in shown to be present in the brain, heart, lung, thymus, and
testes [12].

The levels of CSE and CBS in tissues where both enzymes are co-expressed are varied.
For example, the liver and kidney express higher levels of CSE compared to CBS, 60 and
20-fold respectively [15].

CSE and CBS are enzymes involved in the transsulfuration pathway and are directly
involved in the generation of hydrogen sulfide as a byproduct through their diverse
catalyzed reactions [16]. Under physiological conditions, the major reaction catalyzed by
CSE in the generation of hydrogen sulfide is via the α,β-elimination of cysteine [17], which
is a sulfur containing (as a thiol group) amino acid (Figure 1).
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The major reaction catalyzed by CBS in the generation of hydrogen sulfide is via the
condensation of cysteine and homocysteine to produce cystathionine [16] (Figure 2).
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3MST, on the other hand, catalyzes the conversion of 3-mecaptopyruvate to pyruvate
resulting in the formation of a 3MST persulfide. This persulfide moiety then requires
specific reducing agents such as thioredoxin and dihydrolipoic acid to release hydrogen
sulfide [18]. Therefore, it is perceived that the major contributors of endogenous hydrogen
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sulfide are CSE and CBS [15] although it has been shown that 3MST does contribute to
endogenous hydrogen sulfide generation in certain tissues [19,20].

Labile source
Apart from enzymatic synthesis of free hydrogen sulfide, there are bound sulfur

sources that could release free hydrogen sulfide upon acidification or reduction of the
parent molecule; these sources are acid-labile sulfide and Dithiothreitol (DTT)-labile sulfide
(or sulfane sulfur) respectively [21]. The relative amounts of free sulfide present in these
discreet pools in biological samples are still a subject of continuous study as more sensitive
and specific methods are continuously developed. At present, human plasma acid-labile
sulfide is reported to be in the low micromolar range followed by sulfane sulfur and free
sulfide, both of which are at similar low nanomolar concentrations [22]. In murine tissues,
the brain was reported to contain 12.5 nmol/g and 18.5 nmol/g of acid labile and sulfane
sulfur respectively [23].

The major source of acid-labile sulfide is iron-sulfur cluster containing proteins [24],
these proteins are ubiquitous, diverse and serve a wide array of functions [25]. Although
the iron-sulfur cluster containing proteins provides a substantial source of labile sulfide,
it is an unlikely physiological endogenous source as a maximum of pH 5.4 is required
to release the bound sulfur as sulfide [26]. Sources of sulfane sulfur include thiosulfate,
thiosulfonates, polysulfides, and protein persulfides [24]. Although reducing agents are
present in the cell (i.e., glutathione and cysteine), it was demonstrated that an alkalized
cytoplasm is instrumental for an efficient release of hydrogen sulfide from these sulfane
sulfur sources [26]. This was shown by using rat astrocytes, which have high concentrations
of extracellular K+ in physiological conditions when adjacent or nearby neurons are in
excited state [26]. Among the available sources of sulfane sulfur, protein persulfides are
particularly intriguing as they are not synthesized de novo as a persulfide but are a product
of a cystiene thiol modification by the addition of divalent sulfide molecule resulting in the
formation of an R-S-SH; this process is termed sulfhydration akin to s-nitrosylation [27]. A
substantial number of proteins were reported to be basally s-sulfhydrated and the addition
of exogenous hydrogen sulfide further increases the level [27].

H2S has also been shown to be scavenged in proteinaceous biological solutions such
as plasma [28], tissue homogenates [26,29] and single protein solutions containing cysteine
residues [28]. These scavenged hydrogen sulfides were then partially retrieved by applying
a reducing agent to the homogenates [26,29]. This suggests that protein persulfides could
serve as both a source as well as a sink of endogenous free hydrogen sulfide.

Figure 3 provides an overview of our current understanding regarding the endogenous
synthesis of H2S.
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3.1.2. Role in Acute Pancreatitis

Exploring the mechanism through which H2S affects the inflammatory process in acute
pancreatitis has been of significant scientific interest. This pursuit involves working with
both isolated pancreatic acini, which is an ideal in vitro model for studying the exocrine
function of pancreas, and also an in vivo model of acute pancreatitis.

Stimulation of acini by caerulein in vitro leads to changes within them, similar to those
observed in acini in acute pancreatitis in vivo. In isolated pancreatic acinar cells, inhibition
of CSE by propargylglycine (PAG), decreases production (messenger RNA (mRNA) as well
as protein) of the chemokines monocyte chemoattractant protein (MCP)-1, macrophage
inflammatory protein (MIP)-1α, and MIP-2 [30,31].

