
Research Article
Artificial Intelligence-Based Classification of Chest X-Ray
Images into COVID-19 and Other Infectious Diseases

Arun Sharma , Sheeba Rani , and Dinesh Gupta

Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf
Ali Marg, New Delhi 110067, India

Correspondence should be addressed to Dinesh Gupta; dinesh@icgeb.res.in

Received 10 July 2020; Revised 16 September 2020; Accepted 22 September 2020; Published 6 October 2020

Academic Editor: Anne Clough

Copyright © 2020 Arun Sharma et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The ongoing pandemic of coronavirus disease 2019 (COVID-19) has led to global health and healthcare crisis, apart from the
tremendous socioeconomic effects. One of the significant challenges in this crisis is to identify and monitor the COVID-19
patients quickly and efficiently to facilitate timely decisions for their treatment, monitoring, and management. Research efforts
are on to develop less time-consuming methods to replace or to supplement RT-PCR-based methods. The present study is
aimed at creating efficient deep learning models, trained with chest X-ray images, for rapid screening of COVID-19 patients. We
used publicly available PA chest X-ray images of adult COVID-19 patients for the development of Artificial Intelligence (AI)-
based classification models for COVID-19 and other major infectious diseases. To increase the dataset size and develop
generalized models, we performed 25 different types of augmentations on the original images. Furthermore, we utilized the
transfer learning approach for the training and testing of the classification models. The combination of two best-performing
models (each trained on 286 images, rotated through 120° or 140° angle) displayed the highest prediction accuracy for normal,
COVID-19, non-COVID-19, pneumonia, and tuberculosis images. AI-based classification models trained through the transfer
learning approach can efficiently classify the chest X-ray images representing studied diseases. Our method is more efficient
than previously published methods. It is one step ahead towards the implementation of AI-based methods for classification
problems in biomedical imaging related to COVID-19.

1. Introduction

Coronavirus disease 2019 (COVID-19) is an infectious dis-
ease triggered by severe acute respiratory syndrome corona-
virus 2 (SARS-CoV-2) [1]. The disease was initially
identified in December 2019 in Wuhan, China, and has since
spread globally [2, 3]. At the outset, a patient with pneumo-
nia of mysterious cause was first reported to theWHOCoun-
try Office in China on 31 December 2019 [4]. Since then, the
disease has spread all over the globe in enormous numbers
and is declared a pandemic. As of 16 September 2020, there
were 29356292 confirmed COVID-19 cases in various coun-
tries, territories, or areas, and 930260 people had lost their
lives [5], and the numbers are still rising. Although radiolog-
ical imaging is not recommended for diagnostics as the
patient arrives in the clinic, a chest X-ray is often useful to
monitor treatment outcomes and comorbidities in seriously

ill patients. The detection of COVID-19 from chest X-ray
and its differentiation from lung diseases with identical opac-
ities is a puzzling task that relies on the availability of expert
radiologists.

Recently, several researchers have reported the use of
AI-based tools in solving image classification problems in
healthcare, based on training with X-ray images, CT scans,
histopathology images, etc. Deep learning is an extremely
powerful tool for learning complex, cognitive problems
[6, 7], and the frequency of their use and evaluation in
different problems is increasing [8]. In the present study,
we have made use of a deep learning algorithm using
the convolutional neural network (CNN) that can effi-
ciently detect COVID-19 from chest X-ray images for
swift diagnosis.

Due to data scarcity related to COVID-19 chest X-ray
images, instead of training the model from scratch, the
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present study made use of the “transfer learning method” by
leveraging the already available models in solving the analo-
gous problems [9–11]. Moreover, transfer learning eases the
hypothesis that the training data must be independent and
identically distributed with the test data [12].

