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Abstract

Background: Hydroxylation is an important post-translational modification and closely related to various diseases. Besides the
biotechnology experiments, in silico prediction methods are alternative ways to identify the potential hydroxylation sites.

Methodology/Principal Findings: In this study, we developed a novel sequence-based method for identifying the two main
types of hydroxylation sites – hydroxyproline and hydroxylysine. First, feature selection was made on three kinds of features
consisting of amino acid indices (AAindex) which includes various physicochemical properties and biochemical properties of
amino acids, Position-Specific Scoring Matrices (PSSM) which represent evolution information of amino acids and structural
disorder of amino acids in the sliding window with length of 13 amino acids, then the prediction model were built using
incremental feature selection method. As a result, the prediction accuracies are 76.0% and 82.1%, evaluated by jackknife
cross-validation on the hydroxyproline dataset and hydroxylysine dataset, respectively. Feature analysis suggested that
physicochemical properties and biochemical properties and evolution information of amino acids contribute much to the
identification of the protein hydroxylation sites, while structural disorder had little relation to protein hydroxylation. It was
also found that the amino acid adjacent to the hydroxylation site tends to exert more influence than other sites on
hydroxylation determination.

Conclusions/Significance: These findings may provide useful insights for exploiting the mechanisms of hydroxylation.
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Introduction

Many proteins undergo a wide variety of post-translational

modifications. Reversible modifications are thought to be relevant

in physiological processes, while non-reversible modifications may

contribute to pathological situations and diseases [1]. Hydroxyl-

ation is one of the important protein reversible post-translational

modifications. During the chemical process of hydroxylation,

amino acid residue is modified by the attachment of at least one

hydroxyl group. Hydroxylation of amino acid side chains in

proteins is less common than other post-translational modifications

[2]. Up until now, proline is the main amino acid residue to be

hydroxylated in proteins, which is intensively modified in collagen

[3]. The proline hydroxylation occurs at the c-C atom, forming

hydroxyproline, which is an essential element of collagen, and can

stabilize the triple helix structure in turn a necessary element of

collagen protofibrils. Proline hydroxylation is also an essential

component of hypoxia response via hypoxia inducible factors

[4,5,6]. Ascorbate deprivation causes deficiencies in proline

hydroxylation, making collagen less stable, which can associated

with metabolic disorder or disease [7]. The second type of protein

hydroxylation residue is lysine, also intensively modified in

collagen [8,9], which could also be hydroxylated on its d-C atom,

forming hydroxylysine. It’s relevant to both secretion and function

in the extracellular matrix [10]. Some of lysine hydroxylation sites

are then subsequently glycosylated by UDP-galactose through

secretary pathway [11,12] which is necessary for immuno-

determinants in T cell recognition [13,14].

Experimental identification of hydoxylated proteins with proline

or lysine sites, commonly using mass spectrometric method

[10,15,16], is quite difficult, time-consuming and expensive. By

comparison, in silico prediction methods are time-saving and cost-

saving. However, there is only one bioinformatics approach

regarding the prediction of the hydroxylation modification, which

used the bio-kernel SVM model to predict the 37 sequences

collected from NCBI [17,18] and achieved the specificity of 70%

and the sensitivity of 90%, but it limited to the prediction of the

collagen hydroxyproline [19]. Therefore more universal compu-

tational methods should be developed to annotate the hydroxyl-

ation sites of the abundant newly discovered proteins in the post-

genome era. And the methods may be helpful to understand the

complicated molecular mechanism of hydroxylation.

In this work, we presented a new general algorithm to predict

proline and lysine hydroxylation sites based on 506 amino acid

indices [20,21] (AAindex), Position-Specific Scoring Matrices [22]

(PSSM) and structural disorder [23,24] features. AAindex depicts
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the physicochemical properties and biochemical properties of

amino acids. PSSM represents the conservation information of the

protein in evolution. Proteins that lack fixed secondary and/or

tertiary structures under physiological conditions are defined as

intrinsically disordered proteins. Intrinsic disorder regions (IDRs)

are abundant in many eukaryote proteins [25,26]. To our

knowledge, most IDRs are related to the key biological activities

[27,28,29] and various diseases [30,31,32,33]. A number of PTMs

are strongly associated with intrinsic disorder [34,35,36,37,38] and

many PTMs (e.g. phosphorylation, lipidation, GPI-anchor) have

been experimentally proved to be correlated with IDRs [35,37].