A pro-inflammatory action of H2S in acute pancreatitis has been shown using different
and complementary approaches: pharmacological inhibition of H2S synthesis by CSE [32],
gene deletion using CSE knockout mice [33], and CSE gene silencing using siRNA [34].
It was shown that when CSE is inhibited by PAG resulting in decreased H2S production
in caerulein-induced acute pancreatitis in the mouse in vivo, inflammation is inhibited
through downregulation of MCP-1, MIP-1α, and MIP-2 expression [31]. Another study
has shown that the proinflammatory actions of H2S in acute pancreatitis are mediated via
PI3K/Akt/Sp1 signaling pathway [35]. Recent reports have shown that the attenuation
of CSE mediated H2S synthesis with gene silencing, gene deletion, and pharmacological
inhibition alleviates inflammation [9].

A recent study has suggested that autophagy, a key pathology in acute pancreatitis, is
enhanced by hydrogen sulfide by the AMPK/mTOR pathway [36].

3.2. Substance P (SP)

Substance P is a neuropeptide from the tachykinin family. This family comprises of
4 other members, namely neuropeptide K (NPK), neuropeptide-γ (NPγ), neurokinin-A
(NKA), and neurokinin-B (NKB). Substance P is an important mediator for inflammation in
acute pancreatitis and associated lung injury. It is synthesized in cell bodies of vagal sensory
ganglia and transported bidirectionally toward the CNS and thoracic and abdominal
viscera. It is also the most abundantly available neuropeptide [37,38]. Substance P acts
via three different G protein coupled receptors (GPCRs), namely neurokinin (NK) 1R, 2R,
and 3R (R = receptor). Of these three, substance P has highest affinity towards NK-1R,
while having a minimal affinity for NK-2R and NK-3R. Hence, the NK-1R is responsible
for majority of the effects brought on by substance P [39].

Substance P is present along with other amine neurotransmitters and/or peptides
in neuronal terminals. When released, it acts as a neurotransmitter or a neuromodulator.
In the peripheral nervous system, substance P acts as a neurotransmitter in the primary
sensory neurons with cell bodies in the dorsal root ganglia and cranial sensory ganglia.
These neurons are responsible for transmitting sensory information from the periphery
to the central nervous system, along with the local release of substance P. This leads to
neurogenic inflammation, which is characterized by vasodilation and increased vascular
permeability [37,38].

Role in Acute Pancreatitis

Substance P, an important inflammatory mediator, is critical in the pathogenesis of
acute pancreatitis. To demonstrate this, studies were done which showed its role acting via
the NK-1R [40–43].

Different experimental approaches—gene knockout for substance P (pre-protachykinin-
A—PPT-A gene) and its receptor [41] NK-1R, pharmacological inhibition of its action
by using specific receptor antagonist [44], and inhibitors for neutral endopeptidase, the
enzyme responsible for its inactivation [45] have been used to study the role of substance P
in acute pancreatitis.

Substance P induces local vasodilatation, increases microvascular permeability and
edema, which lead to the accumulation of leukocytes. Substance P is also produced by
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macrophages, eosinophils, and dendritic cells. Using isolated pancreatic acini and in vivo
models of acute pancreatitis, our group has shown that Substance P stimulates the forma-
tion of pro-inflammatory chemokines by a Ca2+, protein kinase C (PKC-δ), extracellular-
signal-regulated kinase (ERK), S locus receptor kinase (SRK), and nuclear factor kappa B
(NF-κB) dependent pathways [46,47].

3.3. Interaction between H2S and Substance P

Hydrogen sulfide and substance P interact with each other and regulate the develop-
ment and progression of acute pancreatitis. However, more can be investigated about their
relationship and acute pancreatitis. One such study showed that inhibition of substance P
by 2 different methods; NK-1R antagonism using CP-96,345 and PPT-A−/− mice, which
lack the gene responsible for substance P synthesis, led to a decrease in hydrogen sulfide
mediated lung inflammation [48], suggesting a relation between them.

When normal mice were injected with sodium hydrogen sulfide (NaHS) intraperi-
toneally, a significant NK-1R-dependent increase in plasma levels of substance P was ob-
served, while pronouncing lung inflammation and acute pancreatitis [8]. In preprotachykinin
A (PPT-A—substance P encoding gene) knockout (PPT-A−/−) mice, this inflammatory effect
of H2S on lung inflammation was not observed.