Recently, an attempt made to detect the novel coronavi-
rus using CT images, employing a deep learning algorithm,
achieved an internal validation accuracy of 82.9% and exter-
nal validation accuracy of 73.1% [13]. Another study per-
formed by Xu et al. established a screening model to
distinguish COVID-19 pneumonia from influenza A viral
pneumonia and healthy cases with pulmonary CT images.
It achieved an accuracy of 86.7% for the benchmark dataset
[14]. Zheng et al. achieved 90.1% accuracy (using a probabil-
ity threshold of 0.5) using the CT images for the detection of
the COVID-19 [15]. Notably, quite a few research groups
also report the development of deep learning or AI-based
classification models for COVID-19 based on chest X-ray
images [16–21].

For example, Asnaoui et al. achieved 92.18% accuracy
(for Inception-ResNetV2) to classify the chest X-ray and
CT images into bacterial pneumonia, coronavirus, and nor-
mal classes [16]. Ozturk et al. developed deep learning-
based binary classification (COVID vs. no findings) and mul-
ticlass classification (COVID vs. no findings vs. pneumonia)
models that achieved the highest accuracies of 98.08% and
87.02%, respectively [17]. Waheed et al. developed a method
to generate synthetic chest X-ray (CXR) images by creating
an Auxiliary Classifier Generative Adversarial Network-
(ACGAN) based model CovidGAN. The binary classification
models achieved an accuracy of 85% for the model based on
original images (training dataset consisted of 331 COVID-
CXR images and 601 normal-CXR images). However, the
accuracy increased to 95% for the model trained with the
combined use of original and augmented images (training
dataset consisting of actual images plus CovidGAN gener-
ated 1399 synthetic images of normal-CXR and 1669 syn-
thetic COVID-CXR images). Thus, the original image-
based dataset consisted of 932 training samples (331
COVID-CXR and 601 normal-CXR images). In comparison,
the combined dataset of original and synthetic images con-
sisted of 4000 training samples (2000 COVID-CXR and
2000 normal-CXR images). They evaluated performance on
192 testing samples for the two models—namely, the model
trained with original and the one with the original as well
as synthetic images [18]. Chouhan et al. developed a transfer
learning-based approach for the prediction of paediatric
pneumonia based on chest X-ray images. The ensemble
model developed in the study achieved a maximum accuracy
of 96.4% with a recall of 99.62% on unseen data [22]. Jaiswal
et al. developed a deep learning-based approach (using
Mask-RCNN) for the identification and localization of pneu-
monia in chest X-ray (CXR) images. The study used three
types of chest X-ray images, viz., lung opacity, abnormal,
and normal, for training and testing the deep learning models
[23]. Che Azemin et al. developed a deep learning-based
COVID-19 prediction model using publicly available
radiologist-adjudicated chest X-ray images. The binary clas-
sification model classified the test chest X-ray images into

COVID-19 and none with maximum values of 0.82, 77.3%,
71.8%, and 71.9% for the area under the receiver operating
curve, sensitivity, specificity, and accuracy, respectively
[24]. However, the criteria used to select the COVID-19
images (for training the deep learning models) seem to be
questionable.

Ucar and Korkmaz developed COVIDiagnosis-Net
(based on deep SqueezeNet with Bayes optimization) for
the diagnosis of COVID-19 with an overall test accuracy of
98.26%. The method classifies the three-class X-ray images
labeled as normal (no infection), pneumonia (bacterial or
non-COVID viral infection), and COVID (COVID-19 viral
infection) [19]. Oh et al. statistically analyzed the potential
chest X-ray (CXR) COVID-19 markers to understand the
statistically significant differences. The various parameters
studied by them include lung morphology, mean lung inten-
sity, and the standard deviation of lung intensity in normal
lungs, bacterial pneumonia, viral pneumonia, tuberculosis,
and COVID-19 CXR images. The model achieved an overall
highest classification accuracy of 88.9%, using a local patch-
based approach for the four different classes [20]. Apostolo-
poulos et al. trained convolutional neural networks (CNNs)
from scratch and achieved 87.66% classification accuracy
between the seven classes (normal, pneumonia, COVID-19,
pulmonary edema, pleural effusion, Chronic Obstructive
Pulmonary Disease (COPD), and pulmonary fibrosis). In
the case of binary classification (COVID-19 vs. non-
COVID-19), a maximum of 99.18% accuracy, 97.36% sensi-
tivity, and 99.42% specificity was achieved [21]. Pereira
et al. developed multiclass and hierarchical learners that
achieved a macro-avg F1-score of 0.65 and 0.89, respectively,
for COVID-19 identification in chest X-ray images [25].
Rahimzadeh and Attar developed multiclass (normal vs.
pneumonia vs. COVID-19) classification methods. They
achieved the highest average accuracy of 99.50% and overall
average accuracy of 91.4% for COVID-19 cases and all the
three classes, respectively [26]. Recent reports indicate that
efforts are on to develop better COVID-19 chest X-ray classi-
fication models with a large number of images [27–30].
Although the models claim to possess high classification
accuracies, these are devoid of systematic approaches—in-
cluding proper data preprocessing (a vital step during the
model training and validation) and use of comprehensive
augmentation techniques (an essential requirement for the
development of generalized models). The lacunae in the
recently published studies motivated us to develop a better
classification method, addressing the shortcomings.