For example, macromolecular interactions can be modulated with

the acetylation and methylation of lysine residues in histones,

which change the physico-chemical properties of intrinsically

disordered core domains [28]. In view of this, the intrinsic disorder

was used as a new feature to recode the amino acids. The

prediction model were built using incremental feature selection

(IFS) method [39,40] and evaluated by jackknife cross-validation.

Based on the optimal feature sets, the relationships between the

features and protein hydroxylation sites were also discussed.

Materials and Methods

Benchmark Dataset
We retrieved hydroxylated proteins from UniProt/Swiss-Prot

[41] (Release: 57.12, 15-Dec-2009) by searching ‘‘hydroxyproline’’

or ‘‘hydroxylysine’’ in the field ‘‘modified residue’’. To build a

high quality benchmark dataset, the entries with hydroxylation

annotation confidence - ‘‘probable’’, ‘‘potential’’, or ‘‘by similar-

ity’’ were excluded. As a result, the hydroxyproline dataset

consisted of 100 protein sequences and the hydroxylysine dataset

consisted of 28 protein sequences.

Within the hydroxyproline dataset, there were 678 experimen-

tally validated hydroxylated proline residues and 3403 non-

hydroxylated proline residues. Then we extracted peptides with

13 residues that consisted of a proline residue, 6 residues upstream

and 6 residues downstream of the proline residue. The 678 peptides

containing the hydroxylated proline residues were assigned as

positive samples, while 1356 peptides that were randomly selected

from the 3403 peptides containing non-hydroxylated proline

residues were assigned as negative samples (see Table S1). Similarly,

108 positive samples and 216 negative samples were obtained from

the hydroxylysine dataset (see Table S2).

Peptides Coding
In this research, peptides were coded by three kinds of features:

amino acid index, PSSM conservation, and structural disorder.

Amino Acid Index. Amino Acid Index (AAindex, http://

www.genome.ad.jp/aaindex/) [20,21] database is a collection of

numerical indices that stand for diverse physicochemical

properties and biochemical properties of amino acids. For each

amino acid, there are 506 indices representing its different

physicochemical and biological properties. Therefore, the

physicochemical properties and biochemical properties of amino

acid can be represented by a 506-D (dimensional) vector.

Moreover, those indices belong to 5 clusters: alpha and turn

propensities, beta propensity, composition, hydrophobicity,

physicochemical properties.

PSSM Conservation. Protein conservation always indicates

biology function, and post-translational modifications are prone to

occur in the conservative protein segments. Here, we employed

Position Specific Iterated BLAST [42] (PSI-BLAST), a powerful

sequence searching method, to quantify the sequence conservation

with Position Specific Scoring Matrix (PSSM) [22] which has been

proved to be effective in the identification of other post-trans-

lational modification sites [43,44]. It depicts the conservation of

each amino acid residue in the sequence by a 20-D vector, the

element of which measures the likelihood that the residue mutates

to each of the 20 amino acids. Thus, a protein with X amino acid

residues will take a X|20 matrix as its PSSM. The parameters of

PSI-BLAST (Release 2.2.12) used to generate PSSM were set as

following: expectation value 0.0001, e-value threshold for inclusion

in multipass model 0.0001, maximum number of passes in multi-

pass version 3. And The alignment database was UniRef100

(Release: 15.9) which contains 9,385,165 reference clusters.

Structural Disorder. Disorder structures are often rich in

binding sites which are important loci for diverse post-translational

modifications such as acetylation, methylation and phosphoryla-

tion [35]. Therefore, we utilized the disorder feature of protein

sequence to code the peptides. VSL2 [45], one of the best

predictors for disorder, was used to weight the likelihood of each

amino acid residue to be disordered in the sequence. The disorder

score calculated by VSL2 for each residue ranges from 0 to 1.

