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What is the function of dendritic spikes? One might argue that they provide conditions for
neuronal plasticity or that they are essential for neural computation. However, despite a
long history of dendritic research, the physiological relevance of dendritic spikes in brain
function remains unknown. This could stem from the fact that most studies on dendrites
have been performed in vitro. Fortunately, the emergence of novel techniques such as
improved two-photon microscopy, genetically encoded calcium indicators (GECIs), and
optogenetic tools has provided the means for vital breakthroughs in in vivo dendritic
research. These technologies enable the investigation of the functions of dendritic spikes
in behaving animals, and thus, help uncover the causal relationship between dendritic
spikes, and sensory information processing and synaptic plasticity. Understanding
the roles of dendritic spikes in brain function would provide mechanistic insight into the
relationship between the brain and the mind. In this review article, we summarize the
results of studies on dendritic spikes from a historical perspective and discuss the recent
advances in our understanding of the role of dendritic spikes in sensory perception.

Keywords: dendritic spike, sensory perception, dendritic integration, pyramidal neuron, neocortex, top-down
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A HISTORICAL PERSPECTIVE OF DENDRITIC SPIKE STUDIES

Early in vivo studies in the 1950s suggested that spikes evoked near the soma propagate into
dendrites (Chang, 1951; Bishop and Clare, 1953; Fatt, 1957a,b; Eccles et al., 1958; Terzuolo
and Araki, 1961). Results of some studies also suggested that spikes are locally initiated at
dendrites before the generation of somatic action potentials (Cragg and Hamlyn, 1955; Andersen,
1960; Spencer and Kandel, 1961; Fujita and Sakata, 1962). These ideas were supported by
intracellular sharp electrode recordings from the dendrites of several types of neurons (Cragg
and Hamlyn, 1955; Andersen, 1960; Fujita and Sakata, 1962; Llinás and Nicholson, 1971;
Wong et al., 1979). Subsequent studies also investigated the electrical properties of dendrites by
performing whole-cell recordings in brain slices (Stuart et al., 1993; Stuart and Sakmann, 1994;
Spruston et al., 1995; Magee and Johnston, 1997). These studies demonstrated that backward-
propagating spikes (backpropagating action potential, BPAP) from the soma are Na+ spikes.
Studies conducted more recently showed that Na+ spikes can be locally initiated in dendrites
in response to synaptic inputs, before the initiation of somatic spikes (Kim and Connors, 1993;
Stuart et al., 1997; Golding and Spruston, 1998; Ariav et al., 2003; Gasparini et al., 2004; Gasparini
and Magee, 2006; Losonczy and Magee, 2006; Nevian et al., 2007). In vitro studies identified
dendritic spikes in various types of neurons, and showed that these dendritic spikes are mediated
by voltage-gated Ca2+ channels (Ca2+ spikes) orN-methyl-D-aspartate (NMDA) receptor channels
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(NMDA spikes; see reviews, Larkum and Nevian, 2008; Antic
et al., 2010; Major et al., 2013). Taken together, these extensive
in vitro studies have revealed unique electrical properties of
dendrites, either passive or active, that enable neurons to output
spikes by integrating synaptic inputs in various ways. These
studies stimulated dendritic research aimed at understanding the
physiological functions of dendritic spikes.

