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Abstract: Bioactivity and biocompatibility are crucial for tissue engineering scaffolds. In this study,
hydroxyapatite (HAP) was incorporated into polyetheretherketone/polyglycolicacid (PEEK/PGA)
hybrid to improve its biological properties, and the composite scaffolds were developed via selective
laser sintering (SLS). The effects of HAP on physical and chemical properties of the composite
scaffolds were investigated. The results demonstrated that HAP particles were distributed evenly in
PEEK/PGA matrix when its content was no more than 10 wt %. Furthermore, the apatite-forming
ability became better with increasing HAP content after immersing in simulated body fluid (SBF).
Meanwhile, the composite scaffolds presented a greater degree of cell attachment and proliferation
than PEEK/PGA scaffolds. These results highlighted the potential of (PEEK/PGA)-HAP scaffolds for
tissue regeneration.
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1. Introduction

Polyetheretherketone (PEEK), as an attractive scaffold biomaterial, possesses excellent mechanical
characteristics, great thermal stability, as well as good processability [1–3], while bioinertness and slow
degradability inhibit its further application [4,5]. Polyglycolicacid (PGA) has gained much attention
due to its remarkable hydrophilicity and degradability [6,7]. Combination of the advantages of PEEK
and PGA could realize the expected properties better than to one of them alone. More importantly,
the PEEK/PGA hybrid is able to degrade gradually, and the degradation rates could be tuned by
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adjusting PGA content. However, its unsolved problem is a lack of the natural cell recognition
sites [8–10].

Hydroxyapatite (HAP, Ca10(PO4)6(OH)2), the main inorganic component of bone, has caused
considerable interest for bone substitution and regeneration, owing to its strong osteoconductive
properties, bone-bonding ability, preeminent biocompatibility and bioactivity [11–13]. Recently, Lee et
al. prepared nanofibrous PLGA/Gelatin/HAP scaffolds via an electrospinning method and found
that the scaffolds exhibited improved biocompatibility and osteoconductivity compared with the
PLGA/Gelatin scaffolds [14]. Zhang et al. fabricated poly(L-lactide)/poly(lactide-coglycolide)/HAP
scaffolds by high-pressure compression molding plus salt-leaching method and discovered that adding
HAP into the scaffolds led to an encouraging improvement in bioactivity [15]. Raafat et al. developed
HAP-(starch/N-vinylpyrrolidone) composites using γ-radiation-induced graft copolymerization and
confirmed that these composites were both bioactive and biocompatible [16].

In this study, incorporation of HAP into PEEK/PGA hybrid has laid a particular basis for
enhancing the scaffold biocompatibility and bioactivity. (PEEK/PGA)-HAP scaffolds containing
different content of HAP were prepared via selective laser sintering (SLS) systems. The composite
scaffolds were assessed though X-ray diffraction (XRD), scanning electron microscope (SEM),
differential scanning calorimetry (DSC) and infrared spectroscopy (FTIR). The effects of HAP on
apatite-forming ability were evaluated after soaking into simulated body fluid (SBF). The mechanical
characteristics and MG-63 cells responses of scaffolds were investigated.

2. Results and Discussion

2.1. Scaffold Fabrication

The scaffolds were developed using PEEK/PGA-HAP composite powders with different
HAP content (0, 5, 7.5, 10, 12.5 and 15 wt %) through SLS. The composite scaffold was
displayed from different views (Figure 1). Its overall dimension was about 18 × 18 × 7.5 mm3.
The scaffold was made up of six struts, and each layer was 1.1 mm in width and 1.3 mm in thickness.
A uniform porous and interconnected structure was presented, which was conducive to cellular
growth, proliferation and nutrient transportation. The porosity of the scaffold with the optimal
mechanical properties was evaluated. The apparent volume was 2430 mm3 based on geometry
(Vp = L × W × H = 18 mm × 18 mm × 7.5 mm). The actual volume was 1241 mm3 (Va) based on the
Archimedes method. Its actual porosity was 48.9% ± 1.3%. The shape of the pore was square, and
pore size was about 800–900 µm. High porosity and suitable pore size could enhance cell attachment
and proliferation inside scaffolds, vascularization, as well as bone growth [17].
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2.2. Microstructure and Composition