The present study is the first to use a few COVID-19
chest X-ray images to train the classification models, while
almost double image dataset for external or independent val-
idation of the developed models. One of the uniqueness of
the present study is the age-based selection criteria of chest
X-ray images for the training and testing of AI-based models.
None of the studies used age as a selection criterion (during
the preparation of image datasets); thus, paediatric images
have been classified (as a separate class, i.e., pneumonia vs.
normal vs. COVID-19) from the adult group images. This
may lead to biased learning of the deep learning-based
models. For example, a model that has been trained on
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paediatric age group “pneumonia” and “normal” chest X-ray
images, and adult age group “COVID-19” images, will have a
greater probability of classifying unknown adult age group
images as “COVID-19,” while paediatric age group images
as “pneumonia” or “normal.” Moreover, the images used in
our study are downloaded from the sources containing
unique images to avoid any duplication of training and test-
ing set images. In contrast, many studies claiming a large
number of COVID-19 images (downloaded from multiple
publicly available sources) in actual might possess duplicate
images, which might be affecting the prediction results. For
the majority of the studies discussed above, neither the clas-
sification models nor the codes used to train and evaluate
the models are publicly shared. However, the codes (used to
train and validate the models), validation datasets, and the
models developed in the present study are publicly available
to assist the scientific community for further development
in the area of chest X-ray-based COVID-19 or other infec-
tious diseases classification. Thus, the results have been
encouraging and ensure high prediction accuracy in real-
life cases, as evident from the high prediction accuracies (of
prediction the models) on external validation datasets. The
study reports the use of transfer learning with the highest
number of image augmentation types (25 different types) uti-
lized for the development of high-classification accuracy AI-
based chest X-ray classification models. The models, deploy-
able as a web server, can rapidly classify input posteroanter-
ior (PA) chest X-ray images into images corresponding to
COVID-19, pneumonia, TB, non-COVID-19, and normal
subjects.

2. Materials and Methods

2.1. Source of Chest X-Ray Images. For the training and devel-
opment of AI-based classification models, COVID-19, non-
COVID-19, pneumonia, tuberculosis (TB), and normal chest
X-ray images were downloaded from three different sources
as given in Table S1. During the development of classification
models and preparation of the manuscript for the present
study, new images were added to the COVID-19 images of
GitHub resource. The images, downloaded on May 29,
2020, were filtered on the criteria such as age > 18 years, PA
view, and COVID-19-only chest X-ray images to retrieve
the images of interest. Thus, a total of 75 COVID-19 chest
X-ray images were used as “external validation dataset-II”
for better and rigorous evaluation of the classification
models. Henceforth, these images are referred to as “New
COVID-19.”

2.2. Selection of Images for the Study. The downloaded images
were manually curated to filter out a similar type of images
and retain only the posteroanterior view chest X-ray images
of adults. Images with no information about the patient’s
age or age < 19 years, chest X-ray view other than posteroan-
terior (PA), and CT images were excluded (Tables S2–S6)
from the training dataset. Post-selection, a total of 352 chest
X-ray images (original images) were left for training and test-
ing of the AI-based models (Table 1). Further, we distributed
the original images into 51, 21, 160, 54, and 66 images for

COVID-19, non-COVID-19, pneumonia, TB, and normal,
respectively.