Removal of substance P from sensory neuron by the administration of capsaicin,
protected mice against H2S-induced lung inflammation. Furthermore, administration
of capsazepine, an antagonist of the transient receptor potential vanilloid-1 (TRPV-1),
protected mice against H2S-induced inflammation. These findings suggest that substance
P plays a critical role in neurogenic inflammatory pathways involved in H2S-mediated
inflammation [48]. Substance P is present in a number of pathways within the central and
peripheral nervous system and also in various cells of the immune system [49].

As acute pancreatitis progresses, there is an increased risk for the development of SIRS,
which is similar to the infection-dependent SIRS caused in sepsis. A significant decrease
of substance P in plasma and tissue, along with decreased NK-1R expression following
SIRS caused by sepsis in CSE- knockout mice is observed, which strongly suggests that
CSE/H2S is one of the key mechanisms regulating substance P and NK-1R in sepsis. This
is consistent with studies using CSE inhibitors and H2S donors [9].

Another study to explore H2S-substance P relationship was carried out by inhibiting
H2S synthesis with the help of PAG. The treatment resulted in decreased levels of substance
P in the pancreas, lung, and plasma in acute pancreatitis [50]. This pharmacological
inhibition of H2S also reduced expression for both NK-1R and PPT-A in the pancreas and
lungs in acute pancreatitis [50]. These findings suggest that the proinflammatory actions of
H2S in acute pancreatitis may be mediated via substance P [50].

In vitro studies with isolated pancreatic acini indicate that in acute pancreatitis, H2S
enhances the activity of the Toll-like receptor 4 pathway and NF-κB via substance P [51].

3.4. Role of Endothelial Cells in Acute Pancreatitis

Under physiological conditions, vascular endothelial cells play a crucial role in regulating
vascular wall functions. However, in the case of acute pancreatitis, there is disturbance in
microcirculation, leading to endothelial cell injury. There are different factors released in such
cases, for e.g., thrombomodulin, vasodilators, vasoconstrictors, and adhesion molecules.

In acute pancreatitis, different chemical mediators are produced in excess, which leads
to the accumulation of leukocytes at the site of injury (predominantly neutrophils) and
dysfunction in various organs [52]. Neutrophils and pancreatic parenchymal cells are
acted upon by endotoxins and cytokines, which upregulates the expression of adhesion
molecules and reinforces their adhesion potential. Chemokines, such as Interleukin-8 (IL-8),
increase the adhesion potential of immune cells on the vascular endothelial cells, which are
immobilized on the cell surface and migrate through the spaces to the inflamed area [53,54].
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3.5. Adhesion Molecules

Adhesion molecules like selectin, integrins, and immunoglobulins have a pivotal role
in the inflammatory process. Adhesion molecules are instrumental in cell migration, cell
proliferation, signal transduction, as well as in the development and repair at the tissue
level. They are important in mediating the infiltration of leukocytes from the bloodstream to
the inflammatory site and serve to enable an orderly sequence of cell–cell interactions that
sustain leukocyte adherence to vascular endothelium and the subsequent trans endothelial
migration into inflamed tissue, for e.g., in acute pancreatitis [55].

In acute pancreatitis, inflammation is characterized by migration of inflammatory
mediators and structural disruption of tissue. The disease progression involves an increase
in solute permeability, followed by the development of interstitial edema. This change
in permeability results from a decrease in intercellular adhesion among pancreatic acini
and/or endothelial cells [55].

One of the key regulators in acute pancreatitis is oxidative stress. It promotes the ex-
pression of adhesion molecules in the inflamed area. The expression of these cell adhesion
molecules is also upregulated following endothelial cell activation by different inflamma-
tory chemokines and cytokines. When endothelial cells are activated, their interaction
with leukocytes is increased. Selectins are important mediators for the initial interaction
between the leukocytes and active endothelial cells are selectins; while other adhesion
molecules, such as integrins and Ig superfamily cell adhesion molecules (IgSF CAM) are
important for the firm cellular adhesion and following steps [55].

Different adhesion molecules, such as vascular cell adhesion protein 1 (VCAM-1), inter-
cellular adhesion molecules 1 (ICAM-1), vascular adhesion protein1 (VAP-1), Hyaluronan,
and mucosal addressin in cell adhesion molecules (MAdCAM-1) have been reported in the
inflammation of the pancreas, resulting in the progression of inflammatory disease [56–60].