The surface structure of scaffolds with different HAP contents (Figure 2) was presented to study
the dispersed state of HAP powders in the PEEK/PGA matrix. The PEEK/PGA scaffold showed
a smooth surface (Figure 2a). The even dispersion of HAP particles in PEEK/PGA matrix was observed
in the scaffolds containing 5, 7.5 and 10 wt % HAP and the agglomerations of HAP particles was
negligible (Figure 2b–d). In contrast, the scaffold with 12.5 wt % and 15 wt % HAP yielded significantly
agglomeration and the particles were non-evenly distributed in the PEEK/PGA matrix (Figure 2e,f).
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Figure 2. Morphologies of the scaffolds with (a) 0 wt %; (b) 5 wt %; (c) 7.5 wt %; (d) 10 wt %;
(e) 12.5 wt %; (f) 15 wt % HAP.

The phase compositions of the scaffolds containing different content of HAP were determined and
graphed in XRD spectra (Figure 3). PEEK phase and PGA phase, as the predominant components of the
scaffolds, were clearly shown in all the patterns. For the scaffolds with 5, 7.5, 10, 12.5 and 15 wt % HAP,
their patterns exhibited some peaks at 2θ = 31.8, 32.9, 34.3, 46.7 and 49.5, which correspond to (211),
(300), (202), (222) and (213) characteristic spectrum of HAP (Figure 3c–g), respectively [18]. Meanwhile,
with the increase of HAP, these peaks increased in intensity. In addition, no extra peaks of other phases
were observed.
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Figure 3. X-ray diffraction (XRD) patterns of (a) the HAP powder; (b) the PEEK/PGA scaffold;
(c) the PEEK/PGA-5 wt % HAP scaffold; (d) the PEEK/PGA-7.5 wt % HAP scaffold;
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2.3. DSC Studies

DSC was conducted to detect the physical states of HAP particles within composite scaffolds
(Figure 4). The DSC thermogram of PEEK/PGA scaffold showed two distinct endothermic peaks
at approximately 343 ◦C and 224 ◦C, which was consistent with endothermic peaks of PEEK and
PGA [19,20]. Moreover, with increased content of HAP particles, the temperatures at which the two
exothermic peaks occurred generally increased. This might have been because HAP particles would
absorb heat during heating processes. Hence, more time was needed for PEEK and PGA in the
composite to take in enough heat to attain their decomposition points, recalling that temperatures
varied linearly with time. These results corresponded to those observed in other researches on the
compound of other polymers and HAP [21,22].
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composite scaffolds.

2.4. Mechanical Properties

The elastic modulus and compressive strength of the scaffolds increased with the HAP contents
(Figure 5). The addition of 10 wt % HAP could increase elastic modulus to 3.31 GPa, being
25% higher than that of the PEEK/PGA scaffold. Moreover, compressive strength increased to
95.47 MPa with incorporation of 10 wt % HAP, being 34.5% higher than that of the PEEK/PGA scaffold.
The elastic modulus and compressive strength increase with inorganic filler contents were common in
the polymeric composite because of the higher stiffness of the filler [23–25]. Nevertheless, the tensile
strength of the scaffolds decreased with HAP contents, and substantially dropped to about 24.3 MPa
when the HAP content reached 12.5 wt % (Figure 5b). The severe HAP agglomeration in the polymeric
matrix (see Figure 2) probably caused this strength decrease. Therefore, the optimal HAP content was
10 wt % in this study.
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2.5. Bioactivity Evolution

The bioactivity of the scaffolds with different HAP contents was evaluated by soaking them into
simulated body fluid (SBF). There was no deposition observed on the surface of the scaffolds without
HAP after immersion in SBF for two weeks (Figure 6a), which confirmed that the composite of PEEK
and PGA lacked apatite formability. Only a few depositions were found on the PEEK/PGA-5 wt %
HAP scaffold (Figure 6b). With the increase of HAP contents, the amount of particle depositions
increased. Moreover, the scaffold’s surface was overlaid by a layer of worm-like precipitates,
with HAP increasing to 15 wt % (Figure 6f) after 14 days of immersing. These results indicated
that the incorporation of HAP particles into the PEEK/PGA matrix would stimulate and accelerate the
apatite formation, and therefore enhanced bioactive behavior of the scaffolds.
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(e) 12.5 wt %; (f) 15 wt % HAP after immersion in simulated body fluid (SBF) for 14 days.