2.3. Dataset Preparation. For the training and testing of AI-
based models (Table 1), the original image dataset was
divided into 90% training dataset (317 images) and 10%
external validation dataset-I (35 images). As the number of
images was limited, we generated 25 different types of aug-
mentations (Figure 1) through an open-source augmentation
tool CLoDSA [31] (Figure 2, Table S7). Thus, a total of 27
different types of training, external validation datasets I and
II, for chest X-ray images were generated using JSON
scripts [32].

Out of the 27 datasets, one dataset comprised of original
images (dataset 1), and 25 datasets (datasets 2-26) consist of
single augmentation images, while the combination of the
former 26 different types of datasets generated a combined
dataset (dataset 27). All the 27 different types of datasets were
used to train and validate the 29 different types of AI-based
chest X-ray classification models. The original and single
augmentation-based models were trained and tested/vali-
dated using 317 and 35 images, respectively (Figure 2,
Table S7). The combined dataset used 8242 and 910 images
for training and external validation of AI-based models,
respectively (Figure 1, Table S7). Furthermore, for the
hyperparameter optimization and internal validation of AI-
based models, all the 27 training datasets were further split
into 90% training datasets and 10% internal validation
datasets (Figure 3). Additionally, we used external
validation dataset-II to evaluate the performance of all the
29 models for COVID-19 chest X-ray images.

2.4. Techniques Used.We used the transfer learning approach
to train and validate the 29 (27 plus, dataset 27 trained with
two additional epoch sizes) different types of AI-based
models (Figure 3). The Python scripts used to train and val-
idate the models are available at https://github.com/
arunsharma8osdd/covidpred. The hyperparameters used to
train the models are given in Table 2.

A total of 29 different types of models were trained and
validated, making use of 27 datasets (Figure 3). Out of the
29 models, one model was trained and validated on dataset
1, while 25 models made use of datasets 2-26. All the 26
models were trained on 24 epochs, with the hyperparameter
values (Table 2(a)). The higher number of epochs was
avoided to prevent overfitting of the models. The remaining
three models made use of dataset 27 with varying numbers
of iterations and epochs. These 24, 49, and 101 epoch-based
models used 5568, 11136, and 23300 iterations, respectively.
Table 2(b) provides the hyperparameter values used by these
three models. The models showing the highest accuracy on
external validation datasets were selected as best-
performing models and uploaded to the project GitHub page
(named “CovidPred”).

3. Results

3.1. Performance of Original Image-Based Model. The AI-
based models were trained and validated using original
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images and external validation datasets containing 317 and
35 chest X-ray images, respectively. Moreover, to evaluate
the real-life performance of models (especially for COVID-
19 images), external validation dataset-II was used. For tun-
ing the hyperparameters (during the training process), the
training dataset was further divided into a 90% training set
(286 images) and a 10% internal validation dataset (31
images). A maximum training and internal validation accu-
racy (%) of 100 and 75 were achieved for the training and
internal validation datasets, respectively. Further evaluation
of the trained models using external validation dataset-I
revealed accuracies (%) of 57.14, 80, 53.33, 50, 68.75, and
60 for normal, COVID-19, new COVID-19, non-COVID-
19, pneumonia, and tuberculosis, respectively (Table S8).
Thus, a lower accuracy (%) of 53.33 is achieved for the
“new COVID-19 images” (external validation dataset-II
images).

3.2. Performance of Single Augmentation-Based Models.
Training and testing were performed for 25 datasets, using
different types of training and validation/testing dataset
images (Table S8). Each dataset was trained with 286

images, and evaluation was performed using 31 internal
validation and 110 external validation dataset images. As
evident from Table 3, using the model based on 120°

rotated images, maximum training and internal validation
accuracies (%) of 100 and 62 were achieved for training and
internal validation datasets, respectively. Furthermore, the
highest accuracies (%) of 14.29, 20, 14.67, 100, 100, and 100
are achieved on the testing dataset for normal, COVID-19,
new COVID-19, non-COVID-19, pneumonia, and
tuberculosis, respectively (Table 3, Figure S1).