The larger the score is, the more likely the residue lacks fixed

structure.

Feature Space. Because the middle residues of the peptides

of the hydroxyproline dataset or hydroxylysine dataset shared the

common 506 amino acid indices, these middle residues were thus

coded by 20 PSSM conservation scores and 1 disorder score,

totally 21 features. Other residues (6 amino acids upstream and 6

amino acids downstream) can be represented by 506 amino acid

indices, 20 PSSM conservation scores, and 1 disorder score, totally

527 features. Overall, each peptide consisting of 13 amino acid

residues could be coded by a 6,345-D (21|1z527|12~6345)

vector. That is to say, the feature space is 6,345-D.

Model Constructing
First, we used Maximum Relevance, Minimum Redundancy

[46] (mRMR) method to rank the 6,345 features according to their

importance. Then based on the rank of features, we generated 500

feature sets from the top 500 features. For each feature set, a

prediction model was constructed with nearest neighbor algorithm

and evaluated by jackknife cross-validation. The incremental

feature selection method was used to select the optimal feature set

with the best prediction performance. The model based on the

optimal feature set was chosen as the final prediction model.

Feature Prioritizing. Maximum Relevance, Minimum

Redundancy [46] (mRMR) method was always employed to sort

the features in descending order in bioinformatics [47,48,49,50].

As its name tells, it contains two criteria: the Max-Relevance

criterion and the Min-Redundancy criterion. Max-Relevance

criterion requires that the preferentially selected features possess

more correlation with target than other features, while Min-

Redundancy criterion demands that the feature to be selected

possesses minimal redundancy with the already selected features.

By applying the Max-Relevance criterion, the features are ranked

in the MaxRel feature list according to the descending order. By

applying both the criteria, the features that are strongly correlated

with target and lowly redundant to the already selected features

are preferentially selected, and the features are prioritized in

the mRMR feature list. The principle of the algorithm can be

found in Peng’s original study [46], and the program can be

retrieved from the web site http://penglab.janelia.org/proj/

mRMR/index.htm.

Nearest Neighbor Algorithm. Nearest neighbor algorithm

(NNA) is one of the widely used machine learning algorithms. In

NNA, an unclassified sample is predicted to share the common

class as its nearest neighbor. The distance between two samples is

Predicting Protein Hydroxylation Sites
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calculated as follows

D(vi,vj)~1{
vi
:vj

jjvijj:jjvj jj
ð1Þ

where jjvjj represents the module of sample vector v, and vi
:vj

represents the dot product of two sample vectors.

Suppose a data set consisting of n classified peptides with a

corresponding coding vector set fp1,p2, . . . ,pi, . . . ,png. For a

query peptide with coding vector p, its class will be predicted to be

same as the class of the peptide whose coding vector pm subjects to

D(p,pm)~ minfD(p,pi)j(i~1,2, . . . ,n)g ð2Þ

Evaluation. In this research, jackknife cross-validation

[51,52,53] was employed to evaluate the performance of the

constructed NNA predictors since it has been widely used to

evaluate diverse classifiers [54,55,56,57]. In the validation, each

sample is removed in turn from the data set as a test sample, and

then predicted by the model trained with the rest data. Four

sophisticated measurements: sensitivity (Sn), specificity (Sp),

accuracy (AC) and matthews correlation coefficient (MCC) were

utilized to assess the capability of the NNA predictors. Sn, Sp and

AC represent the success rates of prediction on positive, negative

and overall datasets respectively. MCC is always introduced when

the positive and negative datasets are out-of-balance from each

other. It varies from -1 to 1, and the larger MCC is, the better the

predictor performs. These four measurements can be formulated

as follows

Sn~
TP

TPzFN

Sp~
TN

TNzFP

AC~
TPzTN

TPzFPzTNzFN

MCC~
(TP|TN){(FN|FP)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(TPzFN)|(TNzFP)|(TPzFP)|(TNzFN)
p

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð3Þ

where TP, FP, TN and FN denotes the numbers of true positive,

false positive, true negative, false negative samples, respectively.