Why do dendrites have spikes? It is reasonable to assume
that dendritic spikes have physiological functions for neuronal
computation and synaptic plasticity in single neurons and
circuits (Poirazi and Mel, 2000; London and Häusser, 2005).
Dendritic Ca2+ spikes can trigger somatic repetitive action
potentials (Connors and Gutnick, 1990; Amitai et al., 1993;
Kim and Connors, 1993; Schiller et al., 1997; Helmchen
et al., 1999; Larkum et al., 1999; Larkum and Zhu, 2002).
Multiple NMDA spikes trigger a dendritic Ca2+ spike, which
can induce somatic burst firing; however, a single NMDA
spike cannot trigger a somatic action potential or can trigger
only a single action potential (Milojkovic et al., 2004; Polsky
et al., 2004, 2009; Larkum et al., 2009; Lavzin et al., 2012;
Palmer et al., 2014). These dendritic spikes increase intracellular
concentrations of Ca2+, which acts as a second messenger in
cells and induces synaptic plasticity (note that plasticity such
as long-term potentiation that does not depend on dendritic
spikes has also been reported, Dudman et al., 2007), resulting
in modification of somatic firings (Golding et al., 2002; Holthoff
et al., 2006; Kampa et al., 2007; Johnston and Narayanan,
2008; Losonczy et al., 2008; Sjöström et al., 2008; Spruston,
2008; Takahashi and Magee, 2009; Kim et al., 2015; Basu
et al., 2016). Because somatic spikes have been considered
as a basic unit of information in the brain, dendritic spikes
likely play an important role in information processing in
the brain. In addition, the occurrence of dendritic spikes
is controlled by various mechanisms such as spatiotemporal
patterns of synaptic inputs (Gasparini et al., 2004; Gasparini
and Magee, 2006; Losonczy and Magee, 2006; Branco and
Häusser, 2010) and inhibitory synaptic inputs (Pérez-Garci et al.,
2006; Murayama et al., 2009; Palmer et al., 2012). Therefore,
dendritic spikes should increase the computational power of the
system.

Several aspects of dendritic spikes, such as the cellular
mechanisms underlying their generation and their contribution
to computation in a single neuron and neural circuits, have
been extensively investigated. However, little is known about
the functional relevance of dendritic spikes in perception,
which was one of the original and fundamental questions
raised 50 years ago, when the existence of dendritic spikes
was proposed (Spencer and Kandel, 1961; Llinás et al.,
1968). In the last two decades, technical advances, such as
two-photon microscopy, genetically encoded Ca2+ indicators
(GECIs), and transgenic animals, have enabled researchers
to examine dendritic activities in conjunction with animal
behavior. Furthermore, neural activities can be manipulated
using optogenetic methods with high spatiotemporal resolution.
Emerging lines of evidence generated using these state-of-
the-art technologies have shown the physiological importance
of dendritic spikes. Comprehensive reviews of dendritic

mechanisms for synaptic integration and plasticity in vivo have
been published recently (Grienberger et al., 2015; Stuart and
Spruston, 2015; Palmer et al., 2016). In this review article,
we summarize recent advances in elucidating not only the
relationship between dendritic spikes and perception but also
their causal relationship, focusing on Ca2+ and NMDA spikes in
pyramidal neurons.

ARE DENDRITIC SPIKES NECESSARY
FOR PERCEPTION?

Ca2+ Spikes
Previous studies in awake monkeys revealed that somatosensory
stimulation induces a surface potential on electroencephalogram
(EEG), termed ‘‘somatosensory evoked potential (SEP)’’, which
represents the responses of a population of neurons in the
sensory cortex (Cauller and Kulics, 1991). SEP consists of early
and late components: a primary surface-positive component
(P1) and a secondary surface-negative component (N1). The
early component correlates with external information such
as stimulus intensity, whereas the late component represents
behaviors that require perception of the stimulation (Figure 1A;
Kulics et al., 1977; Kulics, 1982; Cauller and Kulics, 1988,
1991; Cauller, 1995). The late components evoked by sensory
stimulation have also been observed in dendrites during Ca2+

imaging of the rat S1 (Murayama and Larkum, 2009), and
in other sensory areas of mammals via different recording
techniques such as EEG, local field potential (LFP), and unit-
recordings. These late components appear to be involved
in perception (Lamme, 2001; Supèr et al., 2001; Del Cul
et al., 2007; Meyer, 2011). Cauller (1995) hypothesized that
the late component is mediated by dendritic spikes evoked
by top-down inputs from higher-order brain areas such as
the prefrontal cortex to the sensory area. However, no direct
evidence has been obtained to prove this hypothesis. We
recently investigated neural mechanisms underlying the late
component of SEP, and reported that dendritic Ca2+ spikes
in layer (L) 5 pyramidal neurons in the somatosensory cortex
are involved in evoking this late component (Manita et al.,
2015).