Using the model based on 140° rotated images, maximum
training and internal validation accuracies (%) of 100 and
81.2 were achieved for training and internal validation data-
sets, respectively. The highest accuracies (%) of 100, 100,
94.67, 0, 93.75, and 0 were achieved on the testing dataset
for normal, COVID-19, new COVID-19, non-COVID-19,
pneumonia, and tuberculosis, respectively (Table 3,
Figure S2). These two models were considered as best-
performing complementary models. Thus, the selection of
two models ensured that poor performance for one type of
image shown by one model could be overcome by the
second model and vice versa.

Original Sharpen Raise blue Raise green Raise red Raise hue Invert

HSV LAB Equalize histogram Gamma correction Flip horizontal Flip vertical Flip both

Shear

Median blur

Rotate 45° Rotate 60° Rotate 90° Rotate 120° Rotate 140° Rotate 160°

Resize Crop 0.5 Crop 0.7 Crop 0.9

Sample original and 25 different types
of augmented images generated using

CLoDSA open-source image
augmentation library

Figure 1: Sample original and 25 different types of augmented images (generated through open-source, image augmentation
library—CLoDSA).
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Selection criteria:
(to select images for final dataset preparation)

Age >18 years
Chest X-ray images with posteroanterior view only

Chest X-ray images used for the study
(N = 352)

Dataset 1

Original images
Total images, N = 352
Training dataset, N = 317
External validation dataset-I,
N = 35

Datasets 2 -26

Augmented images only.
(CLoDSA augmentations)
(Aug1, Aug2, Aug3, –, Aug25)
For each dataset total, N = 352
Training dataset, N = 317
External validation dataset-I,
N = 35

Dataset 27

Original+augmented images
Total images, N = 9152
Training dataset, N = 8242
External validation dataset-I,
N = 910

Different types of datasets used for AI-based model building

Publicly available chest X-ray datasets
(total number of chest X-ray images downloaded initially, N = 603)

External validation dataset-II
(only new COVID-19 images)

(March 19, 2020, to May 29, 2020)
N = 75

External validation dataset-II
(only new COVID-19 images)

(March 19, 2020, to May 29, 2020)
For each dataset N = 75

External validation dataset-II
(only new COVID-19 images)

(March 19, 2020, to May 29, 2020)
N = 1950

(i)
(ii)

(iii)
(iv)

(i)
(ii)

(iii)
(iv)

(i)

(ii)
(iii)
(iv)

(i)
(ii)

Figure 2: The methodology used for the preparation of datasets for model training and evaluation.

Models
(29 models)

Training dataset
(all five class images)

(90%)

External validation dataset-I
(all five class images)

(10%)

Training dataset
(90%)

Internal validation
dataset (10%)

Internal
evaluation

External
evaluation

Model
training

GitHub
(CovidPred)

Filter applied (to shortlist best models):
highest accuracy on testing dataset
for all five classes of chest X-ray images

Final selected chest
X-ray

image datasets
(N = 27 datasets)

A

C

B

Filter

D

Model-I

Model-II

External validation dataset-II
(only new COVID-19 images)

(March 19, 2020, to May 29, 2020; N = 75)

Model-III

Figure 3: Flowchart depicting the methodology used for the training, evaluation, validation, and selection of AI-based models available on the
GitHub link.
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3.3. Performance of Original Images and Augmentation
(Combined Dataset)-Based Models. The combined image-
based model contained 7418, 824, 910, and 1950 images in
the training dataset, internal validation dataset, external val-
idation dataset-I, and external validation dataset-II, respec-
tively. The 24 epoch-based model achieved maximum
training and internal validation accuracies (%) of 100 and
93.8, for training and internal validation datasets, respec-
tively. Further, evaluation using combined testing dataset
images showed the highest accuracies (%) of 73.63, 56.92,
42.62, 53.85, 96.39, and 75.38, for normal, COVID-19, new

COVID-19, non-COVID-19, pneumonia, and Tuberculosis,
respectively (Table 4).