FTIR was used to provide more information about apatite formation on the scaffold's surface
after soaking in SBF. FTIR spectrums of the PEEK/PGA-10 wt % HAP scaffolds before and after
immersion in SBF for two weeks were recorded, ranging 450 cm−1 from to 3500 cm−1 (Figure 7). After
14 days of immersing, the spectrum exhibited some new and small peaks, which corresponded to
the vibrational band of carbonate group. These were ν2 band at 879 cm−1, ν3 bands at 1462 cm−1.
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The results demonstrated that the worm-like apatite crystals on the scaffold's surface were bone-like
apatite whose phosphate ions were substituted partially by carbonate ions after 14 days of immersing
in SBF. Since bone mineral contained some carbonate in human body, the appearance of carbonate in
composite scaffolds was beneficial [26]. As a consequence, it could increase the bioactivity of apatite.
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2.6. In Vitro Degradation

In vitro degradation behavior of the scaffolds was an important factor in tissue regeneration [27,28].
The pH changes of scaffolds during in vitro degradation in the PBS solution are shown in Figure 8a.
The pH for the scaffolds declined from the oringinal value of 7.4, owing to the released acidic
degradation products from PGA. At the same time, it was obvious that pH value of PEEK/PGA-10
wt % HAP scaffolds decreased much more slowly than that of the PEEK/PGA scaffolds. This could
be explained thus: the degradation of PGA was shown to be comprised of hydrolysis processes,
which could increase at a faster rate in the acidic atmosphere, and thus the pH changes of PEEK/PGA
scaffolds exhibited the declining tendency. For the PEEK/PGA-10 wt % HAP scaffolds, –OH functional
groups of HAP were able to neutralize acidic degradation product from PGA, which rendered the
decrease of the pH rates less. Ameliorated acidity atmosphere could reduce the risk of inflammatory
reactions during the culture of cells and tissues [29].Materials 2016, 9, 934  7 of 13 
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In-vitro degradation was also determined by the weight loss after immersing in PBS for different
time (Figure 8b). Weight loss of the two scaffolds both increased gradually as the soaking time
prolonged. Furthermore, weight loss of PEEK/PGA-10 wt % HAP scaffolds was a little lower
than that of the PEEK/PGA scaffolds after degradation for 28 days (6.08% and 9.63%, respectively).
This was because the HAP incorporated in the PEEK/PGA matrix could reduce the possibility of
acidic selfcatalysis effects, and it was consistent with the measured result of pH.

2.7. Biocompatibility Studies

An MTT experiment was implemented using MG-63 cells to study cell proliferation on PEEK/PGA
and PEEK/PGA-10 wt % HAP scaffolds (Figure 9). As the culture times became prolonged, the cells
gradually increased on the both scaffolds. In addition, the cells on PEEK/PGA-10 wt % HAP scaffolds
were much more than that on PEEK/PGA scaffolds at the same incubation days (1, 3 and 5 days).
The results hinted that the addition of HAP into the scaffolds was beneficial to the cells’ proliferation.
Several studies had also reported that the incorporation of HAP into the polymeric matrix would
improve cell proliferation [30,31].
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Figure 9. MTT assay of MG-63 cells cultured on PEEK/PGA scaffolds and PEEK/PGA-10 wt % HAP
scaffolds (* p < 0.05).

Fluorescence photographs proclaimed that live MG63 cells on scaffolds appeared as green staining
(Figure 10). The cells displayed ball-like morphologies at the beginning. Besides, it was obvious to
observe that live cells attached well and spread with extended filopodia on PEEK/PGA-10 wt % HAP
scaffolds after their incubation for three days (Figure 10B3), which resembled those incubated for five
days on PEEK/PGA scaffolds (Figure 10A5). With incubation time increased to five days, cell numbers
grew, filopodia of cells had further extended, and there appeared some cell fusion (Figure 10B5).
These results further demonstrated that the scaffolds with HAP could stimulate cell proliferation and
attachment. The reason was likely that the degradation of HAP might neutralize the acidic products
from PGA and led to the stability of pH. Previous researches have demonstrated that a low or high
pH was likely to restrained cells behavior [32]. The results of MTT and cell immunofluorescence
experiments demonstrated that the scaffolds with HAP had good biocompatibility.
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2.8. Alkaline Phosphatase (ALP) Activity