In our previous study (Manita et al., 2015), we used
multi-unit recording (MUR) and LFP recording to measure
neural activities evoked by hindpaw stimulation in the primary
somatosensory cortex (S1) of mice. We identified early and
late components similar to the two components of SEP
in monkeys (Kulics et al., 1977; Kulics, 1982; Cauller and
Kulics, 1988, 1991; Cauller, 1995). We showed that the early
component is evoked by sensory inputs from the thalamus
carrying information of hindpaw stimulation, and that this
component activates the secondary motor cortex (M2), which
is one of the higher-order brain areas. The late component
was due to ‘‘top-down’’ feedback input from M2. Our viral
tracing studies revealed that M2 neurons send their axons
back to the S1 area, thus forming a reverberating circuit.
The axons from M2 form synaptic contacts with both apical
and basal dendrites of L5 pyramidal cells in S1 (Figure 1B).
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FIGURE 1 | Hypothetical model for mechanisms of sensory perception.
(A) Animal perception, assumed by behavioral responses (i.e., hit or miss
behaviors), correlates with the late component in a stimulus intensity
discrimination task. Even though the intensity of sensory stimulation was
identical, animal behavior responses were different and perceptual behaviors
correlated with the late neural activities. (B) A novel mechanism for the late
activity. Top-down inputs (here from M2) propagate from the bottom to the top
layers of the sensory cortex in a short time window to reliably drive dendritic
spiking and BAC firing (∼50 ms in A). We termed this top-down input pattern,
“top-down coincident input or TCI”. We hypothesized that the number of
neurons that had a Ca2+ spike during perception (Hits) behavior is larger than
that during no perception (Misses). BAC, backpropagating
action-potential-activated calcium spike; BPAP, backpropagating action
potential. Panel (A) is reprinted with permission from Cauller (1995).

While the late component of the LFP is considered to be
due to synaptic inputs from M2, the late component of
MUR represents burst firing of somatic fast Na+ spikes that
are sustained for a short period. Therefore, a mechanism
must exist by which the synaptic inputs from M2 to the
apical and basal dendrites give rise to burst firing at the
soma.

Previous in vitro and simulation studies showed that the
dendritic Ca2+ spike in L5 pyramidal neurons is induced by
pairing of subthreshold depolarizations of distal apical dendrites
and BPAPs, which can be evoked by synaptic inputs to tuft and
proximal dendrites, respectively (Larkum et al., 1999; Xu et al.,
2012; Larkum, 2013; Shai et al., 2015). Larkum et al. (1999)
named these dendritic Ca2+ spikes as backpropagating action-
potential-activated calcium spikes (BACs), and the resulting
somatic burst firings as BAC firings.

In our study (Manita et al., 2015), current source density
analysis of LFP using a linear probe showed that M2 top-down
inputs coincidentally arrive at deep and superficial layers in
S1 where basal and distal dendrites of L5 neurons located,
respectively. By using two-photon microscopy and GECI,

G-CaMP7 (Sato et al., 2015), we showed that M2 inputs evoke
BACs in the dendrites of L5 neurons in the S1. Next, we expressed
archaerhodopsin (ArchT; Han et al., 2011) in M2 neurons and
optically inhibited axon terminals of M2 neurons extending
to S1. The inhibition of the top-down signal from M2 to
S1 decreased somatic firings of L5 neurons in the S1 during
the late component. We hypothesized that the firing was due
to BACs because pharmacological inactivation of M2 activity
resulted in blockade of dendritic Ca2+ spikes and somatic
firing. Furthermore, optical inhibition of this top-down signal
impaired the ability of mice to discriminate surface textures
(e.g., smooth and rough textures). Taken together, these results
suggest that dendritic spikes are critical and necessary for
sensory perception.

Supporting this idea, a recent study showed that the
appearance of dendritic Ca2+ spikes in L5 pyramidal neurons
of S1 is correlated with perception in mice (Takahashi et al.,
2016). In that study, dendritic Ca2+ spikes were measured
during a perceptual detection task with whisker stimulation.
The authors showed that a group of dendritic Ca2+ spikes
and the resulting somatic firings are related to ‘‘hit’’ trials
(i.e., perception of whisker stimulation) in mouse behavior.
To investigate whether the dendritic Ca2+ activity causes mice
perceptual behavior, they inhibited or activated dendritic activity
by using a pharmacological agent or optogenetic manipulations.
The inhibition or activation of dendritic activity decreased or
increased the detection probability of the mice, respectively.
These results demonstrated that the dendritic Ca2+ spike is
causally related to perceptual decision in mice. Although further
investigation will be needed to support the hypothesis that
dendritic spikes represent the neural correlates of perception,
the experimental data of this study are consistent with this
hypothesis.