For the 49 epoch-based model, the maximum training
and internal validation accuracies (%) of 100 was achieved
for both the training and the internal validation datasets. Fur-
ther, evaluation using combined testing dataset images
showed the highest accuracies (%) of 86.26, 65.38, 43.59,
42.31, 96.15, and 73.08, for normal, COVID-19, new
COVID-19, non-COVID-19, pneumonia, and tuberculosis,
respectively (Table 4).

The 101 epoch-based model achieved maximum training
and internal validation accuracies (%) of 100 and 93.8, for
training and internal validation datasets, respectively. Fur-
ther, evaluation using combined testing dataset images
showed the highest accuracies (%) of 85.71, 70.77, 51.28,
51.92, 93.99, and 74.62, for normal, COVID-19, new
COVID-19, non-COVID-19, pneumonia, and tuberculosis,
respectively (Table 4).

Thus, none of the combined dataset-based three models
achieved the desirable high accuracies on the combined test-
ing dataset for all the five types of image classes. Therefore,
in-depth analysis or classification was performed (by supply-
ing the single kind of augmentation-based images at a time)
to determine which types of images these models identify
and classify with the highest accuracy (Table S9). The 101
epoch-based model, using rotate 60° images, achieved the
highest accuracies (%) of 100, 100, 66.67, 100, 93.75, and
80, for normal, COVID-19, new COVID-19, non-COVID-
19, pneumonia, and tuberculosis images, respectively
(Table 5, Figure S3). Hence, the best-performing 101
epoch-based model is also selected as the third
complementing model.

4. Discussion

The confirmatory diagnosis of COVID-19 is mainly depen-
dent on clinical symptoms, epidemiological history, nucleic
acid detection, immune identification technology, etc. All
the methods mentioned above have some limitations such
as time required, costs [13, 33], equipment dependence,
shortage of testing kits [34], availability of trained healthcare
workers, interoperator variabilities, especially in a pandemic
like this, making them cumbersome diagnostic procedures

Table 2: Hyperparameters used to train CovidPred models.

(a) Original images/single augmentation-based models (for 26
models)

Sr. No. Hyperparameter Value

1 Number of iterations 400

2 Batch size 16

3 Number of epochs 24

4 Image size 256

5 Internal validation size 0.1

6 Filter size (1st convolutional layer) 3

7 Number of filters (1st convolutional layer) 32

8 Filter size (2nd convolutional layer) 5

9 Number of filters (2nd convolutional layer) 64

10 Filter size (3rd convolutional layer) 7

11 Number of filters (3rd convolutional layer) 128

12 Fully connected layer size 256

(b) Original and all augmentation-based models (for combined
image-based models)

Sr. No. Hyperparameter Value

1 Number of iterations 5568/11136/23300

2 Batch size 32

3 Number of epochs 24/49/101

4 Other hyperparameters Same as given in (a)

Table 1: Division of original images into training and external validation datasets.

Sr.
No.

Dataset type
Original

chest X-ray
images

Training
dataset

images (90%)

External validation
dataset-I images

(10%)

External validation dataset-II images (newly available images
on COVID-19 chest X-ray image database from 19March 2020

to 29 May 2020)

1 COVID-19 51 46 5 75

2 Non-COVID-19 21 19 2 N/A

3 Pneumonia 160 144 16 N/A

4
TB (Montgomery
County X-ray Set)

54 49 5 N/A

5
Normal

(Montgomery
County X-ray Set)