Incremental Feature Selection. After prioritizing the

features in the feature space by the mRMR method, the next

step is to determine that which features should be selected to

construct the NNA predictor with best performance. In this

research, Incremental Feature Selection [39,40] (IFS) method was

utilized to solve this problem.

Incremental Feature Selection (IFS), an effective feature

selection method based on the mRMR method. According to

the N ranked features in mRMR feature list, N feature sets could

be built as follows

Si~ff1,f2, . . . ,fig (1ƒiƒN) ð4Þ

where fi denotes the i-th ranked feature in the mRMR feature list.

According to each feature set, the peptides in the dataset were

recoded into numerical vectors. Based on each new coding vector

set, nearest neighbor algorithm was applied to construct the

prediction model. By the jackknife cross-validation, the prediction

accuracies for the two datasets were then calculated. IFS curve was

plotted with the number of features in the feature set Si as x-axis

and the prediction accuracy as y-axis. The optimal feature set was

selected when the IFS curve rose to the peak. And the model on

the optimal feature set was used as the ultimate tool to predict the

hydroxylation sites of proteins.

Results and Discussion

The sorted features by mRMR
After the representation of the peptides, we obtain the sorted

features in MaxRel feature list and mRMR feature list for the

hydroxyproline dataset and hydroxylysine dataset (see Table S3

and Table S4) by applying the mRMR procedure. The MaxRel

feature list consists of the 500 preferentially selected features,

where a small index of a feature means that the feature is highly

correlated with the class label. The mRMR feature list also consists

of the 500 preferentially selected features, where a small index of a

feature implies that the feature is very important for separating the

hydroxylated sites and the non-hydroxylated sites.

Performance of NNA predictors
Based on the 500 ranked features in the mRMR feature list, we

built 500 feature sets according to Eq. (4). Then a predictor was

constructed for each feature set using nearest neighbor algorithm

and then evaluated by the jackknife cross-validation. The

performances of the 500 predictors for the hydroxyproline dataset

and hydroxylysine dataset are shown in the IFS curves (Figure 1).

For hydroxyproline dataset, the curve arrives at the peak with the

prediction accuracy of 76.0% and the corresponding optimal

feature set consists of the first 73 features in the mRMR feature

list. And the Sn, Sp and MCC are 64.8%, 81.6% and 0.461,

respectively. For hydroxylysine dataset, the curve arrives at the

peak with the prediction accuracy of 82.1% and the corresponding

optimal feature set consists of the first 42 features in the mRMR

feature list. And the Sn, Sp and MCC are 70.4%, 88.0% and

0.592, respectively. The performances of the NNA predictors for

the two datasets are also listed in Table S5 and Table S6,

respectively.

Feature analysis
For the hydroxyproline dataset or hydroxylysine dataset,

biological feature analysis was done on two feature sets: (i) Feature

Figure 1. IFS curves for hydroxyproline dataset and hydroxy-
lysine dataset. Each curve shows that prediction accuracies of the 500
predictors evaluated by the jackknife cross-validation.
doi:10.1371/journal.pone.0015917.g001
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Figure 2. Distribution of the three kinds of features and distribution of 13 positions of the peptides in feature set A and B for
hydroxyproline dataset. Legend ‘‘Distributive’’ means that the frequency of each kind of features are calculated according to the proportion of
each kind of features in the 6,345 features (e.g., in dataset A, there should be 478 (506|12|500=6345&478) amino acid factors, 21
(20|13|500=6345&21) conservation, and 1 (1|13|500=6345&1) disorder); while legend ‘‘Resultant’’ represents the frequency of each kind of
features in the dataset (A or B).
doi:10.1371/journal.pone.0015917.g002

Figure 3. Distribution of the 5 feature clusters of the AAindex and distribution of conservation of 20 amino acids in the feature set
A and B for hydroxyproline dataset.
doi:10.1371/journal.pone.0015917.g003
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set A: the 500 sorted feature in the MaxRel feature list, which are

highly related to protein hydroxylation in the feature space. (ii)

Feature set B: the optimal feature set, with which the predictor has

the best performance for identifying the hydroxylation sites.