Larkum (2013) proposed that BAC firing requires the cell to
receive inputs from both bottom-up and top-down pathways,
and that these inputs need to coincide within a narrow window
of time. In our study (Manita et al., 2015), however, because
the delay between the bottom-up input (early component)
and the top-down input (late component) was too long, the
coincidence would not occur. We hypothesize that the somatic
burst firing during the late component is due to BAC in
the dendrites, and that BAC is evoked by the coincidence of
the two separate synaptic contacts onto the basal and apical
dendrites sent from M2 alone, not due to the coincidence of
M2 input with thalamic inputs. This mechanism is possible
because the top-down projection from M2 to lower and upper
layers in S1 allows M2 neurons alone to generate coincident
inputs onto separate parts of the dendrites of S1 neurons. We
have named this type of input pattern ‘‘top-down coincident
input (TCI)’’ to directly define the role of top-down input
in the generation of dendritic spikes. Regarding conventional
top-down control system (Gilbert and Sigman, 2007; Gilbert and
Burgess, 2008), sensory neurons may combine bottom-up and
top-down inputs to induce BAC firing, as suggested by Larkum
(2013).

The brain may utilize similar top-down inputs, that we
described (Manita et al., 2015), from parts of the brains
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other than M2 to generate the BAC and hence the late
components for perception. Moreover, the TCI per se would
enable sensory perception without inputs from the other areas of
the brain responsible for higher functions such as attention and
motivation, or even without sensory information. TCI without
external sensory inputs would be related to the phenomenon
of hallucination (or illusion), a perceptual experience without
sensory stimulation. A previous human study has shown that
besides S1, premotor and prefrontal cortices are activated
during illusory perception (Blankenburg et al., 2006). Some
patients with non-convulsive status epilepticus of frontal origin
have reported somatic hallucinations. Single-photon emission
computed tomography (SPECT) during somatic hallucinations
showed activation not only in the frontal area but also in the
parietal area, including S1 as the projected regions (Takaya
et al., 2005). In addition, Powers et al. (2016) discussed
that hallucinations are involved in top-down processes. We
hypothesize that, in some pathological states (e.g., epilepsy),
TCI even without sensory input causes BAC firing, resulting in
somatic hallucination.

Several input pathways to S1 are considered to be involved
in the generation of dendritic Ca2+ spikes. Xu et al. (2012)
reported that inputs from the vibrissal motor cortex (vM1)
combined with thalamic inputs induce dendritic Ca2+ spikes in
the barrel cortex during active touch by whiskers (i.e., whisking
behavior), suggesting that spike generation requires both sensory
and motor information. Such dendritic Ca2+ spikes induced by
the combination of inputs from different pathways likely have
different physiological roles from those of spikes induced by each
input pathway. For example, the Ca2+ spikes that Xu et al. (2012)
reported may carry motor information from the whiskers as well
as information of touch perception.

NMDA Spikes
Although it has been reported that induction of dendritic
NMDA spikes require spatially and temporally clustered synaptic
inputs, a previous simulation study has shown that in vivo-like
background inputs lower the threshold for dendritic NMDA
spikes without the clustered inputs and increase the efficacy
of NMDA spikes to generate somatic spikes (Farinella et al.,
2014). These results suggest that dendritic NMDA spikes have
a greater impact on somatic spikes than that would be expected
from the results of previous in vitro studies. Several studies
have shown that whisker deflections induce NMDA-dependent
depolarizations, presumably due to dendritic NMDA spikes in
L 2/3 and 4 neurons, and that the spikes amplify thalamic
inputs and determine somatic spiking (Lavzin et al., 2012;
Gambino et al., 2014). In addition to whisker systems, studies
on hindpaw somatosensory and visual systems have shown
that dendritic NMDA spikes and consequent somatic spikes
are induced by stimuli in L 2/3 neurons in mice (Smith
et al., 2013; Palmer et al., 2014). Lavzin et al. (2012) and
Smith et al. (2013) showed that NMDA spikes encode direction
selectivity of whisker stimulation and orientation tuning of
visual stimulation, respectively. Recently, it has been shown
that orientation selective and spatially-clustered synaptic inputs
correlate with the occurrence of dendritic Ca2+ events, which are

presumably NMDA spikes in L 2/3 neurons of the visual cortex
(Wilson et al., 2016), suggesting that the orientation tuning of
somatic spikes are strongly influenced by that of dendritic spikes.
Taken together, these results suggest that dendritic NMDA
spikes are also critically important for cellular mechanisms of
perception.