66 59 7 N/A

Total images 352 317 35 75
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[34]. The auxiliary examinations, for example, nucleic acid
identification technologies, suffer from the false-negative
rate, which cannot be overlooked [33]. In a situation of
worldwide medical emergencies like the current COVID-
19 pandemic, it is desirable to have a fast, cost-effective,
user-friendly, noninvasive, and intelligent diagnostic
method for rapid screening and early diagnosis of diseases,
which also requires the least manual intervention. Timely
diagnosis of the COVID-19 patients can enable help in
the optimization of available resources, including trained
human resources, for all the supportive measures required
for confirmed patients. Automated AI-based intelligent
chest X-ray classification has such untapped potential for
this unmet need, as evident from recent researches. The
most commonly used radiological diagnostic imaging is
chest X-rays, as compared to computed tomography
(CT) and magnetic resonance imaging (MRI), due to its
low cost and less processing time and lower radiation
exposure [35]. In pandemics, like the current one, it is
crucial to quarantine suspected patients for their proper
treatment quickly. Rapid screening to diagnose such
patients is also essential for controlling outbreaks. AI-
based disease classification may also be combined with
confirmatory laboratory testing.

Similarly, it may be an excellent proposition to aid prog-
nosis and evaluation of recuperating/follow-up patients,
using AI-based rapid and less time-consuming tools.
Recently, researchers have made attempts to develop chest
X-ray image-based COVID-19 classification or identification
methods [36], with different capabilities. However, the stud-
ies possess some significant limitations that need to be
resolved to develop more reliable and accurate classification
models. To mention a few deficiencies, few of the studies
have included CXR images (in different classes) from highly
divergent age groups, i.e., paediatric as well as adults [16,
19, 21]. The procedure makes the classification job easy (for
deep learning algorithms), but at the same time, it is biased
due to the differences in lung sizes of paediatric vs. adult
age groups. The chances are there that new unknown images
belonging to a particular age group will be automatically
assigned to a class having images similar to that age group,
instead of diseased vs. normal or any other criteria. The
majority of studies [16–19, 21, 25, 26] did not apply the age
group (paediatric only or adolescent only or adults only)
and CXR view (PA or posteroanterior, LL or laterolateral,
etc.) inclusion criteria. The absence of these kinds of selection
criteria may lead to inappropriate training of models, and
that may not perform well in real-life situations.

Table 3: Performance of augmented image-based models on training, internal validation, and external validation images.

Results of the training and internal validation (N = 317) Results of the external validation (N = 110)
Augmentation
type

Training
accuracy
(N = 286)

Validation
accuracy
(N = 31)

Validation
loss

Normal
(N = 7)

COVID-
19 (N = 5)

New
COVID-19
(N = 75)

Non-
COVID-19
(N = 2)

Pneumonia
(N = 16)

Tuberculosis
(N = 5)

Rotate 120° 100 62 1.49 14.2 20 14.67 100 100 100

Rotate 140° 100 81.2 0.74 100 100 94.67 0 93.75 0

Table 4: Performance of combined models on training, internal validation, and external validation images.

Sr.
No.

Name of the
model

Results of the internal validation Results of the external validation (using all test set images combined)

Model type
Training
accuracy
(N = 7418)

Validation
accuracy
(N = 824)

Validation
loss

Normal
(N = 182)

COVID-
19

(N = 130)

New
COVID-19
(N = 1950)

Non-
COVID-19
(N = 52)

Pneumonia
(N = 416)

TB
(N = 130)

1
Combined
model 1 (24
epochs)

100 93.8 0.126 73.63 56.92 42.62 53.85 96.39 75.38

2
Combined
model 2 (49
epochs)

100 100 0.015 86.26 65.38 43.59 42.31 96.15 73.08

3
Combined

model 3 (101
epochs)

100 93.8 0.524 85.71 70.77 51.28 51.92 93.99 74.62

Table 5: Performance of combined models on the testing set of 60° rotated images.