Hydroxyproline Feature Sets. Figure 2 depicts the

distribution of the three kinds of features and the distribution of

the 13 positions of sequence fragment in feature set A and B for

hydroxyproline dataset. Legend ‘‘Distributive’’ describes the

frequency of each kind of features which are calculated

according to the composition of the three kinds of features in

the 6,345 features (6,072 amino acid indices, 260 PSSM

conservation, 13 disorder); while legend ‘‘Resultant’’ stands for

the number of each kind of features in the feature set (A or B). In

Figure 2A-1, the frequency of resultant AAindex is a little lower

than the frequency of distributive AAindex; while the number of

the resultant PSSM conservation is 64, much higher than the

number of the distributive PSSM conservation (21); and there is no

difference between the frequency of resultant disorder feature and

distributive disorder feature. For the feature set B, the distribution

shown in Figure 2B-1 is similar to the distribution of the feature

set A. This may suggest that the evolution information play an

irreplaceable role for proline hydroxylation. We also select

surrounding sites of the hydroxylation sites to investigate the

influence of these sites on the determination of the hydroxylation.

The position specific distribution of the peptides in the feature sets

are shown in Figure 2A-2 and 2B-2. In Figure 2A-2, the AA3

(the 3rd amino acid of the peptide), AA6, AA8 and AA9 are highly

correlated to the proline-hydroxylation. In the MaxRel feature list

(see Table S3), the first 100 features contains 83 features of AA6,

which strongly indicates the extremely important role of AA6 in

proline hydroxylation. In Figure 2B-2, AA6, AA8, and AA9 are

also distinct from other amino acids. Therefore, the characteristic

of the amino acids adjacent to middle proline tends to exert more

influence on the identification of hydroxylated proline residues

than the relatively distal residue in the peptides. Crystal structures

of prolyl hydroxylases show that the catalytic PHD2 domain of in

complex with the C-terminal oxygen-dependent degradation

domain of HIF-1a suggests that PHD catalysis needs a mobile

region that located near the hydroxylation site and stabilizes the

PHD2?Fe(II).2OG complex [58]. That somehow mirrors that the

nearby sequence of targeting hydroxylated proline fit for the

interaction could be important for hydroxylation mechanism.

Figure 3 depicts the distribution of the 5 feature clusters of the

AAindex and the distribution of conservation of 20 amino acids in

the two feature sets. Figure 3A-1 and Figure 3B-1 show that all

the 5 kinds of AAindex contribute to the hydroxylating of proline

residue. Alpha and turn propensities and physicochemical

properties are two important attributes related to the hydroxyl-

ation among the AAindex. Alpha and turn propensities and

hydrophobicity are more important in determining hydroxylated

proline residues than other properties. That is indeed in

consistence with triple helical collagen structure, with half of

prolines have been processed to 4-OH-proline to make up the

structure [59]. The 4-OH-proline sides chains point away from the

Figure 4. Distribution of the three kinds of features and distribution of 13 positions of the peptides in feature set A and B for
hydroxylysine dataset. Legend ‘‘Distributive’’ means that the frequency of each kind of features are calculated according to the proportion of each
kind of features in the 6,345 features (e.g., in dataset A, there should be 478 (506|12|500=6345&478) amino acid factors, 21
(20|13|500=6345&21) conservation, and 1 (1|13|500=6345&1) disorder); while legend ‘‘Resultant’’ represents the frequency of each kind of
features in the dataset (A or B).
doi:10.1371/journal.pone.0015917.g004
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helix and hydrogen bond with the hydrophobic state to the solvent

[60]. That is also essential in stabilizing the triple helical

conformation of collagen providing hydrogen bonds and water

bridges related with structural hydrophobicity [61]. These post-

translational hydroxylations catalyzed by collagen prolyl hydrox-

ylases are required for proper collagen biosynthesis, folding, and

assembly. From Figure 3A-2, we can see that all the PSSM

conservation features are highly related to the hydroxylation

except conservation of cysteine, asparagine, tryptophan. Among

the 18 PSSM conservation features in the feature set B

(Figure 3B-2), the mutations of isoleucine and leucine contribute

more than other features in the breakdown of hydroxylated sites

and non-hydroxylated sites.