Cell differentiation was assessed by the ALP activity of MG63 cells incubated on PEEK/PGA
and PEEK/PGA-10 wt % HAP scaffolds for different periods (Figure 11). The activity of ALP
secreted by the MG63 cells was low on the two types of scaffolds at day one. With incubation
time prolonged, the activity of ALP on the PEEK/PGA-10 wt % HAP scaffolds increased substantially.
On the contrary, the activity of ALP of the cells incubated on PEEK/PGA scaffolds presented a very
slight increase tendency with incubation time. This was in accordance with the previous researches
using HA-containing composite scaffolds, which presented that the addition of HAP could enhance
cell differentiation at an early time [33,34]. One of characteristics of HAP was its bioactive nature
which could improve cell differentiation [35]. Besides, it could bind proteins and growth factors,
and thus promoted cell differentiation [36]. These results implied that the scaffolds with HAP offered
a favorable microenvironment for cell differentiation.Materials 2016, 9, 934  9 of 13 

 

 
Figure 11. Alkaline phosphatase (ALP) activity of MG63 cells cultured on PEEK/PGA scaffolds and 
PEEK/PGA-10 wt % HAP scaffolds at various time points (* p < 0.05). 

3. Materials and Methods 

3.1. Materials  

Irregularly shaped PEEK (Mw: 270,000 g/mol) with a specified average particle size of 30 μm 
was obtained from Dongguan Guanhui Plastic Materials Co. Ltd. (Dongguan, China). PGA (Mw: 
1,000,000 g/mol) was purchased from Shenzhen Polymtek Biomaterial Co. Ltd. (Shenzhen, China). 
Hydroxyapatite particles with rod morphology were provided by Nanjing Emperor Nano Material 
Co. Ltd. (Nanjing, China). Phosphate buffer solution (PBS) was supplied by Beijing Chemical 
Reagent Company (Beijing, China). Dulbecco’s modified Eagle’s medium (DMEM) and fetal bovine 
serum (FBS) were provided by Life Technologies (Carlsbad, CA, USA). 

3.2. Preparation of Porous Scaffolds 

(PEEK/PGA)-HAP composite powders were prepared as follows: PEEK powder (80 wt %) and 
PGA powder (20 wt %) were sonicated for 30 min in ethanol using ultrasonication, then grinded for 
30 min by a variable frequency planet-type ball mill at room temperature. Whereafter, HAP powder 
was added to the PEEK/PGA solution. At this stage, the HAP powder was blended in proportions of 
5%, 7.5%, 10%, 12.5% and 15% of total weight, respectively. The composites were ultrasonicated and 
grinded vigorously for 1 h to evenly disperse the HAP in the polymer solutions. After grinding, the 
composites were exsiccated in a drying oven. 

The obtained powders were used to manufacture composite scaffolds through SLS. The SLS 
system comprised a CO2 laser, three-dimensional motion platforms, sintering platform and control 
system. During sintering processes, composite powders were sintered layer by layer to develop 
porous scaffolds. The processing parameters remained constant: laser power 2.5 W, scanning rate 
400 mm/min, spot diameter 0.8 mm, scan space 3 mm and layer thickness 0.1–0.2 mm. 

3.3. Differential Scanning Calorimetry (DSC) 

The thermal behaviors of the composite scaffolds were studied employing an STA-200 
differential scanning calorimeter. In short, specimens (approximately 8 mg) were enclosed in 
hermetic aluminum pans. Subsequently, they were heated from 30 °C to 380 °C at a constant 
temperature rise of 10 °C/min under the protective nitrogen atmosphere. Six specimens were tested 
and the melting point temperature was identified from melting curve. 

Figure 11. Alkaline phosphatase (ALP) activity of MG63 cells cultured on PEEK/PGA scaffolds and
PEEK/PGA-10 wt % HAP scaffolds at various time points (* p < 0.05).



Materials 2016, 9, 934 9 of 13

3. Materials and Methods

3.1. Materials

Irregularly shaped PEEK (Mw: 270,000 g/mol) with a specified average particle size of
30 µm was obtained from Dongguan Guanhui Plastic Materials Co. Ltd. (Dongguan, China).
PGA (Mw: 1,000,000 g/mol) was purchased from Shenzhen Polymtek Biomaterial Co. Ltd. (Shenzhen,
China). Hydroxyapatite particles with rod morphology were provided by Nanjing Emperor Nano
Material Co. Ltd. (Nanjing, China). Phosphate buffer solution (PBS) was supplied by Beijing Chemical
Reagent Company (Beijing, China). Dulbecco’s modified Eagle’s medium (DMEM) and fetal bovine
serum (FBS) were provided by Life Technologies (Carlsbad, CA, USA).