Hippocampus: Perception of Space
Several lines of evidence have shown that the perception of
the location of an animal in the external environment is one
of the most common brain functions (Moser et al., 2008). In
the hippocampus, spatial information is likely encoded by the
firing of dendritic spikes in CA1 pyramidal neurons. In this
type of neuron, dendritic Ca2+ spikes (Kamondi et al., 1998)
or NMDA-dependent Ca2+ spikes (Grienberger et al., 2014)
contribute to the generation of complex spikes. Moreover, place
cells fire complex spikes when animals are in the place field,
as shown in studies using in vivo whole-cell techniques with
freely moving mice (Epsztein et al., 2011) and head-restricted
mice in a virtual-reality environment (Harvey et al., 2009). More
recently, a two-photon imaging study in behavingmice (Sheffield
and Dombeck, 2015) has directly shown the contribution of
dendritic Ca2+ spikes to the representation of the place field
in the dendrites of CA1 neurons. In addition to these studies,
dendritic spikes induced by the integration of two different
inputs from the entorhinal cortex and hippocampal CA3 region
have been shown to increase both the place field firing rates and
the appearance of complex spikes in CA1 pyramidal neurons
(Bittner et al., 2015).

CONCLUSION

It has been postulated that the so-called ‘‘executive control
system’’ is essential for perception, and that top-down control
from this system that is responsible for higher brain functions
modulates the activities of the primary sensory cortex in order
to refine and define the sensory signal (Gilbert and Sigman,
2007; Gilbert and Burgess, 2008). This hypothesis seems to
implicitly assume that there are specific brain regions dedicated
to executing higher brain functions, and that the trains of
impulses sent out along the axons of the neurons responsible
for the executive control system constitute the basis for neuronal
correlates of perception. In humans, the prefrontal cortex is
thought to be responsible for the executive control system.

Results of the recent in vivo studies summarized in this
review article indicate strong physiological relevance of dendritic
spike generation in perception, and suggest that dendritic
Ca2+ spikes and NMDA spikes in the somatosensory and
hippocampal cortex support not only neuronal plasticity, but also
the computational aspect of neuronal activities. In S1 pyramidal
cells, TCI from M2 evokes dendritic spikes and somatic firing
(Manita et al., 2015), which constitutes the late component, a
necessary condition for sensory perception. These findings imply
that the activities of neurons in the primary sensory cortex are
not secondary to the executive control system, but rather that
they constitute an integral part of the executive control system.
We hypothesize that dendritic Ca2+ spikes and NMDA spikes
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in the pyramidal cells of primary cortices are not only necessary
but may also be sufficient for sensory perception. This may be
the case for other brain functions as well since the axonal pattern
of innervation, similar to the one from M2 to S1, is ubiquitous
across the cerebrum (Rockland and Virga, 1989; Coogan and
Burkhalter, 1990; Cauller et al., 1998). We propose that dendritic
spikes occurring in various regions of the brain, including S1,
are the basis of cognitive functions such as perception, motor
planning, attention and even self-awareness.

Although dendritic activities in the primary sensory cortex
may indicate the occurrence of sensory perception, the contents
of the perceived information might be represented separately in
a brain region other than the primary cortex, and the outputs
from the primary cortex might need to be conveyed to those
systems for the sensory information to be recognized. One
of the most important questions that should be addressed in
future studies is whether dendritic spikes in the primary sensory
cortex are associated with mental representation of perception,
or whether there are regions responsible for perception located
elsewhere, downstream of the primary sensory cortex. Recent

technical advances allow researchers to study neuronal activities
during behavioral tasks, and are beginning to provide clues to
elucidate the mechanisms underlying the mind–body problem.
To further our understanding of this issue, we need to study
the dynamic coordination of neuronal activities, particularly
dendritic activities, of populations of various neuron types,
distributed across various parts of the brain.
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