Hydroxylysine Feature Sets. Figure 4 shows the

distribution of the three kinds of features and the distribution of

13 positions of sequence fragment in feature set A and B for

hydroxylysine dataset. As is shown in the Figure 4A-1 and 4B-1,

the differences between resultant and distributive features in

hydroxylysine dataset are similar to the differences in hydroxy-

proline dataset. AA8 and AA11 are noticeable in both position

specific distributions of feature set A and B shown in Figure 4A-2

and 4B-2. Specifically, there are 27 features of AA8 and 49

features of AA11 within the first 100 features in the MaxRel

feature list (see Table S4). It shows that the AA8 and AA11 are

most essential for predicting the hydroxylysine using AAindex,

PSSM conservation and disorder features.

Figure 5 shows the distribution of the 5 feature clusters of the

AAindex and the distribution of conservation of 20 amino acids in

the two feature sets. Figure 5A-1 and Figure 5B-1 show that all

the 5 kinds of AAindex exert influence on the hydroxylation of

lysine residue. Alpha and turn propensities, beta propensity and

physicochemical properties are closely related to the hydroxylation

among the AAindex (see Figure 5A-1). Like the proline

hydroxylation, Alpha and turn propensities and hydrophobicity

are useful in identifying hydroxylated proline residues. Structure of

type I collagen central triple helical domains show that lysine

hydroxylation is important to determine the pattern process and of

cross-linking collagen [9,62]. Forming such kind of structure

appears close related to alpha and turn propensities and

hydrophobicity in sequence. In Figure 5A-2, the distinct features

are the mutations of the glutamic acid, glycine and proline.

However, the conservation of glycine and proline are not marked

in Figure 5B-2. This may be because that the high correlation

exists between the two mutations and the other mutations,

especially the mutation of glutamic acid. Among the 10 kinds of

mutations in the feature set B (Figure 5B-2), the mutation of

glutamic acid is more important in the classification of

hydroxylation sites and non-hydroxylation sites than others.

In summary, proline hydroxylation and lysine hydroxylation

share many common analysis results according to the above

discussion. Evolution information is of vital importance for the

hydroxylation of proline and lysine residues. Structural disorder

shows little relation to the hydroxylation. As the nearest neighbor

of the middle site in the peptides, AA8 tends to have the great

effect on the hydroxylation of proline and lysine residues. Alpha

and turn propensities and hydrophobicity are extremely important

in identifying hydroxyproline and hydroxylysine. Up until now,

the mechanism of protein hydroxylation is not clearly known.

Therefore, the results in this study may provide clues for the

biologists to design the experiments and for bioinformatists to

develop annotation tools.

Conclusion
In this study, we proposed an annotation tool to identify the

hydroxyproline and hydroxylysine. The relationship between three

kinds of amino acid features and protein hydroxylation were

Figure 5. Distribution of the 5 feature clusters of the AAindex and distribution of conservation of 20 amino acids in the feature set
A and B for hydroxylysine dataset.
doi:10.1371/journal.pone.0015917.g005
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investigated. Feature analysis indicates that physicochemical

properties and biochemical properties and evolution information

of amino acids play important roles in identifying the protein

hydroxylation sites, while structural disorder had little relation to

protein hydroxylation. Position specific distribution of the peptides

suggested that AA8 exert a great effect on the hydroxylation of

proline and lysine. The hydroxylation sites predicted by our

method may serve as the potential hydroxylation sites for the

biologists to do further experiments. The software is available

upon request.
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