3.2. Preparation of Porous Scaffolds

(PEEK/PGA)-HAP composite powders were prepared as follows: PEEK powder (80 wt %) and
PGA powder (20 wt %) were sonicated for 30 min in ethanol using ultrasonication, then grinded for
30 min by a variable frequency planet-type ball mill at room temperature. Whereafter, HAP powder
was added to the PEEK/PGA solution. At this stage, the HAP powder was blended in proportions
of 5%, 7.5%, 10%, 12.5% and 15% of total weight, respectively. The composites were ultrasonicated
and grinded vigorously for 1 h to evenly disperse the HAP in the polymer solutions. After grinding,
the composites were exsiccated in a drying oven.

The obtained powders were used to manufacture composite scaffolds through SLS. The SLS
system comprised a CO2 laser, three-dimensional motion platforms, sintering platform and control
system. During sintering processes, composite powders were sintered layer by layer to develop
porous scaffolds. The processing parameters remained constant: laser power 2.5 W, scanning rate
400 mm/min, spot diameter 0.8 mm, scan space 3 mm and layer thickness 0.1–0.2 mm.

3.3. Differential Scanning Calorimetry (DSC)

The thermal behaviors of the composite scaffolds were studied employing an STA-200 differential
scanning calorimeter. In short, specimens (approximately 8 mg) were enclosed in hermetic aluminum
pans. Subsequently, they were heated from 30 ◦C to 380 ◦C at a constant temperature rise of
10 ◦C/min under the protective nitrogen atmosphere. Six specimens were tested and the melting point
temperature was identified from melting curve.

3.4. Characterization

Scanning electron microscopy (SEM, FEI Quanta-200, FEI Co., Hillsboro, OR, USA) was
operated to analyze the morphologies of the composite scaffolds. The specimens were coated
by platinum layer using a JFC-1600 sputter coater (JEOL Co., Tokyo, Japan) for 200 s. SEM was
performed at 12 kV to observe the features of samples. An X-ray diffractometer (XRD, D8 Advance,
German Bruker Co., Karlsruhe, Germany) was carried out to characterize the phase composition of
composite scaffolds. XRD diagrams were obtained in 2θ mode ranging from 10◦ to 80◦ at the scanning
rate of 8◦/min. Seven samples were detected and XRD diagrams were obtained in 2θ mode ranging
from 10◦ to 80◦ at the scanning rate of 8◦/min. The compressive strength was tested on an MTS
Insight electromechanical testing machine (MTS systems Corp., Shanghai, China), and the screw speed
was 0.5 mm/min. Tensile tests were determined using a WD-D1 testing machine (Shanghai Zhuoji
Instruments Co., Ltd., Shanghai, China) with a crosshead speed of 5 mm/min. The strip shaped
specimens were 10 × 10 × 5 mm3. Elastic modulus was obtained with the initial slopes of stress–strain
curves. Five specimens were tested at each composition and the mean values were reported.

The porosity (Pd) was evaluated using the equation:

Pd =
Vp − Va

Vp
× 100%, (1)
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where Vp (mm3) is the apparent volume that was obtained based on the geometry, Va (mm3) is the
actual volume that was estimated based on the Archimedes’ Principle, and Pd (%) is the porosity.
The final porosity of fabricated scaffold was the average of five test data.

3.5. In Vitro Biomineralization Properties

The biomineralization properties were evaluated by soaking the composite scaffolds with different
HAP contents in SBF solution. This solution was prepared as the Kokubo protocol by dissolving
reagent-grade chemicals into distilled water, with a similar concentration to those of human blood
plasma (Table 1). It was maintained at 7.4 with Tris(hydroxymethyl)-aminomethane and 1 mol/L
HCl. The six scaffolds were immersed in SBF for 2 weeks at 37 ◦C, and the solution were renewed
every second day. After immersion, they were extracted, rinsed with ethanol and dried at 37 ◦C
for 12 h. The microstructure and chemical groups of the deposited apatite layer on scaffolds were
assessed using SEM and Fourier transform infrared (FTIR, Thermo Scientific Co., Madison, WI, USA)
spectroscopy, respectively.