The severity of acute pancreatitis can be reduced by inactivation and/or immunoneu-
tralization of adhesion molecules [61,62] It has been observed in rodents that following
inactivation of adhesion molecules by monoclonal antibodies, capillary blood flow is
increased in the pancreas, along with reduction in leukocyte rolling, and stabilization
of capillary permeability [63]. The interaction between leukocytes and endothelial cells
through adhesion molecules is a part of early events in acute pancreatitis, where it de-
termines the rate for microvascular dysfunction. The therapeutic potential of inhibiting
adhesion molecules is in the initial phases of investigation. However, new chemical agents
that target these inflammatory mediators may soon get tested in a clinical setting.

Table 1 summarizes our knowledge on the biological effects of adhesion molecules in
acute pancreatitis.

Table 1. Biological effects of adhesion molecules in acute pancreatitis.

Adhesion Molecule Biological Effects

ICAM-1 [41,64–68] Important marker for early detection, key role in neutrophil migration
VCAM-1 [55,69–71] Important role in leukocytic migration

MAdCAM-1 [54,60,72,73] Possible role in lymphocytic migration
VAP-1 [56,74,75] Important role in leukocytic migration

Hyaluronan or Hyaluronic acid [58,76–79] Key role in interstitial edema, which leads to tissue necrosis
Selectins [62,80–88] Important for leukocyte recruitment

3.5.1. ICAM-1

High serum levels of ICAM-1 have been detected in acute pancreatitis, especially
in severe and/or necrotizing acute pancreatitis. These elevated ICAM-1 levels can be
correlated with a higher mortality rate and the development of pancreatic necrosis. Hence,
it is a potential early marker, for both the diagnosis as well as prognosis of severe acute
pancreatitis [64].

Neutrophils are consequential for inflammation in acute pancreatitis. To explore
their role, mice were treated with an anti-neutrophil serum. Following administration,
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the treated mice were protected against acute-pancreatitis-associated lung injury [41],
demonstrating their importance.

A vital role of ICAM-1 in the action of neutrophils in acute pancreatitis was shown
in a study in which genetically deficient mice in ICAM-1 were protected against acute
pancreatitis and associated lung injury. In ICAM-1 knockout mice, treatment with an
anti-neutrophil serum did not provide any further protection [65]. These results showed
an important contribution of ICAM-1 in the action of neutrophils in inflammation in acute
pancreatitis. ICAM-1 and chemokines such as macrophage inflammatory peptide 1-α (MIP
1-α), MIP-2, and interleukin-8 (IL-8) are responsible for the recruitment of neutrophils, both
in the pancreas and the lungs. These events are considered vital in the initial development
of acute pancreatitis [66,67].

Treatment with a rapid H2S donor, such as sodium hydrogen sulfide (NaHS), results in
increased expression of ICAM-1 and neutrophil adhesion to pancreatic acinar cells treated
with caerulein, via NF-κB and Src-family kinase pathway [68].

3.5.2. VCAM-1

VCAM-1 is usually expressed when endothelial cells are activated, and not in normal
conditions [55]. The expression of VCAM-1 is upregulated under stimulation from different
inflammatory cytokines. It plays an important role in the migration of various leukocytes,
namely monocytes, eosinophils, basophils, lymphocytes, and natural killer (NK) cells, to the
inflamed area [69]. Blockage of VCAM-1 resulted in decreased recruitment and adherence
of leukocytes into the lungs, thus inhibiting lung injury in severe acute pancreatitis [70].
VCAM-1 expression is known to be positively correlated with the extent of organ damage
in the animal model of acute pancreatitis [71].

3.5.3. MAdCAM-1

MAdCAM-1 is present on high endothelial venules and mucosal vessels, where it
is responsible for directing lymphocytes toward Peyer’s patches and the intestine [72].
MAdCAM-1 executes critical roles in different inflammatory diseases, e.g., in inflammatory
bowel disease (IBD). MAdCAM-1 has the capacity to bind and retain β7-integrin expressing
lymphocytes within the gut, where they appear to exacerbate inflammation in IBD.

The expression of MAdCAM-1 on pancreatic vascular endothelium has been recorded
in caerulein-induced acute pancreatitis. This suggests that MAdCAM-1 might play a
role in the recruitment of lymphocytes, resulting in the exacerbation of both local injury
and remote injury to multiple organs in acute pancreatitis [60]. Different reports suggest
that the expression of MAdCAM-1 in pancreas is regulated via protein kinase C (PKC),
mitogen-activated protein kinase (MAPK), NF-kB, etc., along the lines of other adhesion
molecules in colitis and IBD [54,73].