Augmentation type
Combined model 1 (24 epochs) Combined model 2 (49 epochs) Combined model 3 (101 epochs)

N∗ C∗ C∗∗ N-C∗ P∗ TB∗ N∗ C∗ C∗∗ N-C∗ P∗ TB∗ N∗ C∗ C∗∗ N-C∗ P∗ TB∗

Rotate 60° 85.71 80 52 100 100 80 100 80 65.33 100 100 60 100 100 66.67 100 93.75 80

N∗ = normal (n = 7); C∗ = COVID-19 (n = 5); C∗∗ = new COVID-19 (n = 75); N-C∗ = non-COVID-19 (n = 2); P∗ = pneumonia (16); TB∗ = tuberculosis (n = 5
).
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For the generalization of models and to increase the sizes
of the datasets, only a few studies have made use of augmen-
tation techniques with a minimal number of augmentation
types [19, 21]. Moreover, few of the reviewed studies have
used commercial software such as MATLAB for image
analysis and deep learning-based algorithms or model
development [19, 20]. The use of commercial software
limits the wide usage of such studies at the user’s end,
easy deployment for free usage, and further development.
Another study improperly merged a non-COVID-19 SARS
patient’s images into COVID-19 image class during the
training of deep learning-based models [20]; this can badly
affect the prediction outcomes of models, and thus, non-
COVID-19 images may be classified as COVID-19. The
latter may lead to high false positives during real-life pre-
dictions. Also, the most recent studies claiming high pre-
diction accuracies have been tested/validated on small
COVID-19 CXR image test datasets (almost 1/3 of the
COVID-19 external validation dataset CXR images) in
the present study [25, 26].

Our study design overcomes the limitations of recently
published studies. Machine learning or AI-based training
requires similar types of medical images (mainly captured
from the same view and similar age group) for the develop-
ment of efficient classification models. Therefore, manual
curation of the publicly downloaded dataset helps to retain
similar types of images (having a single type of view, i.e., pos-
teroanterior, and age group). The augmentation of images
has been a popular technique in the area of computer vision,
commonly used to increase the dataset size and develop the
generalized models [37–40]. Also, transfer learning
approaches are useful to solve several image classification-
based biomedical problems [41–43]. Therefore, in the pres-
ent study, for the first time, successful attempts have been
made to develop augmented images based on efficient classi-
fication models for COVID-19 and other infectious diseases.
The transfer learning approach helped in saving a lot of time
and effort required to develop highly accurate classification
models, even using a minimal number of images. A total of
three best-performing AI-based models trained and tested
on (i) 120° rotated images, (ii) 140° rotated images, and (iii)
a combination of original and 25 different types of aug-
mented images have been provided on the GitHub.

Due to the availability of limited numbers of chest X-ray
images for COVID-19, the AI-based models trained on fewer
images have the chance of overfitting in the classification
models. However, the performance of our models on inde-
pendent datasets rules out any indication of overfitting of
the models. In the future, the model training will be
enhanced further by incorporating a large number of images
to develop more robust and scalable classification models.
The currently developed AI-based models in the study are
CPU-based, hence slow in the classification of chest X-rays.
In the future, we will focus on the development of GPU-
based classification models that will help in providing bulk
upload of image facility to users through a user-friendly
web interface. Only chest X-rays with PA views were used
in training the models; as of now, no other radiological
images can be used for model evaluation.

As the chest X-ray data on COVID-19 is rapidly increas-
ing, the authors are continuously putting efforts to make use
of maximum available data to update the classification
models and enhance their reliability and utility in the real-
life situations. Moreover, the availability of more and diverse
training images will facilitate the development of more
robust and scalable classification models.

5. Conclusions

AI-based classification can help rapid diagnosis of COVID-
19 and other major infectious diseases. The models devel-
oped by us are proof of the concept that cost-effective, user-
friendly, and noninvasive AI-based methods can be devel-
oped for COVID-19. The AI-based models developed by us
may be evaluated for its use in clinics, as diagnostic or clinical
management of patients. Also, in the future, with the avail-
ability of more and more images, representing diverse cases,
the efficiency of the models may be scaled up.

Data Availability

The codes used for the development and validation of AI-
based prediction models, including sample images, devel-
oped models, and scripts used for augmentation of the orig-
inal images, have been uploaded on GitHub at https://
github.com/arunsharma8osdd/covidpred.
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