Table 1. Ion concentration in SBF and human blood plasma.

Ion Type
Ion Concentration (mM)

Na+ K+ Mg2+ Ca2+ Cl− HCO−
3 HPO2−

4

Simulated Body fluid 142.0 5.0 1.5 2.5 148.8 4.2 1.0
Human blood plasma 142.0 5.0 1.5 2.5 103.0 17.0 1.0

3.6. Degradation Behavior

In vitro degradation of the composite scaffolds was evaluated in PBS solution (initial pH was 7.4).
Three samples were weighted (W0) for each group and subsequently immersed into the solution in
incubators at 37 ◦C for different times (7, 14, 21, 28 days). The pH changes in PBS at each period
were determined using pH meter. At the predetermined time, they were removed from the buffer,
thoroughly cleaned with ethanol and desiccated to a constant weight (W1) at 50 ◦C for 12 h. The weight
loss ratio was determined as:

weight loss (%) =
W0 − W1

W0
× 100% (2)

Each group was measured six times and the values were averaged.

3.7. Cell Culture

The biocompatibility of composite scaffolds was investigated through cell culture experiments.
Before cell seeding, scaffolds were sanitized with 70% ethanol for 2 h, then sterilized under ultraviolet
for 15 min and rinsed three times with PBS. Afterwards, they were placed into a 12-well plate, seeded
with 20,000 MG-63 cells (Cellular Biology Institute, Shanghai, China) per well and incubated in
Dulbecco’s modified eagle mediums with a 5% CO2 humidified incubator at 37 ◦C. The cells were
passaged three times prior to use. Three samples were fostered for each group and the culture medium
was renewed every two days. After different culture periods (1, 3 and 5 days), scaffolds were taken
out from plates and cleaned in PBS. Afterwards, the cells attached on scaffolds were immobilized with
4% glutaraldehyde and dehydrated with ethanol.

Cell viability of composite scaffolds was measured by MTT assay. At preset culture time, 10 µL
MTT solution was added into each scaffold and incubated at 37 ◦C for 3 h. Then the supernatants were
discarded and 600 µL dimethyl sulphoxide (DMSO) was put into each well to dissolve intracellular
formazan. Three scaffolds were incubated for each group and the absorbency at 570 nm was recorded
with the microplate reader. Moreover, cell-material interaction was assayed by fluorescence technique.
After cell culture, the composite scaffolds were given out from plates and purged with PBS, fixed
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by paraformaldehyde and permeabilized. Hereafter, cells were cleaned and preincubated with PBS.
Afterwards, the cells were cultivated in 4 µm EthD-1 for 30 min. Finally, fluorescence figures were
obtained by the confocal microscope (Leica Microsystem, Mannheim, Germany).

3.8. Alkaline Phosphatase (ALP) Assay

ALP activity was conducted to analyze the MG-63 cell differentiation for different culture days.
Scaffold specimens were placed in a 24-well plate. MG-63 cell were cultured on specimens for
1, 3 and 5 days. The culture mediums were refreshed every three days. At selected time points, the
adherent cells were rinsed twice in PBS, and incubated in a cell lysis buffer that contains 0.1% Triton
X at 4 ◦C for 30 min. After that, cell supernatant was detected for ALP activity by p-nitrophenyl
phosphate, and absorbance was determined at 405 nm. The ALP assay of MG-63 cells was performed
by a Laboassay™ ALP kit (Wako Pure Chemicals, Tokyo, Japan) according to the manufacturer’s
instruction. Results showed mean values of three individual tests.

3.9. Statistical Analysis

All data from experiments were statistically analyzed using Origin 6.0 software (Microcal Software Inc.,
Northhampton, MA, USA) and expressed as mean ± standard deviations. Statistical significance was
identified using Student’s t-test, considering statistically significance at p < 0.05.

4. Conclusions

The PEEK/PGA scaffolds incorporated with HAP were manufactured using a selective laser
sintering system. The addition of HAP could not only improve the bioactivity of the scaffolds,
but also was beneficial to cell attachment and proliferation. In addition, it could enhance the elastic
modulus of the scaffolds. Therefore, the PEEK/PGA scaffolds with HAP were more attractive for bone
tissue regeneration.
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