3.5.4. VAP-1

VAP-1, also known as amine oxidase, copper containing 3 (AOC3), is an endothe-
lial molecule which has both adhesive and enzymatic properties in vitro. Studies have
shown that VAP-1 is instrumental in leukocyte migration, observed by inhibiting VAP-1
in vivo. The inhibition of VAP-1 inhibited the migration of lymphocytes, granulocytes, or
macrophages into inflamed pancreas [56]. Some reports characterize the role of VAP-1 in
regulating granulocyte adhesion to tissue vasculature and lymphocyte binding to High
Endothelial Venules (HEVs) at the site of inflammation, for instance in reperfusion injury
from myocardial infarction. This was observed by inhibiting human VAP-1 by monoclonal
antibodies in vitro [74], indicating the role of VAP-1 in inflammatory diseases. There is
considerable in vitro evidence implicating VAP-1 for leukocyte trafficking in humans [75].

3.5.5. Hyaluronic Acid or Hyaluronan

Deposition of extracellular matrix components has been observed in both acute and
chronic pancreatitis. Multiple reports have shown that hyaluronic acid gets accumulated in
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the local tissue during different inflammatory conditions, such as in alveolitis, myocarditis,
and Crohn’s disease [76–78]. These findings indicate that the alteration of hyaluronan con-
tent in acute pancreatitis is a possibility as well. Hyaluronan is highly hydrophilic in nature,
which is demonstrated by its potent water-binding capacity. Accumulation of hyaluronan
in tissue and the development of interstitial edema have been positively correlated in sev-
eral experimental models. The resulting edema can result in increased interstitial pressure,
disturbed microcirculation, and finally tissue necrosis in pancreatitis [58,79].

3.5.6. Selectins

The selectin family comprises of three members, namely endothelial selectin (E-
selectin), leukocyte selectin (L-selectin), and platelet selectin (P-selectin).

During acute pancreatitis, the damaged pancreatic tissue releases xanthine oxidase.
It is responsible for the generation of free radicals, leading to increased oxidative stress.
This is responsible for the upregulation of P-selectin in the pulmonary endothelium. High
levels of P-selectin are positively correlated with leukocyte recruitment at the site of tissue
injury [62]. Inhibition of xanthine oxidase can potentially inhibit the upregulation of
P-selectin expression, the infiltration of neutrophils, and ameliorate the progression of
pancreatitis-associated lung injury (PALI) in rats [62].

It was found that the plasma and tissue levels of E-selectin and P-selectin are ele-
vated in severe acute pancreatitis. This finding can be instrumental in determining the
progression of acute pancreatitis [80,81]. Increased expression of E- and/or P-selectin
is positively correlated with an increased risk of death, longer period of hospitalization,
and development of tissue necrosis in pancreas [81,82]. There is a high risk of respiratory
failure following severe acute pancreatitis, caused by PALI. Its progression is regulated by
different selectins, especially P-selectin [83–85].

Neutrophil recruitment and extravasation at sites of inflammation are partly depen-
dent on the endothelial expression of P-selectin and ICAM-1. It was observed in various
experimental conditions that treatment with antibodies targeting these adhesion molecules
conferred a protective effect [62]. Treatment with an anti-P-selectin antibody inhibited
neutrophil infiltration into the pancreatic parenchyma, and also suppressed tissue inflam-
mation as well as tissue necrosis [86,87].

A study has established the link between substance P and selectins in acute pan-
creatitis, by demonstrating that the administration of CP-96,345 (a NK-1R antagonist)
significantly reduced mRNA and protein expression of E-selectin and P-selectin [88].

3.5.7. Other Adhesion Molecules

There are other adhesion molecules that have been suggested to a role at various
stages in acute pancreatitis. They are at tight junction (occludin [89], claudins [89–92]),
junctional adhesion molecules (JAM-A, -B, and -C) [92–94], zonula occludin (ZO-1, -2, and
-3) [89] and adherens junctions (catenins, cadherins) [95,96].

Tricellulin is an adhesion molecule present in the pancreas, whose activity in acute
pancreatitis has not yet been shown. It is present at tight junctions [97].

4. Conclusions

In this review we have discussed how H2S, substance P and adhesion molecules play
an important role in acute pancreatitis. Figure 4 summarizes our current understanding
of the contribution of the subject. Different in vivo animal models of human diseases
and various in vitro models have significantly contributed to our understanding of the
roles H2S, substance P and adhesion molecules play in the process of inflammation in
acute pancreatitis. However, the various studies on these mediators have also left cur-
rent and prospective future researchers on the topic to explore different things that are
still unknown.
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